A CONJECTURE TO FIND FOUR-TERM ARITHMETIC PROGRESSIONS OF PIATETSKI-SHAPIRO SEQUENCES

KOTA SAITO GRADUATE SCHOOL OF MATHEMATICS NAGOYA UNIVERSITY

ABSTRACT. For every non-integral $\alpha > 1$, the sequence of the integer parts of n^{α} (n = 1, 2, ...) is called the Piatetski-Shapiro sequence with exponent α . Let $PS(\alpha)$ be the set of all terms of this sequence. The aim of this article is to propose a conjecture to find infinitely many four-term arithmetic progressions of $PS(\alpha)$.

1. Introduction

We let $\lfloor x \rfloor$ denote the integer part of $x \in \mathbb{R}$. For every non-integral $\alpha > 1$, the sequence $(\lfloor n^{\alpha} \rfloor)_{n=1}^{\infty}$ is called the Piatetski-Shapiro sequence with exponent α , and we let $\mathrm{PS}(\alpha)$ be the set of all terms of this sequence. A real sequence $(a_j)_{j=0}^{k-1}$ is called a k-term arithmetic progression (k-AP) if there exists $\ell > 0$ such that

$$a_i = a_0 + j\ell$$

for all $j=0,1,\ldots,k-1$. In this article, we discuss APs of $PS(\alpha)$. By the result of Frantzikinakis and Wierdl [FW09], $PS(\alpha)$ contains arbitrarily long APs for all $1 < \alpha < 2$. Further, Matsusaka and the author recently showed that for all $2 < \beta < \gamma$, there are uncountably many $\alpha \in [\beta, \gamma]$ such that $PS(\alpha)$ contains infinitely many 3-APs [MS21]. More precisely, for any fixed $a, b, c \in \mathbb{N}$, they showed that the Hausdorff dimension of

$$\{\alpha \in [\beta, \gamma] : ax + by = cz \text{ has infinitely many solutions}$$

 $(x, y, z) \in PS(\alpha)^3 \text{ with } \#\{x, y, z\} = 3\}$

is greater than or equal to $1/s^3$. By substituting a=b=1 and c=2, they obtained the result on 3-APs of PS(α). However, there is no research to find 4-APs of PS(α) when $\alpha>2$ is non-integral. The aim of this article is to propose a sufficient condition to find infinitely many 4-APs of PS(α). Let $\alpha>1$, and we define the following condition which depends on α .

Condition 1.1. There exists $\xi > \alpha^2$ such that for infinitely many tuples $(p, q, r, s) \in \mathbb{N}^4$ with p < q < r < s, one has

$$(1.1) |p^{\alpha} + r^{\alpha} - 2q^{\alpha}| \le q^{-\xi}, |q^{\alpha} + s^{\alpha} - 2r^{\alpha}| \le q^{-\xi}.$$

Theorem 1.2. Assume that there exists $\alpha > 1$ satisfying Condition 1.1. Then $PS(\alpha)$ contains infinitely many four-term arithmetic progressions.

In view of this theorem, we would expect to find infinitely many 4-APs of $PS(\alpha)$ by using simultaneous Diophantine approximations. However, we do not find any α which satisfies Condition 1.1.

Question 1.3. Let $1 < \beta < \gamma$. What is a lower bound for the Hausdorff dimension of

$$\{\alpha \in (\beta, \gamma) : \text{ for infinitely many } (p, q, r, s) \in \mathbb{N}^2 \text{ with } p < q < r < s,$$
$$|p^{\alpha} + r^{\alpha} - 2q^{\alpha}| \le q^{-\gamma^2}, \quad |q^{\alpha} + s^{\alpha} - 2r^{\alpha}| \le q^{-\gamma^2}\}?$$

If the set had positive Hausdorff dimension, then by Theorem 1.2, we would find uncountably many $\alpha \in (\beta, \gamma)$ such that $PS(\alpha)$ contains infinitely many four-term arithmetic progressions.

Notation 1.4. Let \mathbb{N} be the set of all positive integers. For $x \in \mathbb{R}$, let $\{x\}$ denote the fractional part of x. For all $\ell \in \mathbb{N}$, we define $[\ell] = \mathbb{N} \cap [1, \ell]$. Let $\sqrt{-1}$ denote the imaginary unit, and define e(x) by $e^{2\pi\sqrt{-1}x}$ for all $x \in \mathbb{R}$.

