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ABSTRACT. We discuss the validity of the bilinear estimate of functions satisfying the
Dirichlet boundary condition on the two dimensional half space. For two functions f, g,
we compare two nonlinearity of the standard product fg and the gradient of f and the
perpendicular component of the gradient of g, and we show that the first case needs a
restriction for the regularity index, while the second case does not. We also introduce an
application to the surface quasi-geostrophic equation with the critical dissipation. This
paper is a survey of these results.

1. INTRODUCTION

Let us consider problems on the half space,
R2 = {x € (21, 12) € R*| 25 > 0},
and we consider the Dirichlet Laplacian —Ap,

D(—Ap) ={f € Hy(Q)|Af € L*(R?)},
2
~Apf=-Af==Y 3 f [€D(=Ap)
j=1
We also write Ap the square root of —Ap,
AD = _AD-

The aim of this paper is to discuss a simple problem of partial differential equations on
domains with the boundary. To this end, we start by the bilinear estimates in Besov
spaces for product of two functions and for the nonlinear term appearing in the surface
quasi-geostrophic equation.

When the domain is the whole space R?, then it is well-known that

1915, < C(I1f) 5,

) 1 1 1 1 1
5>07 1§p7p]7qgoo(]:172,3,4), - a4 — = — + —.
p D1 P2 P3 P4
As for the nonlinearity for the surface quasi-geostrophic equattion, this kind of estimates

for (V4(—=A)~1/2f.V)g is known, since the Riesz transform is bounded in the homogeneous
Besov spaces, where V4 = (—3,,,0,,). We discuss the validity of such inequalities on the
half space with regularity number s measured by the Dirichlet Laplacian, and we will find
possible range of s.

55, gl + [ Fl1zes g

where
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We introduce Besov spaces associated with the Dirichlet Laplacian along [10,16]. It is
known that —Ap is a self-adjoint operator and we can apply the spectral theorem. We
then have a partition of identity {E())}ier such that

;= / TAEOf in AR, f € I(RY),

—Apf = /oo MEN)f in L*(RY), fe D(=Ap).
Moreover, for every measurabl_eoofunction ¢ : R — C, we can define p(—Ap) by
D((-ap) = {f € ®)| [ loPal BN < o0,
(~An)f = / EO)f, [ € Dig(~Ap).
We next introduce a partition of unity {¢,};ez C C5°(R) such that
supp ¢o C 271,2],  &;(A) = ¢o(277 ) for A € R, Z(bj()\) =1 for A > 0.
jEL

It is known in [21] (see also [15]) that the functions of the square root of the Dirichlet
Laplacian is uniformly bounded.

sup |65 (Ap)lr—rr < 00, 1< p<o0.
JjE

We can then define the test function spaces of non-homogeneous type and homogeneous
type.
X:={feLl'nL?|pu(f) <ooforall M =1,2,...},

pur(f) = [ fller + [AD flles,
Z={felnL* qu(f) <ooforall M =1,2,...},

am(f) == pu(f) + sup 2N AL 05(Ap) fll1-

It can be checked that X', Z are Frechét spaces, and we denote by X7, Z’ their topological
duals. We then define Besov spaces as follows.

Definition. For s € R and 1 < p,q < oo, we define

By, ={fez {3 (210 1)} < o}

JET

The following is our result for the bilinear estimates.

Theorem 1.1. ([13,14]) Let 1 < p,p;,q < 0o (j = 1,2,3,4) satisfy the condition of the
Holder inequality.
1 1 1 1 1

b P P2 P3 P4
(1) Let 0 < s <2+ 1/p. Then

I1£gllz,, < O

b,0)



for all f € B;uq NLP and g € LP> N B;M. ifs=24+1/pand 1 < ¢ < o0, or
s> 2+ 1/p, then it does not hold.
(2) Let s > 0. Then

1 A-1 X . . . .
I(V-A54) - Vallgy, < (s, sy, +1Flse Nalsges)
for all f € B;hq N 323,1 and g € B;%l A B;E

We give some comments about the optimality of s = 2+ 1/p in Theorem 1.1 (1). For
the sake of the simplicity, let us discuss the case when p = 2. For every smooth f, g such
that (—=Ap)™f, (—=Ap)™g € L? for all m = 0,1,2,..., we easily see that the product fg
is also in the domain of the Dirichlet Laplacian, since the value of fg on the boundary is
zero and

