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1. INTRODUCTION

We start with the definition of random dynamical system (abbr. RDS). Let (M, .4, m)
be a Lebesgue space and (S, .7) a countably generated measurable space. The former will
be called the state space of RDS and the latter the parameter space of RDS in this article.
Consider a family {7s}scs of m-nonsingular transformations on (M, .#,m) indexed by S
such that the map S x M > (s,x) — Tsx € M is (& X M)/ M -measurable. Let (Q, %, P)
be a Lebesgue space and o : 2 — ) a P-preserving transformation which is assumed to
be ergodic for the sake of simplicity. The measure-preserving dynamical system (o, P) will
be called the noise transformation or noise system. Take an S-valued random variable &
on (Q,.#,P) and define an S-valued strictly stationary process {£,}5°, by &, = { oo™
(n > 0). For each n the S-valued random variable &, will be called the (random) choice
at time n. The family 2~ = {X,,} of randomly composed maps X,, : M — M is called
the random dynamical system given by ({7s}ses, 0, &) if the maps in 2" are defined by

Xo(w)r =2, Xy (w)r = ¢, () Xn(w)x for (z,w) € M xQ, (n>0).

The main interest of this article is the common statistical behavior of random maps
Xn(w) with respect to the reference measure m for a great majority of samples w € (.
It is well known that if {¢,},>0 is independent, the random sequence {X,x},>¢ becomes
a Markov chain starting at  and the so-called random ergodic theorem is discussed in

Kakutani [6]. Following Kakutani [6], we introduce the skew product transformation
Ty =11 : M xQ — M x () associated to 2 by

Ti(z,w) = (X1 (w)z,0w) for (z,w) € M x Q.
Clearly,
T (2,0) = (X (@), ™) = (Xo(0hw) Xe(w)a, o)

holds for n, k > 0. In addition, it is easy to see that T} is m x P-nonsingular since each 7
is m-nonsingular. So one may expect that the study of asymptotic behavior of the RDS
2 with respect to m is reduced to that of the single transformation 77 with respect to
m x P.

Recall the study of a single m-nonsingular transformation (7,m) as a prototype. We
usually proceed as follows: We first verify whether an m-absolutely continuous invariant

measure (abbr. a.c.im.) p exists or not. Unless otherwise stated invariant measures are
assumed to be normalized in this article. If it exists, then next we consider the ergodic
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properties of the measure-preserving dynamical system (7, ) (ergodicity, weak-mixing,
strong-mixing, exactness in noninvertible case, Kolmogorov property in invertible case
etc.). Moreover, if strong ergodic properties e.g. mixing, exactness etc. are established,
we may try to show the central limit theorem and the other limit theorems. Therefore
the study of statistical properties of the single transformation 7} via the product measure
m X P may give some clues to our problems. But the following fact makes us recognize
that it is not enough when we consider a sort of sample-wise (i.e. w-wise) properties of
the system. Let ¢ : M x Q — Q ; (r,w) — w be the natural projection. Then the
commutative diagram

MxQ -2y MxQ

o &

Q @ — O

(o}

yields that the noise system (o, P) should be a factor of the skew product system (77, m x
P). Thus one can not expect (17, m x P) having ergodic properties stronger than (o, P).

Keeping the above situation in mind, we introduce the notion of (direct) product of a
RDS 2 given by ({7s}ses, 0, &) as the RDS given by ({75 X 7s}ses, 0, &) and we denote it
by 2" x 2, or more simply 2°2. Clearly, the corresponding skew product transformation
Ty M? x Q — M? x Q can be defined by

To(z,y,w) = (X1 (w)r, X1 (w)y, ow)  for (z,y,w) € M? x Q.

and Ty is m? X P-nonsingular. On the other hand, in [2] (see also [1]), the sample-wise
(quenched) central limit theorem is obtained by showing the sample-averaged (annealed)
central limit theorem for the skew product dynamics 75 corresponding to 272 for a class of
RDSs 2" with independent choices. Inspired by these result the author studies a sample-
wise central limit theorem with deterministic centering for a class of RDSs whose choices
satisfies the strong mixing conditions but not necessarily independent. By working on the
problem above, we get a clue to show that some sample-wise (quenched) ergodic properties
of RDSs are obtained by investigating sample-averaged (annealed) ergodic behavior of its
product RDS i.e. ergodic properties of a single transformation 7. In addition we also
notice that invertibility of noise dynamics plays the important roles in our investigation.

