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ABSTRACT. We characterize Shelah-strong type over a hyperimagianary with the alge-
braic closure of a hyperimaginary. Also, we present and take a careful look at an example
that witnesses acl®d(e) is not interdefinable with acl(e) where e is a hyperimaginary.

Fix a first order language £, complete theory T" and monster model M. Throughout,
fix a hyperimaginary e = ag where a is a (possibly infinite) real tuple and F
is an (-type-definable equivalence relation on M,

Most of the facts and remarks whose proofs are omitted can be found in the author’s
dissertation [6].

Fact 1.

(1) A real tuple b is simply b/(\,., Ti = yi) where b = (b;)i<a, hence can be seen as
(that is, interdefinable with) a hyperimaginary; an imaginary tuple (b;/F;)ico 18
(bi)ica) (Nico Fi(zi,v:)) where all z;,y;’s are disjoint, hence is a hyperimaginary
as well. In this regard, considering over a set of real elements or a
set of imaginaries can be safely replaced by considering over a single
hyperimaginary.

(2) In the same manner as above, a sequence of hyperimaginaries can be regarded as
a single hyperimaginary: A tuple of hyperimaginaries (b;/F;)i<o is interdefinable
with (b;)ica/(Nico Fi(%i,y:)) where all x;,y;’s are disjoint.

Definition 2.

(1) For any hyperimaginary €', we denote €’ € dcl(e) and say €’ is definable over e if
f(e') =¢€ forall f € Aute(M).
(2) For any hyperimaginary €', we denote €’ € bdd(e) and say €’ is bounded over e if

{f(€): f € Auto(M)} is bounded.

Remark 3. In Definition 2, €’ € dcl(e) and €’ € bdd(e) are independent of the choice of
a monster model M.

Proof. 1t is easy, but anyway we prove it. Let M < M’ be monster models of T'. Suppose
that there are only xk-many automorphic images of €' in M, whereas there are at least k™
images in M’. Say €’ = br where b is a real tuple and F is an (-type-definable equivalence
relation. Let (b;/F);<.+ be an enumeration of automorphic images of bp in M’. Since
there is (0});<x+ =q (b;)i<i+ Where each b € M, there are at least x*-many conjugates of
br in M (recall e = a/F), a contradiction. O

Fact 4.

(1) A hyperimaginary bg is called countable if |b| is countable. It’s not so difficult
to prove that any hyperimaginary is interdefinable with a sequence of countable

hyperimaginaries(see, for ezample [5, Lemma 4.1.3] ).
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(2) From now on, definable closure of e, dcl(e) will be seen as an actual (small) set,
the set of all countable hyperimaginaries which are definable over e: In this way,
e € dcl(e) now means that there is a sequence of countable hyperimaginaries
that is interdefinable with € and fized by any f € Aute(M). Also note that
[ € Autaae) (M) if and only if f fizes all hyperimaginaries that are definable over
e. As pointed out in Fact 1(2), dcl(e) also can be seen as a single hyperimaginary.

(3) Likewise, the bounded closure of e, bdd(e) is the set of all countable hyper-
imaginaries which are bounded over e. In the same way as above, € € bdd(e)
means that there is a sequence of countable hyperimaginaries that is interdefin-
able with €', and the number of e-automorphic images of it is bounded. Again,
[ € Autpaqe) (M) is equivalent to saying that f fizes all hyperimaginaries that are
bounded over e.

Remark & Definition 5.

(1) For a hyperimaginary €, denote € € acl(e) and say €' is algebraic over e if
{f(e): f € Aute(M)} is finite. As in Remark 3, this definition is independent of
the choice of a monster model.

(2) Asin Fact 4, the algebraic closure of e, acl(e) can be regarded as a bounded set of
countable hyperimaginaries, which is interdefinable with a single hyperimaginary
br € bdd(e) (but possibly br ¢ acl(e)).

(3) Note that given d;/L; € acl(e) (i < n), as pointed out in Fact 1, (do/ Lo, - - ,dn/Ly)
is interdefinable with a single d;, € acl(e). Hence by compactness, for any hyper-
imaginaries br and cp,

br =aci(e) cr if and only if bp =4, cp for any d;, € acl(e).

Definition 6.

(1) Aute(M) ={f € Aut(M) : f(e) = e} (f may permute the elements of e).
(2) Autfe(M) is a subgroup of Aut,(M) generated by

{f € Aute(M) : f € Auty (M) for some M = T such that e € dcl(M)}.

It can be easily seen that Autf.(M) is a normal subgroup of Aut.(M).
(3) The Lascar group over of T' e is the quotient group

Gal, (T, e) = Aute(M)/ Autf.(M).
Remark 7.

(1) Up to isomorphism, Galy, (7, e) is independent of the choice of a monster model
M.
(2) There are well-defined maps p and v such that:

Aute(M) 5 Sy (M) = Galy, (T, e)
fr=to(f(M)/M) = | ==(f)
where M is a small model of T" such that e € dcl(M), and 7 : Aute(M) —
Galy, (T, e) is the canonical projection.
The topology of Galy(T,e) is given by the topology induced by the quotient
map v, and it is independent of the choice of M.
Fact 8.