2. Preparation

Let $d \in \mathbb{N}$. We mainly discuss the case when d = 1 or 2. For all $\mathbf{x} = (x^{(1)}, \dots, x^{(d)}) \in \mathbb{R}^d$, we define $\{\mathbf{x}\} = (\{x^{(1)}\}, \dots, \{x^{(d)}\})$. Let $(\mathbf{x}_n)_{n=1}^N$ be a sequence composed of $\mathbf{x}_n \in \mathbb{R}^d$ for all $1 \le n \le N$. We define the *discrepancy* of $(\mathbf{x}_n)_{n=1}^N$ by

$$\mathcal{D}_{1 \leq n \leq N}(\mathbf{x}_n) = \sup_{\substack{0 \leq a_i < b_i \leq 1 \\ \forall i \in [d]}} \left| \frac{\# \left\{ n \in \mathbb{N} \cap [1, N] : \{\mathbf{x}_n\} \in \prod_{i=1}^d [a_i, b_i) \right\}}{N} - \prod_{i=1}^d (b_i - a_i) \right|.$$

We can find upper bounds of the discrepancy from evaluating exponential sums by the following inequality. This is shown by Koksma [Kok50] and Szüsz [Szü52] independently: there exists $C_d > 0$ which depends only on d such that for all $H \in \mathbb{N}$, we have

(2.1)
$$\mathcal{D}_{1 \leq n \leq N}(\mathbf{x}_n) \leq C_d \left(\frac{1}{H} + \sum_{\substack{0 < \|\mathbf{h}\|_{\infty} \leq H \\ \mathbf{h} \in \mathbb{Z}^d}} \frac{1}{\nu(\mathbf{h})} \left| \frac{1}{N} \sum_{n=1}^{N} e(\langle \mathbf{h}, \mathbf{x}_n \rangle) \right| \right),$$

where we let $\langle \cdot, \cdot \rangle$ denote the standard inner product and define

$$\|\mathbf{h}\|_{\infty} = \max\{|h^{(1)}|, \dots, |h^{(d)}|\}, \quad \nu(\mathbf{h}) = \prod_{i=1}^{d} \max\{1, |h^{(i)}|\}$$

for all $\mathbf{h} = (h^{(1)}, \dots, h^{(d)}) \in \mathbb{R}^d$. This inequality is sometimes reffered as the Erdős-Turán-Koksma inequality. We refer [DT97, Theorem 1.21] to the readers for more details. In order to evaluate upper bounds for the right-hand side on (2.1), we will use the following lemma which is called van der Corput's k-th derivative test.

Lemma 2.1. Let V_1, V_2 be real numbers with $V_2 - V_1 \ge 1$. Let $f : [V_1, V_2] \to \mathbb{R}$ be a function which has continuous derivatives up to the k-th order, where $k \ge 4$. Let λ_k and T be positive real numbers. Suppose that

$$\lambda_k \le |f^{(k)}(x)| \le T\lambda_k$$

for all $x \in [V_1, V_2]$. Then there exists C(T, k) > 0 such that

$$\left| \sum_{V_1 < n \le V_2} e(f(n)) \right| \le C(T, k) \left((V_2 - V_1) \lambda_k^{1/(2^k - 2)} + (V_2 - V_1)^{1 - 2^{2-k}} \lambda_k^{-1/(2^k - 2)} \right).$$

 ${\it Proof.}$ See the book written by Titchmarsh [Tit86, Theorem 5.13].

3. Lemma

We write O(1) for a bounded quantity. If this bound depends only on some parameters a_1, \ldots, a_n , then for instance we write $O_{a_1, a_2, \ldots, a_n}(1)$. As is customary, we often abbreviate O(1)X and $O_{a_1, \ldots, a_n}(1)X$ to O(X) and $O_{a_1, \ldots, a_n}(X)$ respectively for a non-negative quantity X. We also state $f(X) \ll g(X)$ and $f(X) \ll_{a_1, \ldots, a_n} g(X)$ as f(X) = O(g(X)) and $f(X) = O_{a_1, \ldots, a_n}(g(X))$ respectively, where g(X) is non-negative.

