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ABSTRACT. For every non-integral o > 1, the sequence of the integer parts of n® (n =
1,2,...) is called the Piatetski-Shapiro sequence with exponent . Let PS(«) be the set
of all terms of this sequence. The aim of this article is to propose a conjecture to find
infinitely many four-term arithmetic progressions of PS(«).

1. INTRODUCTION

We let | 2| denote the integer part of - € R. For every non-integral « > 1, the sequence
([n*])s2, is called the Piatetski-Shapiro sequence with exponent o, and we let PS(«) be
the set of all terms of this sequence. A real sequence (aj);?;é is called a k-term arithmetic
progression (k-AP) if there exists ¢ > 0 such that

CLj = Ao ‘|—j€

for all 7 = 0,1,...,k — 1. In this article, we discuss APs of PS(a). By the result of
Frantzikinakis and Wierdl [FW09], PS(«) contains arbitrarily long APs for all 1 < a < 2.
Further, Matsusaka and the author recently showed that for all 2 < 3 < ~, there are
uncountably many a € [3,7] such that PS(«) contains infinitely many 3-APs [MS21].
More precisely, for any fixed a, b, c € N, they showed that the Hausdorff dimension of

{a € [8,7]: ax + by = cz has infinitely many solutions
(z,y,2) € PS(a)® with #{z,y, 2} = 3}

is greater than or equal to 1/s*. By substituting a = b = 1 and ¢ = 2, they obtained
the result on 3-APs of PS(«). However, there is no research to find 4-APs of PS(«) when
a > 2 is non-integral. The aim of this article is to propose a sufficient condition to find
infinitely many 4-APs of PS(«). Let a > 1, and we define the following condition which
depends on «.

Condition 1.1. There exists £ > a? such that for infinitely many tuples (p,q,r,s) € N*
withp < g <r < s, one has

(1.1) p* +r*—2¢% < g%, |g" 4" =2 < ¢ "

Theorem 1.2. Assume that there exists o > 1 satisfying Condition 1.1. Then PS(«)
contains infinitely many four-term arithmetic progressions.

In view of this theorem, we would expect to find infinitely many 4-APs of PS(«) by
using simultaneous Diophantine approximations. However, we do not find any a which

satisfies Condition 1.1.
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Question 1.3. Let 1 < 8 < . What is a lower bound for the Hausdorff dimension of
{a € (B,7): for infinitely many (p,q,r,s) € N> withp < q<r <s,
P+ =20 < ¢, |+ st — 2 < g2
If the set had positive Hausdorff dimension, then by Theorem 1.2, we would find un-

countably many « € (8, ) such that PS(«) contains infinitely many four-term arithmetic
progressions.

Notation 1.4. Let N be the set of all positive integers. For € R, let {z} denote the
fractional part of x. For all £ € N, we define [(] = NN[1,{]. Let v/—1 denote the imaginary
unit, and define e(x) by 2™V~ for all - € R.

2. PREPARATION

Let d € N. We mainly discuss the case when d = 1 or 2. Forallx = (z™, ... 2®) € R?,
we define {x} = ({zM},..., {2(@}). Let (x,)_, be a sequence composed of x,, € R? for
all 1 <n < N. We define the discrepancy of (x,)N_, by

4 {n e NN[LN]: {x,) € Hle[ai,bi)} d

Di<nen(Xp) = sup I — H(bi —a;)].
Vield]

We can find upper bounds of the discrepancy from evaluating exponential sums by the
following inequality. This is shown by Koksma [Kok50] and Sziisz [Szii52] independently:
there exists Cy > 0 which depends only on d such that for all H € N, we have

N
1 1 1
(2.1) Dicnen(xn) < Cy Tt Z J(h) NZe((h,xn» ;
0<[hllo<H 1
hez?

where we let (-, -) denote the standard inner product and define
d
e = max{[D],...,[n D]}, v(h) = ][ max{1,|"[}
i=1

forallh = (V... h@D) € R?. This inequality is sometimes reffered as the Erd6s-Turén-
Koksma inequality. We refer [DT97, Theorem 1.21] to the readers for more details. In
order to evaluate upper bounds for the right-hand side on (2.1), we will use the following
lemma which is called van der Corput’s k-th derivative test.

