SHELAH-STRONG TYPE AND ALGEBRAIC CLOSURE OVER A HYPERIMAGINARY

HYOYOON LEE DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY

ABSTRACT. We characterize Shelah-strong type over a hyperimagianary with the algebraic closure of a hyperimaginary. Also, we present and take a careful look at an example that witnesses $\operatorname{acl}^{\operatorname{eq}}(e)$ is not interdefinable with $\operatorname{acl}(e)$ where e is a hyperimaginary.

Fix a first order language \mathcal{L} , complete theory T and monster model \mathcal{M} . Throughout, fix a hyperimaginary $e = a_E$ where a is a (possibly infinite) real tuple and E is an \emptyset -type-definable equivalence relation on $\mathcal{M}^{|a|}$.

Most of the facts and remarks whose proofs are omitted can be found in the author's dissertation [6].

Fact 1.

- (1) A real tuple b is simply $b/(\bigwedge_{i<\alpha} x_i = y_i)$ where $b = (b_i)_{i<\alpha}$, hence can be seen as (that is, interdefinable with) a hyperimaginary; an imaginary tuple $(b_i/F_i)_{i<\alpha}$ is $(b_i)_{i<\alpha}/(\bigwedge_{i<\alpha} F_i(x_i,y_i))$ where all x_i,y_i 's are disjoint, hence is a hyperimaginary as well. In this regard, considering over a set of real elements or a set of imaginaries can be safely replaced by considering over a single hyperimaginary.
- (2) In the same manner as above, a sequence of hyperimaginaries can be regarded as a single hyperimaginary: A tuple of hyperimaginaries $(b_i/F_i)_{i<\alpha}$ is interdefinable with $(b_i)_{i<\alpha}/(\bigwedge_{i<\alpha}F_i(x_i,y_i))$ where all x_i,y_i 's are disjoint.

Definition 2.

- (1) For any hyperimaginary e', we denote $e' \in dcl(e)$ and say e' is definable over e if f(e') = e' for all $f \in Aut_e(\mathcal{M})$.
- (2) For any hyperimaginary e', we denote $e' \in \text{bdd}(e)$ and say e' is bounded over e if $\{f(e') : f \in \text{Aut}_{e}(\mathcal{M})\}$ is bounded.

Remark 3. In Definition 2, $e' \in dcl(e)$ and $e' \in bdd(e)$ are independent of the choice of a monster model \mathcal{M} .

Proof. It is easy, but anyway we prove it. Let $\mathcal{M} \prec \mathcal{M}'$ be monster models of T. Suppose that there are only κ -many automorphic images of \mathbf{e}' in \mathcal{M} , whereas there are at least κ^+ images in \mathcal{M}' . Say $\mathbf{e}' = b_F$ where b is a real tuple and F is an \emptyset -type-definable equivalence relation. Let $(b_i/F)_{i<\kappa^+}$ be an enumeration of automorphic images of b_F in \mathcal{M}' . Since there is $(b_i')_{i<\kappa^+} \equiv_a (b_i)_{i<\kappa^+}$ where each $b_i' \in \mathcal{M}$, there are at least κ^+ -many conjugates of b_F in \mathcal{M} (recall $\mathbf{e} = a/E$), a contradiction.

Fact 4.

(1) A hyperimaginary b_F is called countable if |b| is countable. It's not so difficult to prove that any hyperimaginary is interdefinable with a sequence of countable hyperimaginaries (see, for example [5, Lemma 4.1.3]).

- (2) From now on, definable closure of e, dcl(e) will be seen as an actual (small) set, the set of all countable hyperimaginaries which are definable over e: In this way, e' ∈ dcl(e) now means that there is a sequence of countable hyperimaginaries that is interdefinable with e' and fixed by any f ∈ Aut_e(M). Also note that f ∈ Aut_{dcl(e)}(M) if and only if f fixes all hyperimaginaries that are definable over e. As pointed out in Fact 1(2), dcl(e) also can be seen as a single hyperimaginary.
- (3) Likewise, the bounded closure of \mathbf{e} , $\mathrm{bdd}(\mathbf{e})$ is the set of all countable hyperimaginaries which are bounded over \mathbf{e} . In the same way as above, $\mathbf{e}' \in \mathrm{bdd}(\mathbf{e})$ means that there is a sequence of countable hyperimaginaries that is interdefinable with \mathbf{e}' , and the number of \mathbf{e} -automorphic images of it is bounded. Again, $f \in \mathrm{Aut}_{\mathrm{bdd}(\mathbf{e})}(\mathcal{M})$ is equivalent to saying that f fixes all hyperimaginaries that are bounded over \mathbf{e} .