Lemma 3.1. Let $\alpha > 1$, $\xi > \alpha^2$, $0 < \epsilon < (\xi - \alpha^2)/\alpha$, and $\delta > 0$. Then there exists $\theta = \theta(\alpha, \xi, \epsilon) > 0$ such that for all $p, q \in \mathbb{N}$ with p < q, by setting $V = (\delta q^{\xi})^{1/\alpha}$ and $U = q^{(\xi - \alpha^2)/\alpha^2 - \epsilon/\alpha}$, either one has

$$\mathcal{D}_{V < v \le 2V}((vp)^{\alpha}, (vq)^{\alpha}) \ll_{\alpha, \xi, \epsilon, \delta} q^{-\theta},$$

or there exist $h_1, h_2 \in \mathbb{N}$ with $h_2 < h_1 \le q^{\theta}$ such that $|h_1(p/q)^{\alpha} - h_2| \le q^{-\xi/\alpha + \epsilon}$ and

$$\mathcal{D}_{U < u \leq 2U}((uq)^{\alpha}/h_1) \ll_{\alpha,\xi,\epsilon,\delta} q^{-2\theta}.$$

Proof. Take any $p, q \in \mathbb{N}$ with p < q. Take a small parameter $\theta = \theta(\alpha, \xi, \epsilon) > 0$, and large parameter $q_0 = q_0(\alpha, \xi, \epsilon)$ which satisfies $q_0^{\theta} \geq 2$. Let $\eta = \xi/\alpha - \epsilon + 2\theta$. We may assume that $q \geq q_0$. Let $H = \lfloor q^{\theta} \rfloor$, and let $L(h_1, h_2) = h_1(p/q)^{\alpha} + h_2$ for all $h_1, h_2 \in \mathbb{Z}$. By (2.1), we have

$$\mathcal{D}_{V < v \le 2V}((vp)^{\alpha}, (vq)^{\alpha}) \ll \frac{1}{H} + \sum_{0 < \|(h_1, h_2)\|_{\infty} \le H} \frac{1}{\nu(h_1, h_2)} |S(h_1, h_2)|,$$

where $S(h_1, h_2) = \frac{1}{V} \sum_{V < v < 2V} e(L(h_1, h_2)q^{\alpha}v^{\alpha})$. Firstly, we discuss the case when

$$(3.1) |L(h_1, h_2)| \ge q^{-\eta}$$

for all $h_1, h_2 \in \mathbb{Z}$ with $0 < \|(h_1, h_2)\|_{\infty} \le H$. Let $k = \lfloor \alpha(\alpha + \xi)/\xi \rfloor + 1$. Here $\alpha(\alpha + \xi)/\xi > \alpha > 1$, which implies that $k \ge 2$. In addition, $k = \lfloor \alpha(\alpha + \xi)/\xi \rfloor + 1 > \alpha(\alpha + \xi)/\xi > \alpha$. Fix any $h_1, h_2 \in \mathbb{Z}$ with $0 < \|(h_1, h_2)\|_{\infty} \le H$. Define $f(x) = L(h_1, h_2)q^{\alpha}x^{\alpha}$. Then

$$|L(h_1, h_2)|q^{\alpha}V^{\alpha-k} \ll_{\alpha,\xi} |f^{(k)}(x)| \ll_{\alpha,\xi} |L(h_1, h_2)|q^{\alpha}V^{\alpha-k}|$$

for all real numbers $x \in (V, 2V]$. Therefore by Lemma 2.1, we obtain

$$(3.2) |S(h_1, h_2)| \ll_{\alpha, \xi} (|L(h_1, h_2)| q^{\alpha} V^{\alpha - k})^{1/(2^k - 2)} + V^{-2^{2^{-k}}} (|L(h_1, h_2)| q^{\alpha} V^{\alpha - k})^{-1/(2^k - 2)}.$$

Let S_1 and S_2 be the first and second term on the right-hand side of (3.2), respectively. Then we have

$$S_1^{2^k-2} \le |L(h_1, h_2)| q^{\alpha} V^{\alpha-k} \ll_{\alpha, \xi, \delta} q^{\theta} q^{\alpha} q^{(\alpha-k)\xi/\alpha}.$$

Further, we observe that

$$\alpha + \frac{(\alpha - k)\xi}{\alpha} < \alpha + \frac{(\alpha - \alpha(\alpha + \xi)/\xi)\xi}{\alpha} = 0.$$

Therefore, by taking small $\theta > 0$, one has $S_1 \ll_{\alpha,\xi,\delta} q^{-2\theta}$.