The purpose of this article is to announce the results obtained in the research above and
give some idea to show them. Roughly speaking, we shall pull out some quenched ergodic
properties of a RDS 2 from appropriate annealed ergodic properties of the product RDS
272, In order to carry out the study of annealed ergodic properties of the product RDS
22, we may investigate the ergodic behaviors of the skew product transformation 75 with
respect to the reference measure m? x P following the preceding works [9] and [11] (see
also [10] and [14]).



2. PRELIMINARIES

First of all, let us recall the definition of the Perron-Frobenius operators and their basic
properties on this occasion. Let (M, .#, m, ) be an m-nonsingular dynamical system. As
usual it is often denoted by (7, m) if there is no fear of confusion. The Perron-Frobenius
operator for 7 with respect to m (abbr. PF operator) is defined to be the positive bounded
linear operator on L'(m) satisfying

/ (foT)gdm = / f(Zmg)dm  for f € L®(m) and g € L'(m).
M M

We summarize the basic facts of the Perron-Frobenius operators in the below.
PROPOSITION 2.1. Let (1,m) be an m nonsingular dynamical system. Then we have the
following:

(1) For h € L*(m), hm is T-invariant if and only if £, ,h = h holds, where hm
denotes the m-absolutely continuous measure with density h.

(2) Let p be an m-absolutely continuous T-invariant probability measure. Consider the
measure-preserving dynamical system (T, ). Then we have:

(2-1) (7, ) is ergodic if and only if the eigenspace of %, : L*(u) — L*(n) belonging
to the eigenvalue 1 is one-dimensional subspace of L'(m) consisting of constant functions.

(2-2) (7, 1) is weak-mizing if and only if it is ergodic and 1 is the only eigenvalue of
modulus 1 for £, , : L'(p) — L*(p).

(2-3) (1, p) is strong-mizing if and only if

/f >d/H/ fdu/Mgdu (n - o)

holds for any f € L>(u) and g € L* ().
(2-4) (1, ) is exact, i.e. (o7 "M is trivial p-a.e. if and only if

‘-i%g—/ gdp|| =0
M

1u

lim
n—oo

holds for any g € L* ().

Let 2" be a RDS given by ({7s}scs, 0, &) and 272 its direct product. Ty and T denote
the skew product transformations associated to 2" and 272, respectively. Our first task
is to find a reasonable sufficient condition for the existence of an m x P-a.c.im for T}
and an m? x P-a.cim. for Ty. It is easy to see that if Hy, € L?(m? x P) is a density of
m? x P-a.cim. for Ty, then H; € L'(m x P) defined by

Hy(o,w) = /MHg(x,y,w)m(dy) (2,0) € M x Q)

becomes a density of m x P-a.c.i.m for T;. Furthermore if the noise transformation o is
invertible, we obtain:
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PROPOSITION 2.2. Suppose that the noise system (o, P) is invertible. Then T} has an
m x P-a.c.i.m. if and only if T> has an m? x P-a.c.i.m.

Sketch of Proof. By virtue of the remark above, it suffices to show the ‘only if * part.
Let H; € L'(m x P) is an invariant density for 7} with respect to m x P. Since the
invertibility of ¢ guarantees that the formula

LrmxPP(1,w) = Lx (6-10)m(P(-, o 'w)) () P-ae.(r,w)

is valid for @ € L'(m x P), it is not hard to see that H, € L'(m? x P) given by
Hy(z,y,w) = Hy(z,w)H,(y,w) for (z,y,w) € M? x € is an invariant density for Ty with
respect to m? x P. O

Note that the commutative diagram
M2 xQ —2 M2xQ

ol s

MXQTMXQ
1

holds, where 9 is the natural projection given by ¢ (z,y,w) = (z,w) for (z,y,w) € M?*xQ.
This implies the following.

PROPOSITION 2.3. Let Q3 be an m? x P-a.c.i.m. for Ty and Q; the push-forward of Qs
by the natural projection . Then Q)1 is an m X P-a.c.i.m. for Ty and the following hold.

(1) If (Ty, Q2) is ergodic, then so is (Ty,Q1).

(2) If (Ty, Q) is weak-mizing, then so is (T1,Q1).
(3) If (Ty, Q2) is strong-mizing, then so is (T1,Q1).
(4) If (T3, Q)9) is exact, then so is (11, Q).

3. EXISTENCE OF A.C.I.M.

We use the same notation as in the previous section. We consider the following condi-
tions:

(UI) {%x,, m1}n>0 is uniformly integrable with respect to m x P.

(Uly). { L, xx,.m?1 }n>0 is uniformly integrable with respect to m?* x P.

In the above Zx, (w)m : L'(m) — L'(m) and Zx, wxx,@)m2 : L'(m?) — L'(m?) are
the Perron-Frobenius operatorers for X, (w) : M — M and X,,(w) X X, (w) : M? — M?
with respect to m and m?, respectively.