(=A)(fg9) = (=Af)g =2V [ -Vg+ f(—Ag),

and each term in the right hand side is justified in L}, at least. If we consider derivatives of
higher order, we need to consider whether or not (—A)(fg) again belongs to the domain of
the Dirichlet Laplacian. On the boundary value of (—A)(fg), it is easy to see that (—Af)g
and f(—Ag) have the boundary value zero, however, V f - Vg does not necessarily satisfy
such condition on the boundary. Therefore, we would not be able to justfy (—Ap)?(fg)
in general. On the other hand, it is still possible to apply the fractional Laplacian of small
order close to zero. When 0 < o < 1/2 = 1/p, the multiplication by the sign function with
respect to x5 is bounded operator in the Sovolev spaces on the entire space (Lemma 2.2),
which allows us to approximate the function (—A)(fg) by some functions with the zero
boundary value. We can then deduce that s = 2+« < 24 1/p should be the threshold to
assure the bilinear estimate. In contrast, no restriction appears for the regularity number
in Theorem 1.1 (2), since the derivative 0,,, othogonal to the boundary, changes the
boundary condition. In fact, we explain the Dirichlet condition by the odd extention with
respect to x5 and the Neumann condition by the even extention with respect to x5 in this
paper, and the derivative by x5 changes the two conditions each other, which allows us to
obtain that for instance f0,,g satisfies the Dirichlet boundary condition (see Lemma 2.3
for more detail). We also refer to [11] for the relation between boundary value and the
derivative of the orthogonal direction to the boundary.

We next apply Theorem 1.1 (2) to the surface quasi-geostrophic equation on the two
dimensional half space.

00 + (VTApl) - VO +Apf =0, t>0,7€R2
Olorz =0, 0(0,z) = 0y(z).

The equations are known as an important model in geophysical fluid dynamics, which is
derived from general quasi-geostrophic equations in the special case of constant potential
vorticity and buoyancy frequency (see [18,19]).

If the domain is the entire space R?, there are plenty of literature which studies the
existence of global solutions with the fractional Laplacian (—A)*/2, 0 < a < 2. The global
regularity for any smooth data is known in the subcritical case, o > 1, and let us focus on
the critical case, @« = 1. The global regularity with small data was proved by Constantin,
Cordoba and Wu [2] (see also Constantin and Wu [8]). The poroblem for large data case
was solved by Caffarelli and Vasseur [1], Kiselev, Nazarov and Volberg [17]. As another

approach, Constantin and Vicol [7] established the nonlinear maximum pronciple to prove
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the global regularity. On the other hand, in the super-critical case, the regularity only for
small data is known (see [9]), and blow-up for smooth solutions is an open problem. On the
bounded domains with the smooth boundary, local exitence of strong solutions and small
data global solutions are known, and was shown by by Constantin and Nguyen [6]. Related
to weak solutions, we refer to the papers by Constantin and Ignatova [3] and Constantin
and Nguyen [5]. The global solvability for large data is an important problem, but it has
not been settled, and let us refer several recent papers by Constantin and Ignatova [4],
Stokols and Vasseur [20].

In this paper, the purpose of our application is to give a simple example with the
boundary, and by the help of the odd extention, we can handle the boundary value of
functions with the Dirichlet boundary condition appropriately to obtain the existence of
global solutions with arbitrary smooth data.

The following is our result for the surface quasi geostrophic equation.

Theorem 1.2. ([14]) Let 6, € 32071. Then the integral equation
¢
9(25) — €_tAD€0 _ / e—(t—T)AD ((’LL . V)Q) d7—7 u = vLAl—jle
0

posseses a unique global solution 6 such that
0 € C([Ov OO), Bgo,l) N Ll(ou 03 Bio,l)'

Furthermore, 0 = 0(t,x) is continuous for t > 0 and x in the closure of ]R2+ and 0 s
wdentically zero on the boundary.

Let us give few remarks to prove Theorem 1.2. The local solvability follows from
an analogous argument to [22] throught the odd extention and the bilinear estimate in
Theorem 1.1 (2). We there need maximal regularity estimate proved in [10]. To extend
the local solution, we can apply the nonlinear maximum principle by [7] to guarantee
the uniform boundedness of the Holder space with the order « sufficiently smaller than
1/]|60|| L=, which allows us to solve the equation in a certain length of the time interval
any number of times. We refer to the paper [14] for the proof of Theorem 1.2. We give a
comment that the half space case is settled naturally by the argument above and moreover
the analyticity in spacetime is obtained in [12,14].

