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1 Introduction

We consider the large time behavior of the Navier-Stokes flow past a rigid body & C R™ (n >
3). If the body & translates with a prescribed constant velocity, then we expect from
the physical point of view that solutions to the Navier-Stokes equation reflect anisotropic
decay structure at spatial infinity. In [5-8|, Finn succeeded in constructing a stationary
solution, called by physicall reasonable solution, that exhibits a paraboloidal wake region
behind the body. For more understanding, he raised a question related to convergence of
the nonstationary solution to stationary solution, which is called Finn’s starting problem.
Finn’s starting problem is the following: suppose both a rigid body and fluid filling the
outside of the body are initially at rest and the body starts to translate with a velocity
which gradually increases and is maintained after a certain finite time, then prove that a
nonstationary flow converge to a stationary solution corresponding to a terminal velocity of
the body as time goes to infinity. If the problem is proved, the stationary solution is said to
be attainable by the terminology of Heywood [14] who first studied Finn’s starting problem
in L? framework. But his result is partial result because stationary solutions do not belong
to L? in general. We thus need LY framework and this problem had remained open until
Kobayashi and Shibata [15] developed the L7 theory of the linearized problem, which is
called the Oseen problem. By using estimates of solution to the Ossen problem established
by [15], Finn’s starting problem was affirmatively solved by Galdi, Heywood and Shibata
[13].

In this paper, we derive new convergence rate that is determined by the summability of
stationary solution corresponding to a small terminal velocity. Our convergence rates are
the improvement of [13]. Moreover, we extend this result to the case of higher dimensions.
This procedure is not obvious because there is less literature for concerning the stationary
problem in higher dimensions. We thus first consider the stationary problem and construct
a small stationary solution possessing the optimal summability at spatial infinity, which is
the same as that of the Oseen fundamental solution.



Let us introduce the mathematical formulation of Finn’s starting problem. We suppose
that a rigid body & is translating with a prescribed velocity —v(t)ae;, where a > 0, e; =
(1,0,---,0)" and % is a function on R describing the transition of the translational velocity
in such a way that

b € CH(R;R),

W) <1 for teR, ¢(t)=0 for t<0, o()=1 fort>1.

(1.1)

Here and hereafter, (-)7 denotes the transpose. We take the frame attached to the body,
then the fluid motion which occupies the exterior domain D = R"\ & with C? boundary
0D and is started from rest obeys

(%—I—u-Vu:Au—w(t)ag—;—Vp, reD, t>0,
V-u =0, x€D,t>0,
ulop = —(t)aey, L >0, (1.2)
u— 0 as |z| — oo,
L u(r,0) = 0, reD.
Here, u = (uy(x,t),-- ,un(z,t))" and p = p(x,t) denote unknown velocity and pressure

of the fluid, respectively. Since ¥(t) = 1 for ¢ > 1, the large time behavior of solutions is
related to the stationary problem

( Oug
ug - Vg = Aug — a — Vps, r €D,
8x1
V- Us = 0, T e D, (13)
uslop = —ae,
us — 0 as |z| — oo.

\

We look for a nonstationary solution to (1.2), which tends to a stationary solution to (1.3) as
t — o0o. Moreover, we derive new convergence rate, that is determined by the summability
of stationary solution corresponding to a small terminal velocity. We thus first consider
the stationary problem. In n = 3, the pioneering work is due to Leray [16]. He provided
the existence theorem for weak solution to problem (1.3), what is called D-solution, having
finite Dirichlet integral without smallness assumption on data. But his solution didn’t have
the anisotropic decay structure caused by translation. To fill this gap, Finn introduced
another class of solutions (physically reasonable solutions) and succeeded in constructing
a solution possessing the anisotropic decay structure. We note that D-solutions become
physically reasonable solutions, see Babenko [1], Galdi [11] and Farwig and Sohr [4]. But
in this paper, we construct a stationary solution having the optimal summability at spatial
infinity in n > 3 and give the shorter proof of the existence theorem for stationary solutions.