Remark & Definition 5.

- (1) For a hyperimaginary e', denote $e' \in \operatorname{acl}(e)$ and say e' is algebraic over e if $\{f(e'): f \in \operatorname{Aut}_e(\mathcal{M})\}$ is finite. As in Remark 3, this definition is independent of the choice of a monster model.
- (2) As in Fact 4, the algebraic closure of \mathbf{e} , $\operatorname{acl}(\mathbf{e})$ can be regarded as a bounded set of countable hyperimaginaries, which is interdefinable with a single hyperimaginary $b_F \in \operatorname{bdd}(\mathbf{e})$ (but possibly $b_F \notin \operatorname{acl}(\mathbf{e})$).
- (3) Note that given $d_i/L_i \in \operatorname{acl}(\boldsymbol{e})$ $(i \leq n)$, as pointed out in Fact 1, $(d_0/L_0, \dots, d_n/L_n)$ is interdefinable with a single $d_L \in \operatorname{acl}(\boldsymbol{e})$. Hence by compactness, for any hyperimaginaries b_F and c_F ,

$$b_F \equiv_{\operatorname{acl}(\boldsymbol{e})} c_F$$
 if and only if $b_F \equiv_{d_L} c_F$ for any $d_L \in \operatorname{acl}(\boldsymbol{e})$.

Definition 6.

- (1) $\operatorname{Aut}_{\boldsymbol{e}}(\mathcal{M}) = \{ f \in \operatorname{Aut}(\mathcal{M}) : f(\boldsymbol{e}) = \boldsymbol{e} \} \ (f \text{ may permute the elements of } \boldsymbol{e}).$
- (2) $\operatorname{Autf}_{e}(\mathcal{M})$ is a subgroup of $\operatorname{Aut}_{e}(\mathcal{M})$ generated by

$$\{f \in \operatorname{Aut}_{\boldsymbol{e}}(\mathcal{M}) : f \in \operatorname{Aut}_{M}(\mathcal{M}) \text{ for some } M \models T \text{ such that } \boldsymbol{e} \in \operatorname{dcl}(M)\}.$$

It can be easily seen that $\operatorname{Autf}_{e}(\mathcal{M})$ is a normal subgroup of $\operatorname{Aut}_{e}(\mathcal{M})$.

(3) The Lascar group over of T e is the quotient group

$$\operatorname{Gal}_{\operatorname{L}}(T, \boldsymbol{e}) = \operatorname{Aut}_{\boldsymbol{e}}(\mathcal{M}) / \operatorname{Autf}_{\boldsymbol{e}}(\mathcal{M}).$$

Remark 7.

- (1) Up to isomorphism, $Gal_L(T, e)$ is independent of the choice of a monster model \mathcal{M} .
- (2) There are well-defined maps μ and ν such that:

$$\operatorname{Aut}_{\boldsymbol{e}}(\mathcal{M}) \xrightarrow{\mu} S_{M}(M) \xrightarrow{\nu} \operatorname{Gal}_{L}(T, \boldsymbol{e})$$

$$f \mapsto \operatorname{tp}(f(M)/M) \mapsto \overline{f} = \pi(f)$$

where M is a small model of T such that $e \in \operatorname{dcl}(M)$, and $\pi : \operatorname{Aut}_{e}(\mathcal{M}) \to \operatorname{Gal}_{L}(T, e)$ is the canonical projection.

The topology of $\operatorname{Gal}_{L}(T, \boldsymbol{e})$ is given by the topology induced by the quotient map ν , and it is independent of the choice of M.

Fact 8.

(1) $Gal_L(T, e)$ is a topological group.