REMARK 3.1. (1) Recall that a family G in L'(m) is uniformly integrable if

lim sup/ lg] dm = 0.
4T geG J(|g|za)
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In general a family in L'(m) is uniformly integrable if and only if it is sequentially, weak-
compact in L'(m) (cf. [5] Chapter IV 8-9, 811, and 13-54).
(2) Zx,()ml(z,w) is given by

Lxwyml(z,w) =2

Tep—1(w) M Te, o(wym = "7

-

Tég(w) M

1(z,w).

The conditions (UI) and (Uly) imply that {£7. . plluso and { £} o plleso are
uniformly integrable with respect to m x P and m? x P, respectively. Therefore, by virtue
of Kakutani-Yosida Ergodic Theorem [16], the conditions (UI) and (Uly) are sufficient to

the existence of an m x P-a.cim. for Ty and an m? x P-a.c.im. for T}, respectively.
Moreover, we can show the following.

PROPOSITION 3.2. The conditions (UI) and (Uly) are equivalent.

If 75 has an m? x P-a.cim. @, then its push-forward Q; = 1.Q, is thought as a
natural m x P-a.c.i.m. for T corresponding to T5. Then it is natural to ask the converse
problem that given an m x P-a.c.im. Q; for T, are there any natural m? x P-a.c.i.m.
Qo for T satisfying ()1 = 1,(Q)s. In the case when the noise system o is invertible, the
answer is obviously true by Proposition 2.2. In the sequel of this section we consider the
methods constructing a natural invariant density for T, with respect to m? x P starting
from a given invariant density for 77 with respect to m x P.

First we introduce the method of natural extension for our later convenience. Let
(Q,.Z, P,o) be a measure-preserving system on a Lebesgue space. Then there exists an in-

vertible measure-preserving system (€2, .%, P, &) called the natural extension of (2, .7, P, o)
satisfying the following (i) and (ii), which is unique up to isomorphism.

(i) The commutative diagram

(Q,.#.P) —2— (0,.%,P)

holds.
(ii) .Z is generated by "7 "% (n € 7).

REMARK 3.3. (1) {#, = "7~ L.%} is a nondecreasing family of o fields generates .7 .
(2) Let 2 be a RDS given ({7,}scs,0,¢) and (€,.#, P, ) the natural extension of the
system (Q,.#, P, o). Define € : Q — S by
(@) = &(mw).
Then we obtain a RDS 2 given by ({7s}scs,,£). Denote by T and T the associated
skew product transformations to 2 and 2, respectively. Since Té(@) = Te(nw), for each



6

nonnegative integer n we have
X, (@) = X, (r@).

THEOREM 3.4. Suppose the condition (UI) is fulfilled. Let H € L'(m x P) be a density
of m x P-a.c.i.m. for Ty. Then there exists a unique H € L'(m x P) such that it is a
density of m x P-a.c.i.m. for Ty and satisfies

H(z,70) = E,, p|H | M x Fo)(z,2) (m x P)-a.e.(z,),

where B, p[H | M x F) is the conditional expectation of H given .M x Fy with respect
tom x P.

Sketch of Proof. (Existence) For n > 0 define H, by
Hy(a,0) = L7 (H(-, 1)) (2,0) = L, (ro—rna)(H (-, 757"D) (),

where we write as L5 = L7, pr Lx,(n5-mm) = LX,(r6-7@),m for convenience. Then we
can show that {(H,, .# x #,)} is an L'-bounded martingale. Further, the condition (UT)
yields the uniform integrability of {H,}. Therefore by Doob Convergence Theorem for
uniformly integrable martingale, it converges m x P-a.e. and in L'(m x P). The limit H
is the desired element in L'(m x P).

(Uniqueness) Let H and K be elements in (m x P) satisfying the conditions in the theorem.
Then for any f € L'(m), ¢ € L™(P) and n > 0, we can verify

| f@etro o)A@ dm x P) = [ fa)p(n @)K (@) dn x P

MxQ Mx$Q

by the usual manner. Since {7"7~L.#} generates .Z, it follows that H = K m x P-

.a.e. U
Now by Proposition 2.2, Hy, € L'(m? x P) defined by Hy(x,y,@) = Hy(x,@)H, (y, @)

2

for (z,y,@) € M? x Q is an invariant density of m? x P-a.c.im. for the skew product

transformation T,. Consider the conditional expectation of Hy given .#2% x %y = M?* x

7 1.Z. Then there exists Hy € L'(m? x P) such that
Emzxp[]:]g | M* X jo](@) = [—[2(.’ . 7-‘-@)_