In the next section, we give proof outline of Theorem 1.1. We refer to the paper [13]
for the detail of the bilinear estimate of the standard product, fg, the paper [14] for
(VLAB1 f) - Vg with the application to the critical surface quasi-geostrophic equation.

Notation. We denote by LP the Lebesgue spaces, H; the Sovolev spaces associated

with the Dirichlet Laplacian, and B;q the Besov spaces associated with the Dirichlet
Laplacian. When the domain is the entire space R?, we clarify the domain of the function
spaces to write explicitly, LP(R?), HPS(RQ), B;Vq(]RQ). We also write —Ap the Dirichlet
Laplacian, Ap its square root on the half space, —Ag2 the Laplacian and Ap its square

root on the entire space as an operators on S’ (]Rz).
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2. PROOF OURLINE OF THEOREM 1.1

We investigate the behavior of functions with the Dirichlet boundary condition throught
the odd extention with respect to xs.

foda(x1,2) == {

flzr,22)  for x>0,
—f(xy,x9) for zo < 0.

We write the Laplacian on R?, —Ag2, and its square root,

ARz =\ —ARz.

Let us focus on the case when 2 < s < 2+ 1/p. We will argue as follows. To consider the
norm of the product fg with the regularity number s, we write A%, (fg) as

(odd extention of A‘B(fg)) =A32(f9)oda = A%;Q(—A[Rz) (sign To - foddgodd>.
If f, g satisfy the Dirichlet boundary condition, then we can suppose that

foddGodds ¥V foddGoda = 0 on ORZ
which implies that

Az (—Age) < sign s - foddgodd> = A2 ( sign IQ(—AW)(foddgodd)) :

Here it will be proved in Lemma 2.2 below that the multiplication by sign x5 is a bounded
operator in H3~%(R?), where the norm is defined by

/]

We can then apply the standart bilinear estimate to obtain the first inequality. In what
follows, we introduce two lemmas on the relation of the Laplacian between the entire
space and the half space with the Dirichlet condition, and finally we explain our idea of
the proof of Theorem 1.1.

Lemma 2.1. Let s > 0 and 1 < p < co. Then A}, f € LP(R%) if and only if (—Age)*/*f €
L*(R?). We also have that

s 5
27 ||ADf||LP(R3_) = |[(—Age) /2f||LP(R2)
provided that A% f € LP(RY).

Proof outline. We write the kernle of the semigroup generated by the fractional Lapla-
cian on R?,

a2 may = 152" fllo ).

P,(t) = Py(t,x) = F e ¥](2), t>0,z¢€R>:

We write
e~tb f(z) = /2 <Ps(t, x—y)— Py(t,x1 — yr1, 22 + yz))f(y)dy
]R+
= / 2 Pi(t,z — y) foaa(y) dy
R
:Ps<t) * fodd<x)v S Ri’
and
Ao f— f Py(t) * fodd’Ri -/
s Y T _ ) s/2 9
Apf =lim ———= =lim ; = (—Agr2)*" fodalrz ,
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if the limit exists in LP(R%). This allows us to have the equivalency of A} f € LP(R?)
and (—Ag2)*2f € LP(R?). The norm relation follows from

||A fHLp(R? = ||(A€l,)f)0ddHLp(R2) ||A]?§2fodd‘|zz,p(R2)‘

Lemma 2.2. Let 0 < s < 1/p and 1 < p < co. Then on the entire space
i) < ClIf

H(Sign mQ)f’ H3(R2)
for all f € H3(R?).

Proof outline. We introduce ¢. an approximation of the sign function with respect to
7y defined by for an odd function ¢ € C§°(R) with ¢(xg) = 1 (29 > 1),

0o (12) = p(e7wy), 1z €R,e>0.
We start by proving that
el iy w2y < CIIS

By the decomposition of the frequency of ¢. and f,

F=( 3+ ) (oethze)es) (on(hee)f) = (oef)s + (oefu

k<l+3  k>I4+3

i3 (r2y for all € > 0.