- (2) Let $H \leq \operatorname{Aut}_{\boldsymbol{e}}(\mathcal{M})$ and let $H' = \pi(H) \leq \operatorname{Gal}_{L}(T, \boldsymbol{e})$. Then H' is closed in $\operatorname{Gal}_{L}(T, \boldsymbol{e})$ and $H = \pi^{-1}(H')$, if and only if $H = \operatorname{Aut}_{\boldsymbol{e}'\boldsymbol{e}}(\mathcal{M})$ for some hyperimaginary $\boldsymbol{e}' \in \operatorname{bdd}(\boldsymbol{e})$.
- (3) Let $H' \leq \operatorname{Gal}_{\operatorname{L}}(T, \boldsymbol{e})$ be closed and F be an \emptyset -type-definable equivalence relation. Then for $H = \pi^{-1}(H')$, $x_F \equiv_{\boldsymbol{e}}^H y_F$ is equivalent to $x_F \equiv_{\boldsymbol{e'e}} y_F$ for some hyperimaginary $\boldsymbol{e'} \in \operatorname{bdd}(\boldsymbol{e})$, and hence $x_F \equiv_{\boldsymbol{e}}^H y_F$ is an $\boldsymbol{e'e}$ -invariant type-definable bounded equivalence relation. Especially, if $H' \leq \operatorname{Gal}_{\operatorname{L}}(T, \boldsymbol{e})$, then $x_F \equiv_{\boldsymbol{e}}^H y_F$ is \boldsymbol{e} -invariant.

Definition 9.

- (1) $\operatorname{Gal}_{L}^{0}(T, \boldsymbol{e})$ denotes the connected component of the identity in $\operatorname{Gal}_{L}(T, \boldsymbol{e})$.
- (2) Autf_s $(\mathcal{M}, \boldsymbol{e}) := \pi^{-1}(\operatorname{Gal}_{\mathbf{L}}^{0}(T, \boldsymbol{e})).$
- (3) Two hyperimaginaries b_F and c_F are said to have the same Shelah-strong type if there is $f \in \operatorname{Autf}_s(\mathcal{M}, e)$ such that $f(b_F) = c_F$, denoted by $b_F \equiv_e^s c_F$.

Remark 10. Note that $\operatorname{Gal}_{L}^{0}(T, \boldsymbol{e})$ is a normal closed subgroup of $\operatorname{Gal}_{L}(T, \boldsymbol{e})$ ([4]) and $\equiv_{\boldsymbol{e}}^{s}$ is the orbit equivalence relation $\equiv_{\boldsymbol{e}}^{\operatorname{Autf}_{s}(\mathcal{M}, \boldsymbol{e})}$, thus $\equiv_{\boldsymbol{e}}^{s}$ is type-definable over \boldsymbol{e} by Fact 8(3). We denote

$$\operatorname{Gal}_{\operatorname{s}}(T, \boldsymbol{e}) := \operatorname{Gal}_{\operatorname{L}}(T, \boldsymbol{e}) / \operatorname{Gal}_{\operatorname{L}}^{0}(T, \boldsymbol{e}) \cong \operatorname{Aut}_{\boldsymbol{e}}(\mathcal{M}) / \operatorname{Autf}_{\operatorname{s}}(\mathcal{M}, \boldsymbol{e}).$$

Thus $\operatorname{Gal}_{\mathbf{s}}(T, \boldsymbol{e})$ is a profinite (i.e. compact and totally disconnected) topological group. $\operatorname{Gal}^{0}_{\mathbf{L}}(T, \boldsymbol{e})$ is the intersection of all closed (normal) subgroups of finite indices in $\operatorname{Gal}_{\mathbf{L}}(T, \boldsymbol{e})$, since such an intersection is the identity for a profinite group ([4]).

Proposition 11.

- (1) $\operatorname{Autf}_{s}(\mathcal{M}, \boldsymbol{e}) = \operatorname{Aut}_{\operatorname{acl}(\boldsymbol{e})}(\mathcal{M}).$
- (2) Let b_F , c_F be hyperimaginaries. The following are equivalent.
 - (a) $b_F \equiv_{\boldsymbol{e}}^{\mathrm{s}} c_F$.
 - (b) $b_F \equiv_{\operatorname{acl}(\boldsymbol{e})} c_F$.