Note that the summability of the Oseen fundamental solution

1 1
Ecli({zeR" ||z >1}), ¢> Z—fl VEe '({z R | [z > 1}), r> ": ,
(1.4)

see Galdi [12, Section VII], is optimal summability of stationary solutions at infinity as long
as the net force does not vanish. For the proof, we rely on L7 theory of the Oseen problem
developed by Galdi, see Proposition 3.1. By making use of his result, we find a certain
closed ball N so that a map ¥ : N 3 v — u € N which provides the solution to the problem

¢

ou
Au—a— = Vp+uv-Vu, €D,
81‘1
V-u=020, r €D,
ulgp = —aey,
u—0 as |z| — oo,

\

is well-defined and contractive. As long as we only use Proposition 3.1, the space in which
estimates of U are closed is

{ue L™ (D) | Vue L (D)}

But we cannot capture the optimal summability at infinity, thus find a closed ball within
the space

{u€ L(D)N L*2(D) | Vu € L1 (D) N LP2(D)}. (1.5)

It is not straightforward to prove the well-definedness of ¥ in the space (1.5). We in fact
take suitable parameters (g1, ¢2, g3, q4) satisfying oy < ¢1 < go < g, /1 <r; <719 < By and
g<l+i<1, i=1,2

noq Ty
required in Proposition 3.1. We then apply Proposition 3.1 to f = v - Vv with v €
L9 (D),Vv e L™ (D) and v € L2(D),Vv € L™(D).

Let us proceed to the starting problem. We prove the attainability of the stationary
solution obtained above by applying the L?-L" estimate of the Oseen semigroup [3, 15].
Since the fluid is initially at rest and the stationary solution us presents in the forcing term
of the integral equation for perturbation, we expect that the convergence rate is determined
by the summability of u,, in fact, we derive

lu(t) = uslly = OU*47%), 0 < g < oo, (1.6)
IVu(t) — Vull, = Ot ™27 7) (1.7)
as t — 0o, where || - ||, denotes the L? norm and u, € L™+ (D) with some p; > 0. Our

rate is the improvement of the one in Galdi, Heywood and Shibata [13], which is the same
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as in stability analysis (Shibata [18]). The key step of the proof of (1.6)—(1.7) is the L™
convergence

u(t) = uslla = O™ %) (1.8)

as t — 0o. We first derive the slower convergence ||u(t) — us|zn(py = O(t~%) with some
p € (0,1). This convergence property implies the better convergence properties of the other
norm. We then repeat improvements of L" convergence step by step to obtain (1.8). We
note that if n > 4, L% convergence is needed, where gy < n is appropriately chosen in
Lemma 3.5.

2 Results

First result is the existence and summability of stationary solutions.

Theorem 2.1. Let n > 3. For every (aq, ao, B, Ba) satisfying

Zti <op<n+l1<ay< n(n;l), n+/1 < p < n—2|—1 §62<n§1n—j21), (2.1)
there exists a constant 6 = 0(ay, ag, B1, fa,n, D) € (0,1) such that if
0<ait < 0,
problem (1.3) admits a unique solution us along with
sl + [[tslla < Cat=, [ Va[lg, + [|Vuglls, < Carir, (2.2)

where C' > 0 is independent of a.

The lower bounds of (2.1) coincide with the optimal summability of the Oseen funda-
mental solution at spatial infinity, see (1.4), and the upper bounds of (2.1) come from (3.1)
with ¢ < n/2 in Proposition 3.1.

We next study the starting problem. To prove the attainability of the stationary solution,
it is convenient to set

n n n n
) = , g = ) = , = 2.3
V=T =T Bimg By (2.3)
with (p1, pe, p3, p4) satisfying
0< <n2—2n—1 1 < <n—1 0< <n2—2n—2 2 <<
n ntl a1l =S nrr rs ntl 0 on+l T nT
(2.4)
and we impose the additional condition
p2+ps > 1. (2.5)




It is reasonable to look for a nonstationary solution (u,p) by the form

w(e 1) = v(@, 1) + V(e pla.t) = (1) + $(0)ps
Then the perturbation (v, ¢) satisfies the following problem

% = Av—a% —v-Vo—9(t)v- Vus — (t)us - Vo + (1 —w(t))a%
+hy(z,t) + he(x,t) = Vo, xe€ D, t>0,
V-v=0, xe€D,t>0,
vlop = 0, t>0,
v—0 as|z] > o0,

v(z,0) =0, xe€D,

where
hy(z,t) = =)' (t)us, (2.6)

ho(z, 1) = (1) (1 — (1)) (u Vi, + ang), (2.7)

thus obeys
t
v(t) = / e_(t_T)A“P[ —v-Vu—=19(1)v-Vus, — (7)us - Vo
0

+(1- 1/)(7))@% +hi(7) + hg(T)} dr (2.8)

by using the Oseen semigroup e '« (see the next section) and the Fujita-Kato projection P
from L9(D) onto solenoidal L? space LZ(D) associated with the Helmholtz decomposition
([9], [17], [19]). For the attainability of the stationary solution, we have the following.