Let us next evaluate S_2 . By (3.1), it follows that

$$S_2^{\alpha(2^k-2)} \ll_{\alpha,\xi,\delta} q^{-2^{2-k}(2^k-2)\xi} q^{\eta\alpha} q^{-\alpha^2} q^{\xi(k-\alpha)}.$$

By $2 \le k \le \alpha(\alpha + \xi)/\xi + 1$, the exponent of q is

$$-2^{2-k}(2^k - 2)\xi + \eta\alpha - \alpha^2 + \xi(k - \alpha)$$

$$\leq (-4 + 2^{3-k})\xi + \xi - \epsilon\alpha + 2\theta\alpha - \alpha^2 + \xi(\alpha(\alpha + \xi)/\xi + 1 - \alpha)$$

$$< -\epsilon\alpha + 2\theta\alpha < 0$$

if θ is sufficiently small. Therefore, by taking small $\theta > 0$, one has $S_2 \ll_{\alpha,\xi} q^{-2\theta}$. Hence

$$\mathcal{D}_{V < v < 2V}((vp)^{\alpha}, (vq)^{\alpha}) \ll_{\alpha, \xi, \delta} q^{-\theta} + q^{-2\theta}(\log H)^2.$$

This implies that

$$\mathcal{D}_{V < v \le 2V}((vp)^{\alpha}, (vq)^{\alpha}) \ll_{\alpha, \xi, \epsilon, \delta} q^{-\theta}.$$

Let us next discuss the case when there exist $h_1, h_2 \in \mathbb{Z}$ with $0 < \|(h_1, h_2)\|_{\infty} \le H$ such that $|L(h_1, h_2)| \le q^{-\eta}$. In this case, it follows that either $h_1 < 0 < h_2$ or $h_2 < 0 < h_1$. Indeed, if $h_1, h_2 \ge 0$ or $h_1, h_2 \le 0$ holds, then by $0 < \|(h_1, h_2)\|_{\infty} \le H$, one has

$$q^{-\eta} \ge |L(h_1, h_2)| = |h_1|(p/q)^{\alpha} + |h_2| \ge (1/q)^{\alpha} = q^{-\alpha}.$$

Therefore, $\xi/\alpha - \epsilon \leq \eta \leq \alpha$ which contradicts $\epsilon < (\xi - \alpha^2)/\alpha$. Hence

$$|L(h_1, h_2)| = ||h_1|(p/q)^{\alpha} - |h_2|| \le q^{-\eta}.$$

In addition, this implies that $|h_1| \ge (q/p)^{\alpha} |h_2| - q^{\alpha-\eta}/p^{\alpha} > |h_2|$ since $\eta > \alpha$ and q > p. We replace $|h_1|$ and $|h_2|$ with h_1 and h_2 , respectively. Let $\psi = \eta - 2\theta = \xi/\alpha - \epsilon$. Let $U = q^{(\psi-\alpha)/\alpha}$. Let $K = \lfloor q^{2\theta} \rfloor$. By (2.1),

$$\mathcal{D}_{U < u \le 2U}((uq)^{\alpha}/h_1) \ll \frac{1}{K} + \sum_{1 \le h \le K} \frac{|T(h)|}{h},$$

where $T(h) = \frac{1}{U} \sum_{U < u \le 2U} e(h(uq)^{\alpha}/h_1)$. Let $\ell = \lfloor \alpha \psi/(\psi - \alpha) \rfloor + 1$. We define $g(x) = (xq)^{\alpha}/h_1$. Then for all real numbers $x \in (U, 2U]$

$$q^{\alpha}U^{\alpha-\ell}/h_1 \ll_{\ell,\alpha} |g^{(\ell)}(x)| \ll_{\ell,\alpha} q^{\alpha}U^{\alpha-\ell}/h_1.$$

Hence, by Lemma 2.1, one has

$$T(h) \ll_{\ell,\alpha} (q^{\alpha}U^{\alpha-\ell}/h_1)^{1/(2^{\ell}-2)} + U^{-2^{2-\ell}}(q^{\alpha}U^{\alpha-\ell}/h_1)^{-1/(2^{\ell}-2)}.$$

Let T_1 and T_2 be the first and second term on the right-hand side of this equation. Then

$$T_1^{2^{\ell}-2} = q^{\alpha} U^{\alpha-\ell} / h_1 \le q^{\alpha} q^{(\alpha-\ell)(\psi-\alpha)/\alpha}.$$

The exponent of q is

$$\alpha + (\alpha - \ell)(\psi - \alpha)/\alpha < \alpha + (\alpha - \psi \alpha/(\psi - \alpha))(\psi - \alpha)/\alpha = 0.$$