Lemma 2.1. Let Vi, Vy be real numbers with Vo — Vi > 1. Let f : [V1,V5] — R be a
function which has continuous derivatives up to the k-th order, where k > 4. Let A\, and
T be positive real numbers. Suppose that

A < [fP ()] < Ty
for all x € [Vi,V5]. Then there exists C(T, k) > 0 such that

Y. elf(n)

Vi<n<Va

Proof. See the book written by Titchmarsh [Tit86, Theorem 5.13]. O
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3. LEMMA

We write O(1) for a bounded quantity. If this bound depends only on some parameters
ai, ..., a4y, then for instance we write Og, 4, 4,(1). As is customary, we often abbreviate

O(1)X and Oy, .4, (1) X to O(X) and O,, .. 4, (X) respectively for a non-negative quantity
X. We also state f(X) < ¢(X) and f(X) <40, 9(X) as f(X) = O(g(X)) and
F(X) = Oa,....a,(g(X)) respectively, where g(X) is non-negative.

Lemma 3.1. Let a > 1, £ > a?, 0 < e < (£ —a?)/a, and § > 0. Then there exists
0 = 0(a, &, €) > 0 such that for all p,q € N with p < q, by setting V. = (6¢°)"/* and
U = q&e/e®~c/a either one has

Dy cvcav ((0p)*, (v0)*) Kaees 4
or there exist hi,hy € N with hy < hy < ¢° such that |hy(p/q)® — he| < ¢~8/%F¢ and

Dy cu<2v ((uq)®/h1) Kages q .

Proof. Take any p,q € N with p < ¢. Take a small parameter § = 0(a, &, €) > 0, and large
parameter gy = qo(c, €, €) which satisfies ¢f > 2. Let n = £/a — € + 20. We may assume
that ¢ > qo. Let H = [¢°], and let L(hy, hy) = hi(p/q)® + hy for all hy, hy € Z. By (2.1),
we have

o o 1 1
Dy <v<av((vp)®, (vg)?) < Tt > vl ) |S(ha, ko)l .
0<|[(h1,h2)|lcc<IT
where S(hy, ha) = Yo y<ay €(L(h, h)q®v®). Firstly, we discuss the case when
(31) L(hsha)] > ¢
for all hy, hy € Z with 0 < ||(h1, h2)||ec < H. Let k = |a(a+&)/¢] +1. Here a(a+§)/& >
a > 1, which implies that ¥ > 2. In addition, ¥ = |a(a + &)/&] +1 > a(a + &) /€ > a.
Fix any hi, hy € Z with 0 < ||(h1, ha)||ec < H. Define f(x) = L(hy, ha)q®xz®. Then
| L(h1, ha)g* VO Lae [FP(2)] ag L1, ho)lg® V"
for all real numbers x € (V, 2V]. Therefore by Lemma 2.1, we obtain
(3:2) [S(hn, ha)l ae (1L, ha)lg Vo) E 2 4 VEET (L R, o) gnVet) 7

Let S; and Sy be the first and second term on the right-hand side of (3.2), respectively.
Then we have .
ST < |L(h, bV Kags T

Further, we observe that

(=K _ (o= ola+8)/6) _

a+ ——<a+
o o

Therefore, by taking small § > 0, one has S; <a¢5 ¢ 2.
Let us next evaluate Sy. By (3.1), it follows that

0.

2k:_2 _92—k(ok_ _ A2 _
52@( )<<a,5,6 q 2°75(2 2)€qnaq & qﬁ(k @)

By 2 <k <a(a+&)/¢+1, the exponent of ¢ is
—227F (2" )¢ +na— o+ €(k —a)
<(—4+ 2 Mt —ea+200 -+ E(a(a+8)/E+1—a)
< —ea+ 200 <0



if 6 is sufficiently small. Therefore, by taking small 6 > 0, one has Sy <, ¢ ¢~%. Hence

Dy co<av ((vp)*, (04)*) Koo ¢ +q~* (log H)*.
This implies that
Dy <vav((vp)®, (v9)*) Kages ¢ 7
Let us next discuss the case when there exist hy, hy € Z with 0 < ||(h1, h2)||cc < H such

that |L(hy,ha)| < ¢~". In this case, it follows that either hy < 0 < hg or hy < 0 < hy.
Indeed, if hq, hy > 0 or hy, he < 0 holds, then by 0 < ||(h1, h2)||cc < H, one has

q " > |L(hy, h2)| = || (p/@)* + |ha| > (1/q)* =g~
Therefore, £/a — ¢ < n < o which contradicts € < (£ — a?)/a. Hence
|L(hy, ho)| = ||ha|(p/q@)" — |ha]| < g7".