We see that Hy(m? x P) is an invariant measure for T, such that its push-forward by
is Hy(m x P).
Next, we introduce the method via Kakutani-Yosida Ergodic Theorem, As mentioned in
the remark above, if the RDS satisfies the condition (UI), we can apply Kakutani-Yosida
Ergodic Theorem to the Perron-Frobenius operator £, ,,,x p for T} with respect to m x P.
n—1

Therefore the sequence (1/n) Z L mxpl converges in L'(m x P). We denote the limit
k=0

by H;. From the basic properties of the Perron-Frobenius operator, H; is an invariant
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probability density of m x P-a.c.im. for T;. Note that any m x P-a.c.im. for T is
absolutely continuous with respect to the measure @)1 = H;(m x P). In the sequel of this

section we construct a natural invariant measure Qo = Hy(m? x P) whose push-forward
by v is Q,. To this end we consider the element H; € L'(m? x P) defined by

Hi(z,y,w) = Hi(z,w)H (y,w) (2,9,w) € M* x Q.

By Theorem 3.2 we can apply Kakutani-Yosida Ergodic Theorem to %, 2 p. Therefore
there exists Hy € L'(m? x P) such that

17L—1
lim —E:Dzﬂ’f o pHi — H =0.
oo nk - To,m2xP+41 2

1,m2xP

We can show that H(r,w) = / Hy(x,y,w) m(dy) (m x P)-a.e.(x,w). Moreover, the
M
invariant measure ()5 is maximal in the following sense.

THEOREM 3.5. Assume that the condition (Ul) is fulfilled. Let Q1 = Hy(m x P) with

H, € L'(m x P) be an m x P-a.c.iom. Ty. Consider the m* x P-absolutely continuous

measure Q with density Hy given by Hy(z,y.w) = Hy(x,w)H,(y,w) for (z,y,w) € M? x
n—1

Q. Then (1/n) Z.ﬁfhmzxpﬁl converges in L*(m? x P). If the limit is denoted by Hs,
k=0

Qo = Hy(m? x P) is an m? X P-a.c.i.m. for Ty such that its push-froward by ) is Q1 and

any Qi-a.c.i.m. for Ty is absolutely continuous with respect to Q.

4. WEAK-MIXING

The notion of weak-mixing plays very important roles in the study of a single measure-
preserving transformation. In this section we consider some analogous properties of RDS.

In what follows, 2" is a RDS given by ({7s}ses, 0, &, ) and 272 is its product RDS defined
as RDS given by ({75 X Ts}ses,0,€,). T1, and Ty are the skew product transformations
corresponding to 2" and 272, respectively. We assume the uniform integrability condition
(UI). Given an m x P-a.c.im. for Ty Q; = Hi(m x P), Qy = Hy(m? x P) denotes the
m? x P-a.c.im. for T, constructed in Theorem 3.5.

For a measure-preserving system (7,m), it is well known that (7,m) is weak-mixing if
and only if its product system (7 X 7,m x m) is ergodic. As a trial we compare the ergodic
properties of (17, ()1) with that of (73, Q)2) although the latter is not the direct product
of the former. Let us temporary introduce the notion of conditional weak-mixing. The
skew product (77, Q1) said to be conditionally weak-mizing if any F € L'(Q,) with

/M F(z,w)H(z,w)m(dzr) =0
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satisfies

> /M Q(Fole)FdQl =0

Note that / F(z,w)H (x,w) m(dz) is expressed as Eq, [F' | proj, ' Z|(w) P-a.e. w by using
M

the conditional expectation. Then we can show the following.

THEOREM 4.1. Under the condition (Ul), if (T, Q2) is ergodic, then (11,Q1) is condi-
tionally weak-mizing.

Sketch of Proof. Suppose that (13, (Q)2) is ergodic and F' € L*>(();) satisfies
/ F(x,w)H(z,w)m(dz) = 0.
M
First we see that

2

7
L

[ werhrao,
oo |/ Mxa
= 2
<— FoTk FHydm| dP
=0
1 n—1
— // w)z, 0" w)F(Xp(w)y, oFw)-
” QJz2

=0

- Fx,w)F(y,w)H, (z,w)H (y,w) dn*dP

%/szﬂ F(z,w)F(y,w)Hy(z,y,w) d(m?* x P)-
. /Q /M F(2)F(y) Hi (2, ) Hi (y, w) dm>d P

_ /M P Pl e, g,) d(m? x P) /Q /M Fla,w) H (2,w) dm| dP

=0.