Theorem 2.2. Let n > 3 and let 1p be a function on R satisfying (1.1). We set M =
I{I%Xh//(tﬂ. Suppose that p1, pa, ps and py satisfy (2.4)—(2.5) and let § be the constant in
€

Theorem 2.1 with (2.3). Then there exists a constant € = €(n, D) € (0,0] such that if
n—2
0<(M+1art <e¢g,
(2.8) admits a unique solution v within the class

Y == {v € BC([0,00); L*(D)) | t2v € BC((0, 00); L*(D)), 12 Vv € BC((0,00); L(D)),
lim £ ([[o(t)]|oe + [ Vo(0)]]) = 0}. (29)



Moreover, let n = 3. Then there exists a constant ¢, = €,(D) € (0,¢]| such that if
0 < (M +1)a'’* < e, the solution v enjoys decay properties

P1

le(®l, = 0@+ 4 %), 3<Vg<oo, [Ve(t)s= O 2%)

as t — oo.

Let n > 4 and suppose that ps > 1 and 1 < p; < 1+ ps in addition to (2.4) (the set of
those parameters is nonvoid whenn > 4). Then there exists a constant e, = e,(n, D) € (0, €]
such that if 0 < (M + 1)a™=2/0+1) < = the solution v enjoys

P1

lo()ll, = O 5"%), n<Vg<oo, [Vo(t)].=O0(2"%)

as t — oo.

3 Proof of results

For the proof of Theorem 2.1, we make use of the result on the Oseen problem due to Galdi
[12, Theorem VII.7.1], see also [10] for the first proof.

Proposition 3.1. Let n > 3. Supposea >0 and 1 < q < (n+1)/2. Given f € LY(D) and
u, belonging to the trace space W2~Y449(9D), problem

0
Au—a—u:Verf, reD,
81‘1
V-u=020, reD,
ulop = u,
{ u—0 as |z| — oo

admits a unique (up to an additive constant for p) solution (u,p) within the class

X, (n) = {(u,p) € LL.(D)|u € L**(D), Vu € L (D), V?u € LY(D),

ou
- q q
Tl (D), Vpe L (D)},

where

1 1 1 1 1 2

si g n+l s g n+l

(3.1)
If, in particular, a € (0,1] and q < n/2, then the solution (u,p) obtained above satisfies

61'1

2
am+ |ulls, + a

I e
+am || Vulls, + [V2ullg + IVpllg < C(IS g + ludl

’ 4aom))

with a constant C' > 0 dependent on q,n and D, however, independent of a.
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We define
B:={uec L*(D)NL*(D)|Vue LP(D)n L?(D)},

which is a Banach space equipped with the norm

2

lulls =" (a7 ulla, + a7 ||V

=1

5:)-

To prove Theorem 2.1, we find a certain closed ball N of B sothatamapV: N v+—uée N
which provides the solution to the problem

(

0
Au—a‘—u:Vp—i—v-Vv, r €D,
(9.’1?1
V-u=020, reD,
ulpp = —aey,
u—0 as |x| — oo,

\

is well-defined and contractive. If a; and [, are simultaneously close to upper bounds or
if s and [y are simultaneously close to lower bounds, we cannot apply Proposition 3.1 to

f=v-VveL*(D)NnLA(D)and f =v-Vv e L*(D)N L(D) because the relation
2 1 1 1 1

— < — < —+—=—x<1
n %) ﬁ2 aq ﬁ1

required in Proposition 3.1, is not satisfied. To overcome this difficulty, we take (q1, g2,71,72)
satisfying

1 1
nt <Q1SQ1SH+1SQQS(X2<M,
n—1 2
n+1 n(n+1)

1
<51§7’1§%§7’2§52<
1 2 1 1 1 1
maxq — + ——, — + < —+ =<1,

q1

2 1 1 . 1 2 1 1
—<—+—<mnq—+——,—+
{ as n+1"py n+1 }

and we apply Proposition 3.1 to f =v-Vv € L%(D)N L™ (D) and f=v-Vv e L2(D)N
L™ (D). We then obtain a solution u € B, thus the map ¥ can be well-defined. Moreover,
from the estimate in Proposition 3.1, the map V¥ is contractive, which completes the proof
of Theorem 2.1.

We next provide the proof of Theorem 2.2. We define the Oseen operator A, : L1(D) —
Li(D) (a>0,1<q<o0)by

P(Aa) = WD) "Wy (D) N LLD), Agu=—P [A“ - a(’%u] '
1



Here, W, (D) denotes the completion of C§°(D) in the Sobolev space W4(D). Perturba-
tion argument implies that —A, generates an analytic Cj-semigroup e 4« called the Oseen
semigroup in L2(D). The following LI-L" estimates of e~*4a were established by Kobayashi
and Shibata [15] in the three-dimensional case and further developed by Enomoto and Shi-
bata [2,3] for n > 3.