Therefore, by taking small $\theta > 0$, we have $T_1 \ll_{\alpha,\ell} q^{-3\theta}$. Let us evaluate T_2 . We have

$$T_2^{\alpha(2^{\ell}-2)} \leq U^{-2^{2-\ell}(2^{\ell}-2)\alpha} H^{\alpha} q^{-\alpha^2} U^{(\ell-\alpha)\alpha} \ll_{\alpha,\ell} q^{-2^{2-\ell}(2^{\ell}-2)(\psi-\alpha)} q^{-\alpha^2} q^{(\ell-\alpha)(\psi-\alpha)} H^{\alpha} q^{-\alpha^2} q^{(\ell-\alpha)(\psi-\alpha)} H^{\alpha} q^{-\alpha^2} q^{(\ell-\alpha)(\psi-\alpha)} H^{\alpha} q^{-\alpha^2} q^{(\ell-\alpha)(\psi-\alpha)} q^{-\alpha^2} q^{-\alpha^2}$$

Let $\xi' = \psi - \alpha$. Note that $\xi' > 0$ holds since $\xi > \alpha^2 + \alpha \epsilon$ and $\psi = \xi/\alpha - \epsilon$. From $2 \le \ell \le \alpha(\alpha + \xi')/\xi' + 1$, the exponent of q is

$$-2^{2-\ell}(2^{\ell}-2)\xi' - \alpha^2 + (\ell - \alpha)\xi'$$

$$\leq -4\xi' + 2^{3-2}\xi' - \alpha^2 + (\alpha(\alpha + \xi')/\xi' + 1 - \alpha)\xi'$$

$$\leq -2\xi' - \alpha^2 + (\alpha^2/\xi' + 1)\xi' = -\xi'.$$

Therefore $T_2^{\alpha(2^{\ell}-2)} \ll_{\alpha,\ell} q^{-\xi'+\alpha\theta}$. By taking sufficiently small $\theta = \theta(\alpha,\xi,\epsilon)$, we have $T_2 \ll_{\alpha,\ell} q^{-3\theta}$. Hence we obtain

$$\mathcal{D}_{U < u < 2U}((uq)^{\alpha}/h'_1) \ll_{\alpha,\ell} q^{-2\theta} + q^{-3\theta} \log q \ll_{\alpha,\ell,\epsilon} q^{-2\theta}.$$

4. Proof of Theorem 1.2

Let $\alpha > 1$. Suppose that α satisfies Condition 1.1. Then there exists $\xi > \alpha^2$ such that infinitely many (p,q,r,s)'s with p < q < r < s satisfy (1.1). Let $((p_n,q_n,r_n,s_n))_{n=1}^{\infty}$ be a sequence of which each term satisfies (1.1). We may assume that $q_1 < q_2 < \cdots \to \infty$. If not, then there are at most finitely many (p,q,r,s)'s satisfy (1.1). This is a contradiction. Let $0 < \epsilon < (\xi - \alpha^2)/\alpha$, and $\delta = 2^{-6}$. Take any large $n \in \mathbb{N}$. By Lemma 3.1, by setting $V_n = (\delta q_n^{\xi})^{1/\alpha}$ and $U_n = q_n^{(\xi - \alpha^2)/\alpha^2 - \epsilon/\alpha}$, either we have

$$\mathcal{D}_{V_n < v < 2V_n}((vp)^{\alpha}, (vq)^{\alpha}) \ll_{\alpha, \epsilon, \xi, \delta} q_n^{-\theta},$$

or there exist $h_1, h_2 \in \mathbb{N}$ with $h_2 < h_1 \le q_n^{\theta}$ such that $|h_1(p_n/q_n)^{\alpha} - h_2| \le q_n^{-\xi/\alpha + \epsilon}$ and

$$\mathcal{D}_{U_n < u < 2U_n}((uq_n)^{\alpha}/h_1) \ll_{\alpha,\epsilon,\xi,\delta} q_n^{-2\theta}.$$

In the farmer case, let

$$A_n = \{ v \in (V_n, 2V_n] \cap \mathbb{N} \colon (\{(vp_n)^\alpha\}, \{(vq_n)^\alpha\}) \in [1/8, 1/4) \times [0, 1/8) \}.$$

By the definition of the discrepancy, it follows that

$$\#A_n = V_n/64 + O(V_n q_n^{-\theta}).$$

Therefore $A_n \neq \emptyset$ if n is sufficiently large. Fix any $v_n \in A$. Then we have

$$(v_n r_n)^{\alpha} = 2(v_n q_n)^{\alpha} - (v_n p_n)^{\alpha} + E_n^{(1)}$$

= $2 \lfloor (v_n q_n)^{\alpha} \rfloor - \lfloor (v_n p_n)^{\alpha} \rfloor + 2 \{ (v_n q_n)^{\alpha} \} - \{ (v_n p_n)^{\alpha} \} + E_n^{(1)}$

where we let $E_n^{(1)} = (v_n r_n)^{\alpha} - 2(v_n q_n)^{\alpha} + (v_n p_n)^{\alpha}$. By $v_n \in A_n$, it follows that

$$1/8 = 1/4 - 1/8 \le 2\{(v_n q_n)^{\alpha}\} - \{(v_n p_n)^{\alpha}\} \le 1/2.$$