Proof. (1). We claim first that

$$\operatorname{Gal}_{\operatorname{L}}^{0}(T, \boldsymbol{e}) = \bigcap \{\pi(\operatorname{Aut}_{d_{L}\boldsymbol{e}}(\mathcal{M})) : d_{L} \in \operatorname{acl}(\boldsymbol{e})\}.$$

Let $d_L \in \operatorname{acl}(\boldsymbol{e})$ where d_L is a hyperimaginary. Say $d_L^0(=d_L), \dots, d_L^n$ are all the conjugates of d_L over \boldsymbol{e} . Then any $f \in \operatorname{Aut}_{\boldsymbol{e}}(\mathcal{M})$ permutes the set $\{d_L^0, \dots, d_L^n\}$. Hence it follows that $\operatorname{Aut}_{d_L\boldsymbol{e}}(\mathcal{M})$ has a finite index in $\operatorname{Aut}_{\boldsymbol{e}}(\mathcal{M})$. Thus (due to Fact 8(2)) $\pi(\operatorname{Aut}_{d_L\boldsymbol{e}}(\mathcal{M}))$ is a closed subgroup of finite index in $\operatorname{Gal}_L(T, \boldsymbol{e})$. Then as in Remark 10, we have $\operatorname{Gal}_L^0(T, \boldsymbol{e}) \leq \pi(\operatorname{Aut}_{d_L\boldsymbol{e}}(\mathcal{M}))$.

Conversely, given a normal closed subgroup $H' \leq \operatorname{Gal}_{L}(T, \boldsymbol{e})$ of finite index and $H := \pi^{-1}(H')$, Fact 8(2) says $H' = \pi(\operatorname{Aut}_{b_F\boldsymbol{e}}(\mathcal{M}))$ for some $b_F \in \operatorname{bdd}(\boldsymbol{e})$. But since H' is of finite index, the same holds for $H = \operatorname{Aut}_{b_F\boldsymbol{e}}(\mathcal{M})$ in $\operatorname{Aut}_{\boldsymbol{e}}(\mathcal{M})$, and we must have $b_F \in \operatorname{acl}(\boldsymbol{e})$. Thus the claim follows from Remark 10.

Therefore

$$\operatorname{Autf}_{s}(\mathcal{M}, \boldsymbol{e}) = \pi^{-1}(\operatorname{Gal}_{L}^{0}(T, \boldsymbol{e})) = \pi^{-1}(\bigcap \{\pi(\operatorname{Aut}_{d_{L}\boldsymbol{e}}(\mathcal{M})) : d_{L} \in \operatorname{acl}(\boldsymbol{e})\})$$
$$= \bigcap \{\operatorname{Aut}_{d_{L}\boldsymbol{e}}(\mathcal{M}) : d_{L} \in \operatorname{acl}(\boldsymbol{e})\} = \operatorname{Aut}_{\operatorname{acl}(\boldsymbol{e})}(\mathcal{M}),$$

where the last equality follows by Remark & Definition 5(3).

(2) follows from (1).
$$\Box$$

Recall that $\operatorname{acl^{eq}}(\boldsymbol{e}) := \{\boldsymbol{e}\} \cup (\operatorname{acl}(\boldsymbol{e}) \cap \mathcal{M}^{eq})$ is the *eq-algebraic closure* of \boldsymbol{e} , where as usual \mathcal{M}^{eq} is the set of all imaginary elements (equivalence classes of \emptyset -definable equivalence relations) of \mathcal{M} . Good summary of basic facts concerning imaginary elements can be found in [1, Chapter 1]. The following remark is proved using the proof of [9, Theorem 21].

Remark 12. For any small set A of imaginaries, $\operatorname{acl}^{\operatorname{eq}}(A)(=\operatorname{acl}(A)\cap\mathcal{M}^{\operatorname{eq}})$ is interdefinable with $\operatorname{acl}(A)$.