In the above, we need the maximality of the measure ()5 in Theorem 3.5 to justify the
convergence in the fifth line. For instance, we divide the argument into two parts according

as (z,y,w) € (Hy > 0) or (z,y,w) € (H, > 0)\ (Hy > 0). It is not so hard but slightly
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1 n—1
long. So we omit it. Now noticing that for {a,},>0, lim —Zak =0 if and only if
- n—oo M P
1 n—1
lim — Z a; = 0, the argument above leads us to the desired result. UJ
n—oo 1 =0

Theorem 4.1 has the following corollaries.

COROLLARY 4.2. Assume the condition (Ul) is fulfilled. Let p denote the probability
measure on M with density / Hi(-,w) dP with respect to m. If (13, Q2) is ergodic, then
Q

for any f € L*(p), we have

n—1
1
lim [—
Q

el WZ/M(f(Xn(W)ﬂf)—/Mf(y)Hl(y,a’“w)M)

" k=0

(1@~ [ sy dm ) ) o

2
}dP:O.

COROLLARY 4.3. Assume that m is 7¢(,)-invariant for P-a.e.w. If (To,m? x P) is ergodic,
then for any f € L*(m) we have

lim [%Z [ (st = [ ryam)

k=0

(5= [ swyam)an

REMARK 4.4. Corollary 4.2 and Corollary 4.3 may be regarded as quenched results on
random maps X,,(w) in the very weak sense. We might say that an annealed condition on

2
1(1P:O.

the product 22 (ergodicity of (T3, Q2) in this case) yields a sort of quenched weak-mixing
property (not P-a.e. but in the sense of L?(P)-convergence).

5. STRONG-MIXING

In this section 27, 22, T}, and 15 are the same as the previous section. Our present
concern is the case when there exists a unique m x P-a.c.i.m. ); and the system (7}, Q1)
is mixing. We first introduce the notion of weak-asymptotic stability. Let (7,m) be an
m-nonsingular system. Let h € L'(m) be a probability density. The PF operator .Z, ,, for
T with respect to m is called w-asymptotically stable at h € L'(m) if for any g € L*(m)

lim .£" g = / gdm-h weakly in L'(m)
n—00 ’ M

holds.
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Let @, = Hi(m x P) and Qy = Ho(m? x P) be invariant measures for T; and T5,
respectively. In addition ), and ) satisfy ¥,Qs = (1. Now we consider the following
conditions.

(MX) Lry mxp is w-asymptotically stable at H, € L'(m x P).

(MX,) Lry m2xp 18 w-asymptotically stable at Hy € L'(m? x P).

One can easily see that the condition (MXs) yields the condition (MX).
We have the following proposition which illustrates that the condition (MX) implies a
weak version of quenched mixing property of the RDS.

PROPOSITION 5.1. Assume that L, mxp satisfies (MX). Then, for any f € L>®(m) and
g € LY(m) we have

f(Xp(w)x)g(x)dm — / fdp/ g dm weakly in L*(P),
M M M

where p is a probability measure on M with density h(-) = H,(,w) P(dw) with
M
respect to m.

Therefore, we obtain a quenched mixing result of the RDS in the weak L' sense if the
Perron-Frobenius operator for 7; is w-asymptotically stable. But the next theorem tells
us that except for the trivial case, we can hardly expect the corresponding result in the
strong L! sense even if the Perron-Frobenius operator for T5 is w-asymptotically stable.

THEOREM 5.2. Let p = hm be the same as in Proposition 5.1. Under the condition
(MXy) the conditions (1), (2), (3) below are equivalent.

(1) The probability measure p on M is L'-asymptotically invariant in the following
sense.
For any f € L>(m) we have

E\ [ seeamatan) - [ g ptas

(2) The RDS Z is mizing in mean in the following sense.
For any f € L®(m) and g € L*(m) we have

wymidn) ~ [ 1w ptan) [ ot dm\ S0

(3) Ha, Hl, and h satisfy the following.
HQ(‘rvy?w) - Hl(‘r?w)h(y) - Hl(y7w>h<x) + h<x)h(y> =0 (m2 X P)—a.e.(ny,w).

In the case when the sequence of choices {&,},>0 is independent, Theorem 5.2 has the
following corollary.
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COROLLARY 5.3. In addition to the assumptions in Theorem 5.2, we assume the choice
{&.}n>0 of the RDS is independent. Then the condition (3) in Theorem 5.2 is replaced by
the condition (3)* below. As a consequence each of (1), (2), and (3) in Theorem 5.2 is
equivalent to (4) below.

(3)* Hy(x,w)=h(x) (m x P)-ae.(r,w), and
Hy(z,y,w) = h(x)h(y) (m?* x P)-ae.(z,y,w).