Since $|E_n^{(1)}| \le \delta = 2^{-6}$, we find that $2\{(v_nq_n)^{\alpha}\} - \{(v_np_n)^{\alpha}\} + E_n^{(1)} \in [0,1)$. Thus

$$\{(v_n r_n)^{\alpha}\} = 2\{(v_n q_n)^{\alpha}\} - \{(v_n p_n)^{\alpha}\} + E_n^{(1)}.$$

Let $E_n^{(2)} = (v_n q_n)^{\alpha} + (v_n s_n)^{\alpha} - 2(v_n r_n)^{\alpha}$. Then we have

$$(v_n s_n)^{\alpha} = 2(v_n r_n)^{\alpha} - (v_n q_n)^{\alpha} + E_n^{(2)}$$

= $2 |(v_n r_n)^{\alpha}| - |(v_n q_n)^{\alpha}| + 2\{(v_n r_n)^{\alpha}\} - \{(v_n q_n)^{\alpha}\} + E_n^{(2)}.$

By $v_n \in A_n$, we obtain that

$$2\{(v_n r_n)^{\alpha}\} - \{(v_n q_n)^{\alpha}\} + F_n = 3\{(v_n q_n)^{\alpha}\} - 2\{(v_n p_n)^{\alpha}\} + 2E_n^{(1)} + E_n^{(2)},$$

$$1/8 = 3/8 - 1/4 \le 3\{(v_n q_n)^{\alpha}\} - 2\{(v_n p_n)^{\alpha}\} \le 3/4,$$

$$|2E_n^{(1)} + E_n^{(2)}| \le 3\delta \le 2^{-4}.$$

These imply that $\{(v_n s_n)^{\alpha}\} = 2\{(v_n r_n)^{\alpha}\} - \{(v_n q_n)^{\alpha}\} + E_n^{(2)}$. Therefore

$$\begin{aligned} & \left| \left| \left| (v_n p_n)^{\alpha} \right| + \left| (v_n r_n)^{\alpha} \right| - 2 \left| \left| (v_n q_n)^{\alpha} \right| \right| \\ & \leq \left| E_n^{(1)} \right| + \left| \left| \left| (v_n p_n)^{\alpha} \right| + \left| \left| (v_n r_n)^{\alpha} \right| - 2 \left| \left| (v_n q_n)^{\alpha} \right| \right| \\ & \leq \delta + \delta = 2\delta = 2^{-5}. \end{aligned}$$

and

$$\begin{aligned} &|\lfloor (v_n q_n)^{\alpha} \rfloor + \lfloor (v_n s_n)^{\alpha} \rfloor - 2 \lfloor (v_n r_n)^{\alpha} \rfloor| \\ &\leq |E_n^{(2)}| + |\{ (v_n q_n)^{\alpha} \} + \{ (v_n s_n)^{\alpha} \} - 2 \{ (v_n r_n)^{\alpha} \}| \\ &\leq \delta + \delta = 2\delta = 2^{-5}. \end{aligned}$$

Hence we conclude that

$$\lfloor (v_n p_n)^{\alpha} \rfloor + \lfloor (v_n r_n)^{\alpha} \rfloor = 2 \lfloor (v_n q_n)^{\alpha} \rfloor, \quad \lfloor (v_n q_n)^{\alpha} \rfloor + \lfloor (v_n s_n)^{\alpha} \rfloor = 2 \lfloor (v_n r_n)^{\alpha} \rfloor.$$

In the latter case when there exist $h_1, h_2 \in \mathbb{N}$ with $h_2 < h_1 \leq q_n^{\theta}$ such that

$$|h_1(p_n/q_n)^{\alpha} - h_2| \le q_n^{-\xi/\alpha + \epsilon - 2\theta}, \quad \mathcal{D}_{U_n < u \le 2U_n}((uq_n)^{\alpha}/h_1) \ll_{\alpha, \epsilon, \xi} q_n^{-2\theta}$$

where $U_n = q_n^{(\xi - \alpha^2)/\alpha^2 - \epsilon/\alpha}$. Let

$$B_n = \{ u \in (U_n, 2U_n] : h_1^{-1}2^{-6} \le \{ (u_n q_n)^{\alpha} / h_1 \} < h_1^{-1}2^{-5} \}$$