Proof. Recall that $\operatorname{Gal}^0_{\mathbf{L}}(T,A)$ is the intersection of all closed (normal) subgroups of finite indices in $\operatorname{Gal}_{\mathbf{L}}(T,A)$ (Remark 10). Let H' be a closed subgroup of finite index in $\operatorname{Gal}_{\mathbf{L}}(T,A)$. It suffices to show that $H' = \pi(\operatorname{Aut}_{\boldsymbol{b}A}(\mathcal{M}))$ for some $\boldsymbol{b} \in \operatorname{acl}^{eq}(A)$; by Fact 8(2), we have

$$\operatorname{Gal}_{L}^{0}(T, \boldsymbol{e}) = \bigcap \{H' : H' \text{ is a closed subgroup of finite index in } \operatorname{Gal}_{L}(T, A)\}$$

$$\subseteq \bigcap \{\pi(\operatorname{Aut}_{d_{L}A}(\mathcal{M})) : d_{L} \in \operatorname{acl}^{\operatorname{eq}}(A)\};$$

thus if we show that $H' = \pi(\operatorname{Aut}_{bA}(\mathcal{M}))$ for some $\mathbf{b} \in \operatorname{acl}^{\operatorname{eq}}(A)$, then $\operatorname{Gal}^0_{\operatorname{L}}(T,A) = \bigcap \{\pi(\operatorname{Aut}_{d_LA}(\mathcal{M})) : d_L \in \operatorname{acl}^{\operatorname{eq}}(A)\}$. Taking π^{-1} , we get $\operatorname{Aut}_{\operatorname{acl}(A)}(\mathcal{M}) = \operatorname{Aut}_{\operatorname{acl}^{\operatorname{eq}}(A)}(\mathcal{M})$ (by a similar manner as in the last lines of the proof of Proposition 11(1)).

Since H is closed in $\operatorname{Gal}_{L}(T, A)$, by Fact 8(3), $H = \pi(\operatorname{Aut}_{c_{F}A}(\mathcal{M}))$ for some hyperimaginary $c_{F} \in \operatorname{bdd}(A)$. But H has finite index in $\operatorname{Gal}_{L}(T, A)$, hence (by Fact 8(2),) $c_{F} \in \operatorname{acl}(A)$. Say $\{c_{F} = c_{0}/F, \cdots, c_{n-1}/F\}$ is the set of all A-conjugates of c_{F} .

We may assume that F is closed under conjunction and all formulas in F are symmetric and reflexive. Note that by compactness, there is $\delta \in F$ such that for all i < j < n,

$$c_i c_j \nvDash \exists z_0 z_1 z_2 (\delta(x, z_0) \land \delta(z_0, z_1) \land \delta(z_1, z_2) \land \delta(z_2, y)).$$

Let $\delta^4(x,y) \equiv \exists z_0 z_1 z_2 (\delta(x,z_0) \wedge \delta(z_0,z_1) \wedge \delta(z_1,z_2) \wedge \delta(z_2,y))$, and define $\delta^m(x,y)$ similarly for $m < \omega$. Note that in particular, $\delta(c_i, \mathcal{M})$'s are pairwise disjoint.

Let d be any realization of $\operatorname{tp}(c_0/A)$. Then $d \models \bigvee_{i < n} F(x, c_i)$, thus $d \models \bigvee_{i < n} \delta(x, c_i)$, implying that there is $\varphi(x) \in \operatorname{tp}(c_0/A)$ such that $\varphi(x) \models \bigvee_{i < n} \delta(x, c_i)$, that is, $\varphi(\mathcal{M})$ can be partitioned as $\{\varphi(\mathcal{M}) \cap \delta(c_i, \mathcal{M}) : i < n\}$. Note that we can say $\varphi(x)$ is A-invariant; this is possible because A is a set of imaginaries, not a hyperimaginary.

Claim 1. For any
$$a', a'' \models \varphi(x)$$
, $a'a'' \models \delta^2(x, y)$ if and only if $a', a'' \in \varphi(\mathcal{M}) \cap \delta(c_i, \mathcal{M})$ for some $i < n$.

Proof. Assume $\models \delta^2(a', a'')$, hence there is some a^* such that $\models \delta(a', a^*) \land \delta(a^*, a'')$. Suppose a' and a'' belong to different components for a contradiction. Then

$$\models \delta(c_i, a') \land \delta(a', a^*) \land \delta(a^*, a'') \land \delta(a'', c_j)$$

for some $i \neq j < n$, implying $c_i c_j \models \delta^4(x, y)$, a contradiction.