In addition, this implies that |hi| > (q/p)*|he| — ¢*7/p“ > |he| since n > « and ¢ > p.
We replace |hy| and |he| with hy and he, respectively. Let ¢ = n — 20 = {/a —e. Let
U=q¥=/* Let K = [¢*°]. By (2.1),

1 T(h
Dy <uzav((ug)®/h) < i Z ¥7

1<h<K

where T'(h) = £ 3" <oy €(h(ug)®/hy). Let £ = [av/(¢ — )] + 1. We define g(z) =
(xq)*/hy. Then for all real numbers = € (U, 2U]

U by <o |99 (2)] <o ¢*U /Iy

Hence, by Lemma 2.1, one has

T(h) <ia (ana—e/h1>1/(2‘—2) + U—22—f(ana—e/hl)—1/(2‘—2).
Let T7 and 7% be the first and second term on the right-hand side of this equation. Then

TE 2 = PU < gl e

The exponent of ¢ is

a+ (=0 —a)/a <a+(a—da/(Y —a))(—a)/a=0.
Therefore, by taking small § > 0, we have T} <40 ¢~*°. Let us evaluate T5. We have

T2a(2‘—2) < U—22-f(2‘f—2)aHaq—a2U(zz—a)a Lo q—22_£(2e—2)(1/1—0)q—a2q(£—a)("/)—a)Ha.

Let & = ¢ — a. Note that & > 0 holds since £ > a? + ac and ¢ = £/a —e. From
2</(<ala+¢)/€¢ +1, the exponent of ¢ is

- 2272 - 2)¢ =+ (0 — )t
—4¢ + 277 — o’ + (a(a +£) /€ +1 - a)¢

<
< -26 —a’ + (/€ +1)¢ = ¢,

Therefore 72?2 Lor ¢ By taking sufficiently small 0 = 0(o, &, €), we have
1o ‘4 y
Ty <ap ¢ %. Hence we obtain

Dy cucor (uq)*/h) Kaw @ 2 + ¢ ¥ logq <aee g 2.



4. PROOF OF THEOREM 1.2

Let « > 1. Suppose that « satisfies Condition 1.1. Then there exists £ > a? such that
infinitely many (p, ¢, 7, s)’s with p < ¢ < r < s satisfy (1.1). Let ((pn, Gn, Tn, Sn))oeq be a
sequence of which each term satisfies (1.1). We may assume that ¢; < ¢o < -+ — oo. If
not, then there are at most finitely many (p, ¢, r, s)’s satisfy (1.1). This is a contradiction.
Let 0 < € < (£ —a?)/a, and § = 275, Take any large n € N. By Lemma 3.1, by setting

Vi, = (6¢5)Y* and U, = g & =el gither we have
Dv,<vcav, (D), (00)%) e @' s
or there exist hi, hy € N with hy < hy < ¢7 such that |hy(pn/gn)® — he| < 4, ¥/ and
Dy, <uzat, ()" /h1) Kaees @ -
In the farmer case, let
Ap ={v e (Va, 2V NN: ({(vpn)*}. {(0gn)"}) € [1/8,1/4) x [0,1/8)}.
By the definition of the discrepancy, it follows that
#A, =V, /644 O(V,q,,”).
Therefore A,, # ) if n is sufficiently large. Fix any v, € A. Then we have
(Vn)® = 2(vngn)™ — (vpn)* + B
= 2[(vn)”] = [(@apa)*] + 2{(0ngn)*} = {(vupn)*} + E3
where we let ESY = (Un70) = 2(0nqn)® + (Vnpn)®. By v, € A,, it follows that
1/8=1/4—1/8 < 2{(vngn)*} — {(vapn)*} < 1/2.
Since |ESY| < 6 =275, we find that 2{(0ngn)*} — {(vapn)®} + ES” € [0,1). Thus
{(0arn)*} = 2{(0ng0)*} = {(0apn)*} + B,
Let Eff) = (Unqn)* + (Vp8n)* — 2(v,7,)*. Then we have
2(Un10)* — (V)™ + EP
= 20 (7)) = L)) + 2{(ara)*} = {(000)*} + B,
By v, € A,, we obtain that

2{(0n0)"} = {(n@n)"} + Fo = 3{(vng)*} — 2{(vapn)*} + 2B + E,
1/8 =3/8 = 1/4 < 3{(vngn)*} — 2{(vnpn)*} < 3/4,
2B + EP| <35 <274