(4) For any f € L>(m) we have
/Mf(Xl(UJ)SU) p(dx) = y f(x)p(dx) P-aew.

Sketch of Proof. We just give the idea of proving the equivalence of (3) and (3)* under
the condition that {&, },>o is independent. In such a case the deterministic version lemma
in [11] implies that H; and Hy have deterministic versions, i.e. versions free from w. Thus
Hi(z,w) = h(x) mx P-a.e. (x,w). Therefore, (3) yields (3)*. The converse is obvious. [

The assumption of independence can be removed if the condition of uniform integra-
bility is fulfilled.

THEOREM 5.4. In addition to (MXs), we assume (UI). Then the conditions (1), (2), (3),
(3)*, and (4) in Theorem 5.2 and Corollary 5.3 are equivalent.

Sketch of Proof.  We restrict ourselves just explain about how to get (3)* form (3).

We make use of the natural extension (7, P) of the noise system (o, P). Let T} and
T, be the skew product transformations on M x Q and M? x Q associated to RDSs
2 and 22, respectively. By virtue of Theorem 3.4 T; and T, have invariant measures

Q1 = H,(m x P) and Qy = Hy(m? x P) such that
( ) Hl(x77T@) = me}_’[Hl | % X j()](xvaj) (m X P)_a‘e‘(x)@)
5.1 _ _
Hy(2,y,70) = By p[Ho | A x Fol(x,y,0) (m® x Plae.(z,y,o),

where © : Q — Q is the natural projection. Combining the condition (MXy) with the
fact that .%, = "7 L% (n > 0) generates .%, we can show that (3) holds if one replaces
H, and H, with Hy and H,. Since Hy(zv,y,@) = H,(z,0)H,(y,@) m? x P-a.e. (z,y,®)
holds in this case, (3) yields

By (2,@) s (9,2) — Fa(,@)h(y) — Ba(y, @)h(x) + h(@)h(y) =0 (m? x Place.(z,,).

Therefore we have H,(x, %) = h(z) (mx P)-a.e.(z,@). Thus by (5.1) we arrive at (3)*. O

6. CENTRAL LIMIT THEOREM

In this section 2", 22, Tv, To, Lr, = Lrymxp, L, = 21, m2xp are the same as in
the previous section.
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We need notions and results in [13]. First we recall the asymptotic stability of the
PF operator. Let (M, .#,m, ) be a m-nonsingular dynamical system. The PF operator
L m for 7 is called to be asymptotically stable at h € L'(m) if there exists a probability
density h € L'(m) such that for any g € L'(m)

lim / ‘ffmg — ( gdm) h‘ dm =0
n—oo

holds (see [8] Chapter 5). We consider the following conditions on %, and %, .

(AS) The PF operator for 77 with respect to m x P is asymptotically stable at H;.

(AS,) The PF operator for T, with respect to m* x P is asymptotically stable at H,.

REMARK 6.1. (1) Clearly, the condition (AS,) yields the condition (AS).

(2) If the condition (AS) is satisfied, the measure-preserving system (77,);) with
Q1 = Hy(m x P) is exact. Therefore, so is the noise system (o, P). Consequently, it is
noninvertible.

Before going to the body of this section, we prepare some notation. Let (M, .#,m,T)
be an m-nonsingular dynamical system, f a function on M, and n a nonnegative integer.
Put

n—1
=) for"
k=0

Now if the condition (AS) is fulfilled, for any @ € L'(m x P) we obtain

LrD — (/ P d(m x P)) H,
MxQ

From this fact it follows that for P-a.e.w and any observable f € L>(m) on M, we see
that

lim
o0 S MxQ

d(m x P)=0.

,_\

(6.1) lSn(Tl)f(Lw):%n F(Xp(w —>/fdp m-a.c.a

n
0

B
Il

holds, where p is a probability measure on M with density

o= ftriw

Therefore we may say that quenched (i.e. sample-wise) strong law of large numbers is
valid for the RDS 2. For an observable f € L>(m) we consider the following condition

(DC) / fdp ( fhdm) = 0
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and say that the observable f satisfies the deterministic centering condition or non random
centering condition. As we just have obtained a sort of sample-wise law of large numbers

(6.1), we are now in a position to consider the central limit theorem for (1/v/n)S,(11)f
under the condition (DC). For the annealed case we have the following.

THEOREM 6.2. Assume that the PF operator Ly, for the skew product transformation Ty
associated to X satisfies the condition (AS). Let v > 0 and f € L*°(m) an observable
satisfying the condition (DC). Then (1) ~ (6) below are equivalent.

(1) There exists an m x P-absolutely continuous probability measure () such that the
distribution of Sp(T1)f/\/n with respect to Q) converges in distribution to the normal
distribution N(0,v).