For the converse, suppose $a', a'' \in \varphi(\mathcal{M}) \cap \delta(c_i, \mathcal{M})$ for some i < n. Then $\models \delta(a', c_i) \land \delta(c_i, a'')$.

Now define

$$L(x,y) \equiv (\neg \varphi(x) \land \neg \varphi(y)) \lor (\varphi(x) \land \varphi(y) \land \delta^{2}(x,y)).$$

Since $\varphi(x)$ is A-invariant, L is an A-definable equivalence relation with finitely many classes, $\neg \varphi(\mathcal{M}), \varphi(\mathcal{M}) \cap \delta(c_0, \mathcal{M}), \cdots, \varphi(\mathcal{M}) \cap \delta(c_{n-1}, \mathcal{M})$. Note that some imaginary $\boldsymbol{b}(\in \operatorname{acl}(A))$ is interdefinable with c/L ([1, Lemma 1.10]).

Claim 2. c/F and **b** (or equivalently, c/L) are interdefinable over A.

Proof. Let $f \in Aut_A(\mathcal{M})$. Then

$$f(c/F) = c/F$$
 iff $F(f(c), c)$ holds iff $\models \delta^2(f(c), c)$
iff $L(f(c), c)$ holds iff $f(c/L) = c/L$,

where the second logical equivalence follows since: Otherwise, $\models \delta^2(f(c), c)$ but $F(c_i, f(c))$ and $F(c, c_j)$ hold for some $i \neq j < n$. But then we have $\models \delta^4(c_i, c_j)$, a contradiction. \square

By Claim 2,
$$H = \pi(\operatorname{Aut}_{c_F A}(\mathcal{M})) = \pi(\operatorname{Aut}_{\boldsymbol{b}A}(\mathcal{M}))$$
 where $\boldsymbol{b} \in \operatorname{acl}^{\operatorname{eq}}(A)$.

However, contrary to [5, Corollary 5.1.15], in general $\operatorname{acl}(\boldsymbol{e})$ and $\operatorname{acl^{eq}}(\boldsymbol{e})$ need not be interdefinable; the error occurred there due to the incorrect proof of [5, 5.1.14(1) \Rightarrow (2)]. An example presented in [3] for another purpose supplies a counterexample. Consider the following 2-sorted model:

$$M = ((M_1, S_1, \{g_{1/n}^1 : n \ge 1\}), (M_2, S_2, \{g_{1/n}^2 : n \ge 1\}), \delta)$$
 where

- (1) M_1 and M_2 are unit circles centered at origins of two disjoint (real) planes.
- (2) S_i is a ternary relation on M_i , defined by $S_i(b, c, d)$ holds if and only if b, c and d are in clockwise-order.
- (3) $g_{1/n}^i$ is a unary function on M_i such that $g_{1/n}^i(b) = \text{rotation of } b \text{ by } 2\pi/n\text{-radians clockwise.}$
- (4) $\delta: M_1 \to M_2$ is the double covering, i.e. $\delta(\cos t, \sin t) = (\cos 2t, \sin 2t)$.
- (5) Let \mathcal{M} be a monster model of Th(M) and \mathcal{M}_1 , \mathcal{M}_2 be the two sorts of \mathcal{M} .

In [2, Theorems 5.8 and 5.9], it is shown that each $Th(\mathcal{M}_i)$ has weak elimination of imaginaries (that is, for any imaginary element c, there is a finite real tuple b such that $c \in dcl(b)$ and $b \in acl(c)$), using the B. Poizat's notion of weak elimination of imaginaries ([7, Chapter 16.5]). The following fact is a folklore, whose explicit proof was observed in RIMS model theory workshop by I. Yoneda ([8]).

Fact 13. A (complete) theory T has weak elimination of imaginaries if and only if every definable set has a smallest algebraically closed set over which it is definable.

Remark & Definition 14.