The first term is handled by the standard bilinear estimate,

(@)1l asee) < Clf|

since the frequency of f is higher than that of . On the other hand, we apply the bilinear
estimate for x5 variable for the second term. Let 1/p = 1/p; + 1/pa, s = 1/p, from which
we have s = 1/p—1/p,. It follows from the bilinear estimate and the Sobolev embedding
that

Hs(R2) = < Cllpell @) | ] H(R2)

(e f)rrl

s w2y <Clleel H;l(R)HHfHL”z(Rzg)

LP(Ry,)

SW%WQ)WN@%Q

=Clieall % )Hf_llézlsffl

1

LP(Rqey)

H3(R2)"
By applying the Fourier multiplier theorem to a multiplier |£;|°/|£]®, we have
17 &I F Fllsaey < CIF NPT Pl ey < IS

HE(R2)»

which proves the inequality.
By considering the limit as ¢ — 0 with taking a subsequence if necessary, we conclude
that

| (signz2) f| Hs(R?) < hfgl_}glf [0 f] H(R?) < Clfl H3(R2):



Proof of Theorem 1.1 (1) when 2 <s<2+1/p, 1 <p,p; < oco. Lemmas 2.1 ,2.2
imply that

25 A (9l ogeny = [ A32* (sign 22— A0) (foaagoas)) |
<C||Ag2(fodaGoda) || Lr (r2)-
It follows from the bilinear estimate on the entire space R? that
HAS (fg)HLP (R%) < C(HA 2foddHL”1(1R2)HgoddHL”2(R2) + HfoddHL”3(R2)HA[SWgoddHL“(W))?
and by Lemma 2.1
185z < C(IADAom @ gl raceey + |l IAbllraces )

For the proof of the inequality in Besov spaces, we apply the Bony paraproduct formula
and the above inequality in the Sobolev spaces to obtain the bilinear estimates in Besov
spaces. O

LP(R?)

Optimality of s = 2+ 1/p in Theorem 1.1 (1). We can see that the optimality
is independent of dimensions and let us focus on the case when the space dimension is
one. The reason is due to the boundary value of the function, and the crucial point is the
boundary value of the function with the x5 direction orthogonal to the boundary.

Let us consider the half line R, and we construct f,g such that

fr9, N f, ASg € LP(R,) for all s > 0, but A (fg) & LP(Ry).

Let ¢ be such that
1

<z <o,
peCr([0,00)), 0<e<1 o(r)= 1 for0<w 5

0 forxz>1,
and we define
f(z) = g(z) = zp(x).
We notice that f, g, A}, f,AHg € LP(R,) for all s > 0,
02(fg) = (02f)g + 20.f - Oug + fO2g,
and
(@21)g, fO2g € C3°((0, 00)).
On the other hand,
Opf - Oug = 0 + 2000 + 2°(¢')?, 209" + 2%(¢')* € C°((0, 00)),
and we need to investigate ¢?, and will prove that A/ p( %) ¢ LP(R,). We write
2
v 2aa(T) — Poaay)
ADSDQ( ) = AR%dd C/ al” Hcfd dy
\96 — |

By a direct calculation, there exist ¢,d > 0 such that

AR%dd( ) >

Cl for 0 <z <9,
[

- for —d <2 <0,
][>
7

AR%dd( ) < -



1 1
which imply that AZ@?,, € LP(R) and Abp? € LP(R,). We then conclude that

AD(0.fdrg) & LP(Ry),
and therefore, A2D+;( fg) & LP(R). O
To prove Theorem 1.1 (2), we need the following lemma.

Lemma 2.3. ([14]) Let f € nglﬂB;O’l. Then f,V f are regarded as continuous functions
and we have the following relation between the odd extention and the even extention.

(8:751 f)odd = 8:751 fodd7 (8:752 f)even = 8zzfodd7

where

flzy, —x)  for xe <O.

feven($1,$2) = {f(ml’ab) fOT‘ x9 >0,

Proof of Theorem 1.1 (2). We have
(VEAGF - )9 = =(02:A5 )0esg + (9N 5 ).

By Lemma 2.3, we write the first term,
((angBIf)axlg> (aachBlf)even(axlg)odd

(02s (AL f)oda) (D, Goda)
(5952AH§21 fodd) (O, Godd)

odd

and the second term

(045" )20s9)

-1
o = O A D019

:(8951 (ABIf)odd) <8zzgodd)
=(Os, Aﬂggfodd) (O2290dd)-

We here notice that there does not appear the sign function with respect to x, the bilinear
estimate in the entire space is possible to be applied, and we then deduce from the bilinear
estimate that

|(vA5f) - |

SCH<VLA[§21fodd) : VgoddH .

szshq Bqu(]Rz)
SC<||fodd\ Bg,q(]]@)||godd||B;2yl(]R2) + Hfodd”ngyl(R%Hgodd‘ Bt
<C(I sy Iolles , + 11z Nolzgey )

where we have applied the relation similarly to Lemma 2.1, between the Besov spaces
associated with the Dirichlet Laplacian and the Besov spaces on the entire space through
the odd extention. O
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