Proposition 3.2 ([2,3,15]). Let n >3, 09 > 0 and assume |a| < oy.

1. Let 1 < qg<r<o0o(q# o). Then we have

n

_n(l_1
le™* |l < Ct~2 2| £l

fort >0 and [ € LL(D), where C' = C(n,00,q,7,D) > 0 is independent of a.

2. Let 1 < q<r <n. Then we have
[Ve gl < o3G5 7],

ort >0 an € , where C = C(n,09,q,T, > 0 is wndependent of a.

f 0 and f € LL(D), where C =C D) >0 is ind d f
3. Letn/(n—1) <qg<r<oo (q# ). Then we have

le™ 4PV - Fll, < CoEGTOTE | R,
ort >0 an € , where C = C(n, o0p,q,T, > 0 is wndependent of a.
f 0 and F € LYD), where C'=C D) >0 is ind d f

We recall a function space Y defined by (2.9), which is a Banach space endowed with
norm || - ||y = || - ||v,c0, Where

[ollyie := [0]ne + [V)oot + [V,
1 _n 1
[Wlg := sup 72 2[[o(T)]lg, ¢ =mn,00;  [Vu]ng:= sup 77[[Vo(7)]n
o<r<t o<r<t

for t € (0, 00]. By making use of Proposition 3.2, we have the following lemma.
Lemma 3.3. Suppose that ug is the stationary solution obtained in Theorem 2.1. For

u,v €Y, we set

G1(u,v)(t) :/0 e A ply . Vol(r) dr,  Ga(v)(t) :/0 e~ A playy(1)w - V] dr,

Ga(v)(t) = / et 4s Py(r)u, - Vo) dr,

G = [ e omp [a—vmatem] ar

¢ t
Hl (t) = / 6_(t—T)Aa Phl (7-) d7-7 HQ(t) — / e_(t_T)AaPhQ(T) dT)
0 0



where hy and hy are defined by (2.6) and (2.7), respectively. Then we have G1(u,v), G;(v), H,;
€Y (1=2,3,4,5 = 1,2) along with

1G1(w, 0)[lve < Clul [ul X [Vl

1G2(0)llve < C(IVusll o + 1VUsllz + Vsl 2) oo,

1G3(@)llve < Cllusll iz + sl + sl 2 ) [Volne, [1Ga(@) v < CalVlay,

1+pq 1=p2
[Hillyve < OM[uslln, 1 Hallve < C(lusll 2 V]l 2+ al| V]

n n )
1—po 2—pq

for all t € (0,00] and
it |, (1) . = 0

for j =1,2. Here, C s a positive constant independent of u,v,v,a and t.

Lemma 3.3 implies that the estimate of terms in the equation (2.8) is closed in Banach space
Y. Thus we can obtain a unique global solution v within Y. For the decay properties, we
first derive slower decay in the following proposition.

Proposition 3.4. Given p € (0,1) satisfying p < min{py, ps}, where u, € L>*)(D) and
Vu, € L3Z0)(D), the solution v(t) satisfies
lo(@)ll, = O ++%7%), n<V¥g< oo (3:2)
Vo)l = 0(=%) (3:3)
as t — oo.

When n = 3, we can take p := min{p;, p3} in Proposition 3.4, thus get better decay
properties of the other norms of the solution. With them at hand, we repeat improvement
of the estimate of ||v(¢)||3 step by step. Namely, we can prove by induction that

Y .k
[e(®)lls = 0@ ), ox:=min{Zps. £} (3.4)

as t — oo for all £ > 1. This together with the same argument as in Enomoto-Shibata [3]
asserts Theorem 2.2 with n = 3.
For n > 4, we derive the L%-decay of the solution with specific gy < n, see (3.5).

Proposition 3.5. Let n > 4. Given v satisfying

p1+3— n} 1
2 759

(note that (2.4) yields p1 < n —2), we have v(t) € L®(D) for all t > 0 with

max {0,

sup(1+7)7[|o(7)llay < 00,
T>

where
n

T 1t -2y

(< n). (3.5)

qo :

9



The rate of L™/ (1+,1)_[% estimate is —v, thus the relation between v and ¢ is determined
by hq, see (2.6). To conclude Proposition 3.5, we prove v,,(t) € L%®(D) for all ¢ > 0 along
with K, = sup,(1 4+ 7)7||um(7)]l4 < C for all m > 1, where v,,(1) is the approximate
solution and ' is independent of m. Since ||v,,(t) — v(t)||, — 0 as m — oo for each ¢t > 0,
the proof of Proposition 3.5 is complete. Proposition 3.4 and Proposition 3.5 yield Theorem
2.2 with n > 4.
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