- (1) For each element b of sort $i = 1, 2, g_r^i(b)$ means $(g_{1/n}^i)^m(b)$ where r is a rational number m/n.
- (2) For each element b of sort 2, $\delta^{-1}(b) = \{c_0, c_1\}$, the δ -preimage of b.
- (3) For a set of elements $B = B_1 \cup B_2$ of \mathcal{M} where each element of B_i is of sort i,

$$cl(B) = \{g_r^1(b) : r \in \mathbb{Q}, b \in B_1\} \cup \{\delta(g_r^1(b)) : r \in \mathbb{Q}, b \in B_1\}$$
$$\cup \{g_r^2(b) : r \in \mathbb{Q}, b \in B_2\} \cup \bigcup_{r \in \mathbb{Q}, b \in B_2} \delta^{-1}(g_r^2(b)).$$

(4) Note that in the above item, the substructure generated by B is formed by omitting the last union: $\bigcup_{r \in \mathbb{Q}, b \in B_2} \delta^{-1}(g_r^2(b))$.

Lemma 15. Let
$$B = \{b_0, \dots, b_{n-1}\}$$
 be a subset of \mathcal{M} . Then

$$\operatorname{acl}(B) = \operatorname{cl}(B).$$

Proof. Say $B = \{b_0, \dots, b_{m-1}, b_m, \dots, b_{n-1}\}$ where b_0, \dots, b_{m-1} are of sort 1 and the others are of 2. Choose any element b of sort 1. If

$$b \notin \{g_r^1(b_i) : r \in \mathbb{Q}, i < m\} \cup \bigcup_{r \in \mathbb{Q}, m \le i < n} \delta^{-1}(g_r^2(b_i)),$$

then $b \notin \operatorname{acl}(B)$ since there are infinitely many elements which are infinitesimally close to b and there is an B-automorphism mapping b to each such element.

Likewise, for an element b of sort 2, if

$$b \notin \{g_r^2(\delta(b_i)) : r \in \mathbb{Q}, i < m\} \cup \{g_r^2(b_i) : r \in \mathbb{Q}, m \le i < n\},\$$

then $b \notin \operatorname{acl}(B)$. Thus $\operatorname{acl}(B) \subseteq \operatorname{cl}(B)$.

For the converse, it is easy to observe that

$$\{g_r^1(b_i) : r \in \mathbb{Q}, i < m\} \cup \{g_r^2(\delta(b_i)) : r \in \mathbb{Q}, i < m\}$$

$$\cup \{g_r^2(\delta(b_i)) : r \in \mathbb{Q}, m \le i < n\} \subseteq \operatorname{dcl}(B) \text{ and }$$

$$\bigcup_{r \in \mathbb{Q}, m \le i < n} \delta^{-1}(g_r^2(b_i)) \subseteq \operatorname{acl}(B)$$

since each $b \in \bigcup_{r \in \mathbb{Q}, m \le i < n} \delta^{-1}(g_r^2(b_i))$ has at most two *B*-automorphic images (has only one *B*-automorphic image if $m \ne 0$).

Proposition 16. Th(\mathcal{M}) has weak elimination of imaginaries.

Proof. Let $\varphi(x, y_0, \dots, y_{n-1}) \in \mathcal{L}$ and $B = \{b_0, \dots, b_{n-1}\} = \{b_0, \dots, b_{m-1}\} \cup \{b_m, \dots, b_{n-1}\}$ where b_0, \dots, b_{m-1} are of sort 1 and the others are of 2. According to Fact 13, it suffices to show that there is a smallest algebraically closed set over which $\varphi(\mathcal{M}, B) \equiv \varphi(\mathcal{M}, b_0, \dots, b_{n-1})$ is definable.

Since there is some c_i such that $\delta(c_i) = b_i$ for each $i \in \{m, \dots, n-1\}$, we may assume that every element of B is of sort 1. Choose $D = \{d_0, \dots, d_{k-1}\} \subseteq B$ such that $\{g_r^1(d_i) : r \in \mathbb{Q}, i < k\} = \{g_r^1(b_i) : r \in \mathbb{Q}, i < n\}$ and $d_i \notin \operatorname{cl}(D) \setminus \{d_i\}$ for each i < k. Then $\varphi(\mathcal{M}, B)$ is definable over D and there is some minimal subset D' of D such that $\varphi(\mathcal{M}, B)$ is definable over $\operatorname{acl}(D')$ by Lemma 15.