(UnSp)®

These imply that {(vns,)*} = 2{(0a7)} — {(0ngn)*} + ES?. Therefore

[L(wnpn)®] + [(varn)®] = 2[(0n0)" ]|
< B+ {(wapn)®} + {(02r0)*} = 2{(00¢0)*}]
<O+6=20=27,



and
||.(Unq")aj + I_(Unsn)aJ - 2|_(Unrn)a“
<EP] 4+ {(0ngn)*} + {(vn50)*} — 2{ (vr)*}]
<5+5=26=27".
Hence we conclude that
L (npn)®] + L(Wnrn)®] =20 (@) ], [(Vngn)®] + [(nsn)®] = 2| (varn)®].
In the latter case when there exist hi, hy € N with hy < by < qz such that

1h1(Pa/ @)™ — ha| < @777 Dy, cycon, (Ugn)* /1) <aee @52

where U, = qéé“ﬁ)/"‘z*/“. Let

B, = {u € (U,,2U,]: by '27% < {(ungn)® /M1 } < hy'27°}
By the definition of the discrepancy, it follows that
#B, = UphT'27% + O(Ung;?) > Upg; 275 + O(Ung;, %) > 0,
Therefore B,, # () if n is sufficiently large. Fix any wu, € B,. Then we observe that
(tnGn)® = hal(ungn)®/ha] + haf{(ungn)® /hr}.
Since u,, € B, we also observe that 276 < hy{(u,g,)*/h1} < 27°. Thus
(4.1) {(ungn)*} = ha{(ungn)®/ha}.
Let £ = (Unpn)® — (ho/h1)(ung,)®. It follows that
(unpn)® = (ha/h1)(ungn)® + B
= ha| (ungn)® /] + ha{(ungn)® /n} + B,
By u, € By, 1 < hy <h; <¢ and u, < U, = qT(f_QQ)/aL(/a, we have
4,°27% < hy - hi'27% < ho{(ungn)®/ha} < hg - hy1270 <270 — %270,
[ES] = (tngn)* | (pn /@)™ = hal [l < Ugqeq¥/ore20 = qEoD/omequg s/oe20 — ¢ 20,
Therefore, we obtain {(u,p,)*} = ho{(ungn)*/h1} + E® by taking large n. Further, let
ESY = (unrn)® = 2(tngn)® + (unpy)®. We observe that
() = 2(tn ) = () + ELY
= 2hy [(ungn) ] = [(wapn)®] + 2{(vad)*} = {(vapa)*} + BV

In addition, we have |E,(14)| < U2, ¢ = S —a2)/a_eq_§ = g, "7V Further,

2{ ()} = {(unpn)*} + EY
= 2h1{ () /T } = {(wapn)*} + BV
= 201 {(tn@n)* /P2 } — Pof{(ungn)®/ M} — EY + B
= (2h1 — ho){(ungn)*/m} — B + B
Note that hy > hy and u,, € B,, imply

270 = nh127% < (2h1 — ho){(un@n)®/h1} < 2hy - h127° =274
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Therefore we have {(u,r,)*} = 2{(unqn)*} — {(unpn)®} + EY for sufficiently large n. We

next let BY) = (tn@n)® 4 (U )® —2(t,ry,)®. Similarly to the evaluation of E™, it follows

that [EP| < g /5797 In addition, we observe that

(Unsn)® = 2[(unrn)™] = [(UnGn)™] + 2{(unrn)"} = {(unqn)*} + E7(z5)>
and
2{(unrn)} = {(ungn)}
= 2(2hy — ho){ (tn@n)* /P2 } — P (ungn)* /1 } — ES + B
= (3hy — 2ho){ (Unqn)* /01 } — E®) + EW.
Note that h; > hy and u,, € B,, imply
270 =hy - h1127% < (3hy — 2h){(Unqn)*/ha} < 3hy - hy'27% < 270,

Therefore {(u,5,)°} = 2{(tnrn)®} — {(Ungn)®} + EY. Similarly to the farmer case, by
taking sufficiently large n € N, we conclude that

[(unpn)®] + [(unrn)*] = 2[(ungn)]s [(ungn)*] + [(unsn)®] = 2[(unrn)®].

Hence PS(«) contains infinitely many 4-APs assuming that a satisfies Condition 1.1
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