(2) For any m x P-absolutely continuous probability measure @, the distribution of
Sn(Th) f/\/n with respect to Q converges in distribution to the normal distribution N(0,v).

(3) There exists a probability density g € L'(m) such that for any bounded continuous

function u on R, the sequence of random variables / w(Sn(Ty) f(z, ) /v/n)g(x) m(dz)
M

converges weakly to /u(t) N(0,v)(dt) in L*(P).
R
(4) For any bounded continuous function u on R and for any probability density g €

L*(m), the sequence of random variables / w(Sn(Th) f(x,-)/v/n)g(x) m(dx) converges
M

weakly to /u(t) N(0,v)(dt) in L*(P).
R
(5) There exists a probability density g € L*(m) such that for any t € R the sequence of

random variables [ eV~ o2y m(dz) converges weakly to e /2 in L*(P).
M

(6) For any probability density g € L*(m) and t € R the sequence of random variables
/ VIS I @IV o (1) m(dx) converges weakly to e /2 in L*(P).
M

O

From Theorem 6.2 we see that for an observable f € L>(m) with the condition (DC)
the distribution of S,,(71)f/+/n with respect to m x P satisfies the central limit theorem

if and only if /Mu(Sn(Tl)f(x7 3/v/n)g(z) m(dz) converges weakly to /u(t) N(0,v)(dt)

R
in L'(P) for any bounded continuous function v on R. So it is natural to ask when the

convergence of/ u(Sp(Th) f(z,-)/v/n)g(x) m(dx) strong-L' or more.
M

In what follows we assume the validity of ‘annealed’ type central limit theorem for
T7 and proceed to arguments about ‘quenched’ type results. To this end we impose the
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conditions on T} and T3 sufficient for that Gordin’s theorem holds (for Gordin’s theorem,
consult the book [4]).

For f € L'(m), F; and f are members of L'(m?) defined by

Frlz,y) = f(z) = f(y), flz.y)=f@)f@y) ((z,y) € M?).

For a .#-measurable function f and .#?-measurable function F, we briefly write as

Snf(r,w) = 9,(1)f(zr,w), SpF(x,y,w)=S,(T2)F(r,y,w).

Note that whether f € L*(m) satisfies the condition (DC), i.e. fhdm =0 for T} or
M

not, Fy satisfies the condition (DC) i.e. / Frhydm? = 0 for Ty, where
M2

(. y) = / Hy(r.y,w) P(dw).

Indeed, since H is the limit of £ [jll in L'(m? x P), it is symmetric in the variables z, y

and
/W Fyhs dm’ Z/W<f<x> — () (/Q Hy(z,y,w) dp) dm?
Z/MQXQ(M) — f(y))Ha(z,y,w) d(m? x P) =0
holds.

In the sequel, we assume the condition (AS,) i.e. L, is asymptotically stable at Ho.
As noted above, this yields the condition (AS), i.e.Lr, is asymptotically stable at H;. We
need to introduce some quantities and the conditions on them.

For # € L'(m x P), ,¥ € L'(m? x P), and nonnegative integer n, put

A(Ty,@,n) = L3, — / dd(m x P)- Hy,

M xS

A(Ty, ¥, ) = 7;2@—/ 7 d(m? x P) - .
M2xQ

For a real-valued observable f € L*>(m), consider the autocorrelation coefficient

C(T, fin) = / FHy d(m x Q))Q,

MxQ

gorsidm <P~ ( [

X0

C(Ty, Fy,n) :/ (Fyo Ty )FrHyd(m? x P) — (/A FyHy d(m?* x Q))Z.

M2xQ 12x8Q

and the condition

(22) Z HA(T27 fH27 n)”l,m2><P < e,

n=0
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where fH, stands for the function defined by

(fHQ)(mvva) = f(m)HZ(x7va) ((CB,y,W) € M2 X Q)

We note that if the condition (3,) is satisfied, we can show that

(%) D AT, fFH ) |[1mxp < 00

n=0
holds, where fH; stands for the function defined by
(fHy)(2,w) = f(z)Hy(2,w) ((z,w) € M x Q).

Furthermore, since Hs(x,y,w) = Hy(y, z,w) holds true, it follows that

S T IA(Ty, FrHo,n) |1 mep < o0.

n=0

By virtu of the basic properties of the PF operator, we see that

1A, fHy ) lmsp = [1Eq, [f — Equ[fI1 T (A4 x F)] |1
IA(Ty, FyHa,n)llymexp = | Eqy [Fy [ Ty ™ (A7 x F)] |1

hold, where Q; = H;(m x P), Qs = Hy(m? x P).