Now for i = 1, 2, we let $E_i(x, y)$ if and only if x and y in \mathcal{M}_i are infinitesimally close, i.e.

$$E_i(x,y) := \bigwedge_{1 \le n} (S_i(x,y,g^i_{1/n}(x)) \lor S_i(y,x,g^i_{1/n}(y))),$$

which is an \emptyset -type-definable equivalence relation. Let $b \in \mathcal{M}_2$, $c, c' \in \mathcal{M}_1$ where $\delta(c) = \delta(c') = b$. Note that c, c' are antipodal to each other and c/E_1 , c'/E_1 are conjugates over b/E_2 , hence c/E_1 , $c'/E_1 \in \operatorname{acl}(b/E_2)$.

Theorem 17. $\operatorname{acl}(b/E_2)$ and $\operatorname{acl^{eq}}(b/E_2)$ are not interdefinable.

Proof. We prove following Claim and then conclude.

Claim. $\operatorname{acl}^{\operatorname{eq}}(b/E_2)$ is interdefinable with b/E_2 .

Proof. To lead a contradiction, suppose that there are distinct imaginaries $d_1, d_2 \in \operatorname{acl^{eq}}(b/E_2)$ such that $d_1 \equiv_{b/E_2} d_2$. Weak elimination of imaginaries of $\operatorname{Th}(\mathcal{M})$ (Proposition 16) implies that $\operatorname{acl^{eq}}(d_1, d_2)$ and $D := \{d \in \mathcal{M} : d \in \operatorname{acl^{eq}}(d_1, d_2)\}$ are interdefinable (*). In particular, $D \subseteq \operatorname{acl^{eq}}(b/E_2) \cap \mathcal{M}$. However, for any infinitesimally close $d, d' \in \mathcal{M}_i$ (i = 1, 2), there is $f \in \operatorname{Aut}_{b/E_2}(\mathcal{M})$ sending d to d'. Hence indeed $D = \emptyset$, which contradicts (*) (because $d_1 \equiv_{b/E_2} d_2$ and $d_1 \neq d_2 \in \operatorname{acl^{eq}}(d_1, d_2)$).

Now $c/E_1, c'/E_1 \in \operatorname{acl}(b/E_2) \setminus \operatorname{dcl}(b/E_2) = \operatorname{acl}(b/E_2) \setminus \operatorname{dcl}(\operatorname{acl}^{\operatorname{eq}}(b/E_2)).$

References

- [1] Enrique Casanovas, Simple theories and hyperimaginaries (Lecture Notes in Logic), Cambridge University Press, 2011.
- [2] Jan Dobrowolski, Byunghan Kim and Junguk Lee, The Lascar groups and the first homology groups in model theory, Annals of Pure and Applied Logic 168, (2017), 2129–2151.
- [3] Jan Dobrowolski, Byunghan Kim, Alexei Kolesnikov and Junguk Lee, The relativized Lascar groups, type-amalgamation, and algebraicity, Journal of Symbolic Logic, 86, (2021), 531–557.
- [4] Karl H. Hofmann and Sidney A. Morris, The structure of compact groups, De Gruyter, 2013.
- [5] Byunghan Kim, Simplicity theory, Oxford University Press, 2014.
- [6] Hyoyoon Lee, Quotient groups of the Lascar group and strong types in the context of hyperimaginaries, PhD thesis, Yonsei University, in preparation.
- [7] Bruno Poizat, A Course in Model Theory: An Introduction to Contemporary Mathematical Logic, Springer, 2000.
- [8] Ikuo Yoneda, On two definitions of weak elimination of imaginaries, RIMS Model Theory Workshop 2021, December 2021.
- [9] Martin Ziegler, Introduction to the Lascar group, Tits buildings and the model theory of groups, London Math. Lecture Note Series, **291**, Cambridge University Press, (2002), 279–298.

DEPARTMENT OF MATHEMATICS YONSEI UNIVERSITY 50 YONSEI-RO SEODAEMUN-GU SEOUL 03722 SOUTH KOREA

 $Email\ address:$ alternative@yonsei.ac.kr