By the definition of the discrepancy, it follows that

$$#B_n = U_n h_1^{-1} 2^{-6} + O(U_n q_n^{-2\theta}) \ge U_n q_n^{-\theta} 2^{-6} + O(U_n q_n^{-2\theta}) > 0.$$

Therefore $B_n \neq \emptyset$ if n is sufficiently large. Fix any $u_n \in B_n$. Then we observe that

$$(u_n q_n)^{\alpha} = h_1 \lfloor (u_n q_n)^{\alpha} / h_1 \rfloor + h_1 \{ (u_n q_n)^{\alpha} / h_1 \}.$$

Since $u_n \in B_n$, we also observe that $2^{-6} \le h_1\{(u_nq_n)^{\alpha}/h_1\} \le 2^{-5}$. Thus

$$\{(u_n q_n)^{\alpha}\} = h_1 \{(u_n q_n)^{\alpha} / h_1\}.$$

Let
$$E_n^{(3)} = (u_n p_n)^{\alpha} - (h_2/h_1)(u_n q_n)^{\alpha}$$
. It follows that
$$(u_n p_n)^{\alpha} = (h_2/h_1)(u_n q_n)^{\alpha} + E_n^{(3)}$$

$$= h_2 |(u_n q_n)^{\alpha}/h_1| + h_2 \{(u_n q_n)^{\alpha}/h_1\} + E_n^{(3)}.$$

By $u_n \in B_n$, $1 \le h_2 < h_1 \le q_n^{\theta}$, and $u_n \le U_n = q_n^{(\xi - \alpha^2)/\alpha^2 - \epsilon/\alpha}$, we have

$$q_n^{-\theta} 2^{-6} \le h_2 \cdot h_1^{-1} 2^{-6} \le h_2 \{ (u_n q_n)^{\alpha} / h_1 \} \le h_2 \cdot h_1^{-1} 2^{-5} \le 2^{-5} - q_n^{-\theta} 2^{-5},$$

$$|E_n^{(3)}| = (u_n q_n)^{\alpha} |h_1(p_n/q_n)^{\alpha} - h_2|/h_1 \le U_n^{\alpha} q_n^{\alpha} q_n^{-\xi/\alpha + \epsilon - 2\theta} = q_n^{(\xi - \alpha^2)/\alpha - \epsilon} q_n^{\alpha} q_n^{-\xi/\alpha + \epsilon - 2\theta} = q_n^{-2\theta}.$$

Therefore, we obtain $\{(u_np_n)^{\alpha}\}=h_2\{(u_nq_n)^{\alpha}/h_1\}+E_n^{(3)}$ by taking large n. Further, let $E_n^{(4)}=(u_nr_n)^{\alpha}-2(u_nq_n)^{\alpha}+(u_np_n)^{\alpha}$. We observe that

$$(u_n r_n)^{\alpha} = 2(u_n q_n)^{\alpha} - (u_n p_n)^{\alpha} + E_n^{(4)}$$

= $2h_1 \lfloor (u_n q_n)^{\alpha} \rfloor - \lfloor (u_n p_n)^{\alpha} \rfloor + 2\{(v_n q_n)^{\alpha}\} - \{(v_n p_n)^{\alpha}\} + E_n^{(4)}.$

In addition, we have $|E_n^{(4)}| \leq U_n^{\alpha} q_n^{-\xi} = q_n^{(\xi - \alpha^2)/\alpha - \epsilon} q_n^{-\xi} = q_n^{-(1 - 1/\alpha)\xi - \alpha - \epsilon}$. Further,

$$2\{(u_n q_n)^{\alpha}\} - \{(u_n p_n)^{\alpha}\} + E_n^{(4)}$$

$$= 2h_1\{(u_n q_n)^{\alpha}/h_1\} - \{(u_n p_n)^{\alpha}\} + E_n^{(4)}$$

$$= 2h_1\{(u_n q_n)^{\alpha}/h_1\} - h_2\{(u_n q_n)^{\alpha}/h_1\} - E_n^{(3)} + E_n^{(4)}$$

$$= (2h_1 - h_2)\{(u_n q_n)^{\alpha}/h_1\} - E_n^{(3)} + E_n^{(4)}$$

Note that $h_1 > h_2$ and $u_n \in B_n$ imply

$$2^{-6} = h_1 h_1^{-1} 2^{-6} \le (2h_1 - h_2) \{ (u_n q_n)^{\alpha} / h_1 \} \le 2h_1 \cdot h_1^{-1} 2^{-5} = 2^{-4}.$$