Therefore we can apply Gordin’s theorem to (S,(71)f —n fHyd(m x P))/+/n and
MxP

Sn(T2) Fr/+/n with respect to @y and @ with limiting variances

(f) =v(T1, f) = C(Th. f.0) + 23 C(T3, f,n),

n=1

v(Fy) = 0(Ty, Fy) = C(T5, Fy,0) + 2 ) C(Ty, Fy,n),

n=1
respectively. Namely, the annealed type central limit holds.

In the following theorem for a function @ on M x €2, @ denotes the function on M? x
defined by @(z,y,w) = &(x,w)P(y,w).

THEOREM 6.3 ([13], cf. [1]). Assume that the PF operator £y, for Ty with respect to
m? x P satisfies the condition (ASy) and an observable f € L>(m) satisfies the condition
(DC). In addition, we assume that the condition (X3). Then (1)~(9) below are equivalent.

(1) There exists a probability density g € L*(m) such that the distribution of S, F;/\/n

with respect to the m? x P-absolutely continuous probability with density g converges in
distribution to the normal distribution N(0,2v(f)).
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(2) For any probability density g € L'(m), the distribution of S,F;/\/n with respect
to the m? x P-absolutely continuous probability with density g converges in distribution to
the normal distribution N(0,2v(f)).

(3) There exists probability density g € L'(m) such that for any bounded continuous

function u on R, the sequence of random variables / u(Snf/v/n)gdm converges strongly
M

to /UdN(O,’U(f)) in L'(P).
R
(4) For any probability density and for any bounded continuous function u on R, the

u(S,f/v/n)gdm converges strongly to /u dN(0,v(f))

sequence of random variables /
R

M

in L'(P).
(5) There exists a probability density g € L'(m) such that for any t € R, the sequence

of random variables / eﬁt(‘g"f/\/ﬁ)g dm converges strongly to e V(/2 in L'(P).
M

(6) For any probability density g € L'(m) and t € R, the sequence of random variables
/ VISV g dim, conwerges strongly to e /2 jin L1(P).
M

(7) v(Fy) = 2v(f).

/ £(2)f(y) Hy d(m? x P)

(8) -
+2)° / F(@) f(Xp(w)y)Hy d(m? x P) = 0.

©  lim > Sy f (2, ) S f (y, ) Ho d(m? x P) = 0.

n=0 N Jap2x

From Theorem 6.3, one recognize that although at the first glance the deterministic
condition (DC) seems natural, it is not appropriate in the quenched situation. So we
need to consider sample-dependent centering or random centering.

In the rest of this this section, we impose the uniformly continuity condition (UI) in
addition to the conditions (AS,) and (33) on our RDS in order to utilize the natural
extension of the noise system (¢.P). The invariant densities H; and Hy for T} and Ty
with respect to (m x P) and m? x P are extended to the invariant densities H; and H,
for T} and T, with respect to m x P and m? x P, respectively. We extend the distribution
of S,(1)f with respect to m x P to that of S, (T})f with respect to m x P,

For a observable f € L*(m) we consider the random centering (cf. [7], [15])

flz,0) = f(z) - Mf(y)ﬁl(y,o?)m(dy)
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and the sample-wise asymptotic behavior of the distribution of

1 o 1 _
ﬁﬁmwmm:ﬁgxﬂ&@miammwﬁmmm)

with respect to m-absolutely continuous probability measures.
With the notation above, we obtain the following.

THEOREM 6.4. In addition to the assumptions in Theorem 6.3 we assume that the con-
dition (UI). Then the following condition (10) is equivalent to each of the conditions
(1)~(9) in Theorem 6.3.

(10) There exists a @ € L*(P) such that/ f(x)Hy (2, @) dm = 3(6@) — ¢(@) P-a.e. @.
M

Put

[1]

mzéﬁ@mm@ml

The conditions (AS,) and (3;) guarantees that the series given by the autocorrelation

coefficients C'(&, =, n) of the strictly stationary random sequence {Z05"},,50 on (€, %, P)
is absolutely convergent and the condition (8) in Theorem 6.3 yields

It can be shown that this is equivalent to the fact that there exists a function ¢ € L*(P)
such that

Finally, we state a sort of quenched central limit theorem for the extended RDS given
by the natural extension (7, P) of (o, P).

THEOREM 6.5. Under the same notation, we assume that (ASs), (X2), and (UI). Then
for any t € R, we have

/M exp (mt<5"<fl>(f - E)) iz, @) dm — =2 50 (n = o0),

Ep NG

where v = v(1y, Fy)/2.

We do not have enough space to give the proofs of our results here. The details will be
published elsewhere.
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