Therefore we have $\{(u_nr_n)^{\alpha}\}=2\{(u_nq_n)^{\alpha}\}-\{(u_np_n)^{\alpha}\}+E_n^{(4)}$ for sufficiently large n. We next let $E_n^{(5)}=(u_nq_n)^{\alpha}+(u_ns_n)^{\alpha}-2(u_nr_n)^{\alpha}$. Similarly to the evaluation of $E^{(4)}$, it follows that $|E_n^{(5)}|\leq q_n^{-(1-1/\alpha)\xi-\alpha-\epsilon}$. In addition, we observe that

$$(u_n s_n)^{\alpha} = 2 \lfloor (u_n r_n)^{\alpha} \rfloor - \lfloor (u_n q_n)^{\alpha} \rfloor + 2 \{ (u_n r_n)^{\alpha} \} - \{ (u_n q_n)^{\alpha} \} + E_n^{(5)},$$

and

$$2\{(u_n r_n)^{\alpha}\} - \{(u_n q_n)^{\alpha}\}$$

$$= 2(2h_1 - h_2)\{(u_n q_n)^{\alpha}/h_1\} - h_1\{(u_n q_n)^{\alpha}/h_1\} - E_n^{(3)} + E_n^{(4)}$$

$$= (3h_1 - 2h_2)\{(u_n q_n)^{\alpha}/h_1\} - E_n^{(3)} + E_n^{(4)}.$$

Note that $h_1 > h_2$ and $u_n \in B_n$ imply

$$2^{-6} = h_1 \cdot h_1^{-1} 2^{-6} \le (3h_1 - 2h_2) \{ (u_n q_n)^{\alpha} / h_1 \} \le 3h_1 \cdot h_1^{-1} 2^{-5} \le 2^{-3}.$$

Therefore $\{(u_n s_n)^{\alpha}\} = 2\{(u_n r_n)^{\alpha}\} - \{(u_n q_n)^{\alpha}\} + E_n^{(5)}$. Similarly to the farmer case, by taking sufficiently large $n \in \mathbb{N}$, we conclude that

$$|(u_n p_n)^{\alpha}| + |(u_n r_n)^{\alpha}| = 2|(u_n q_n)^{\alpha}|, \quad |(u_n q_n)^{\alpha}| + |(u_n s_n)^{\alpha}| = 2|(u_n r_n)^{\alpha}|.$$

Hence $PS(\alpha)$ contains infinitely many 4-APs assuming that α satisfies Condition 1.1

ACKNOWLEDGEMENT

The author would like to thank Professor Yuzuru Sato, Professor Kouji Yano, and Professor Hiroki Sumi for the opportunity to give a talk in RIMS Workshop 2021 "Integrated Research on Random Dynamical Systems and Multi-Valued Dynamical Systems". This work was supported by JSPS KAKENHI Grant Number JP19J20878.

References

- [DT97] Michael Drmota and Robert F. Tichy, Sequences, discrepancies and applications, Lecture Notes in Mathematics, vol. 1651, Springer-Verlag, Berlin, 1997. MR 1470456
- [FW09] N. Frantzikinakis and M. Wierdl, A Hardy field extension of Szemerédi's theorem, Adv. Math. 222 (2009), no. 1, 1–43. MR 2531366
- [Kok50] Jurjen Ferdinand Koksma, Some theorems on Diophantine inequalities, Scriptum no. 5, Math. Centrum Amsterdam, 1950. MR 0038379
- [MS21] T. Matsusaka and K. Saito, Linear Diophantine equations in Piatetski-Shapiro sequences, Acta Arith. 200 (2021), no. 1, 91–110. MR 4319608
- [Szü52] Péter Szüsz, Über ein Problem der Gleichverteilung, Comptes Rendus du Premier Congrès des Mathématiciens Hongrois, 27 Août–2 Septembre 1950, Akadémiai Kiadó, Budapest, 1952, pp. 461–472. MR 0056036
- [Tit86] E. C. Titchmarsh, The theory of the Riemann zeta-function, second ed., The Clarendon Press, Oxford University Press, New York, 1986, Edited and with a preface by D. R. Heath-Brown. MR 882550

Kota Saito, Graduate School of Mathematics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan

Email address: m17013b@math.nagoya-u.ac.jp