(1) Gal, (T e) is a topological group.
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(2) Let H < Aute(M) and let H = w(H) < Gal,(T,e). Then H' is closed in
Gal,(T,e) and H = 7~ (H), if and only if H = Auteo(M) for some hyperimag-
inary € € bdd(e).

(3) Let H < Galy(T,e) be closed and F be an (-type-definable equivalence relation.
Then for H = 7~ '(H'), zp Ef yr 1S equivalent to xp =ee Yp for some hyper-
imaginary € € bdd(e), and hence xp = yr is an €' e-invariant type-definable
bounded equivalence relation. FEspecially, if H' < Galy(T,e), then xp =2 yp is
e-invariant.

Definition 9.

(1) Gal) (T, e) denotes the connected component of the identity in Galy, (7, e).

(2) Autfy (M, e) =7 HGal)(T,e)).

(3) Two hyperimaginaries br and cp are said to have the same Shelah-strong type if
there is f € Autfs (M, e) such that f(br) = cr, denoted by brp =% cp.

Remark 10. Note that Gal? (T, e) is a normal closed subgroup of Galy(7T,e) ([4]) and

=; is the orbit equivalence relation =utts (M’e), thus =} is type-definable over e by Fact

8(3). We denote
Galy(T, e) := Galy, (T, e)/ Gal (T, e) = Aute(M)/ Autf, (M, e).

Thus Galg(7), e) is a profinite (i.e. compact and totally disconnected) topological group.
Gal? (T, e) is the intersection of all closed (normal) subgroups of finite indices in Galy, (T, e),
since such an intersection is the identity for a profinite group ([4]).

Proposition 11.
(1) Autfs (M, e) = Autee)(M).
(2) Let bp, cp be hyperimaginaries. The following are equivalent.
(a) bF Ei Cp.
(b) bF =acl(e) CF-

Proof. (1). We claim first that
Gal) (T, e) = [ J{m(Autq,e(M)) : d;, € acl(e)}.

Let dy, € acl(e) where dy, is a hyperimaginary. Say d? (= dr),--- ,d} are all the conjugates
of dy, over e. Then any f € Aute(M) permutes the set {d?,--- ,d}}. Hence it follows that
Autg, (M) has a finite index in Aute(M). Thus (due to Fact 8(2)) m(Auty,e(M)) is a
closed subgroup of finite index in Galy, (T, €). Then as in Remark 10, we have Gal{ (T, e) <
m(Auty, e(M)).

Conversely, given a normal closed subgroup H' < Galy, (7T, e) of finite index and H :=
m Y(H'), Fact 8(2) says H' = m(Auty,.(M)) for some br € bdd(e). But since H' is
of finite index, the same holds for H = Auty,e(M) in Aute(M), and we must have
br € acl(e). Thus the claim follows from Remark 10.

Therefore

Autfy (M, e) =7 (Gal} (T, e)) = ([ {7 (Auty,e(M)) : dy, € acl(e)})
= ﬂ{AutdLe(M) dp € acl(e)} = Autaeey(M),
where the last equality follows by Remark & Definition 5(3).
(2) follows from (1). O
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Recall that acl®d(e) := {e} U (acl(e) N M) is the eg-algebraic closure of e, where as
usual M® is the set of all imaginary elements (equivalence classes of (-definable equiva-
lence relations) of M. Good summary of basic facts concerning imaginary elements can

be found in [1, Chapter 1]. The following remark is proved using the proof of [9, Theorem
21].

Remark 12. For any small set A of imaginaries, acl®¥(A)(= acl(4A)NM*®?) is interdefinable
with acl(A).

Proof. Recall that Gal) (T, A) is the intersection of all closed (normal) subgroups of fi-
nite indices in Galy (7, A) (Remark 10). Let H' be a closed subgroup of finite index in
Gal,(T, A). It suffices to show that H = m(Autpa(M)) for some b € acl®d(A); by Fact
8(2), we have

Gal) (T, e) = ﬂ{H’ : H' is a closed subgroup of finite index in Galy (7, A)}
C ({7 (Auty,a(M)) : dy, € acl*(A)};

thus if we show that H = m(Autpa(M)) for some b € acl®d(A), then Gall (T, A) =
N{m(Auty, a(M)) : di € acl®d(A)}. Taking 7', we get Autyeia)(M) = Autyereaga)(M)
(by a similar manner as in the last lines of the proof of Proposition 11(1)).

Since H is closed in Galy (7, A), by Fact 8(3), H = m(Aut,,a(M)) for some hyper-
imaginary cp € bdd(A). But H has finite index in Galy(7, A), hence (by Fact 8(2),)
cr € acl(A). Say {cr =c¢y/F, -+ ,co_1/F} is the set of all A-conjugates of cp.

We may assume that F'is closed under conjunction and all formulas in F’ are symmetric
and reflexive. Note that by compactness, there is 6 € F such that for all i < j < n,

cic; ¥ Fz02120(0(2, 20) A 0(20, 21) A 0(21, 22) A 6(22,Y)).

Let 6%(x,y) = J202122(0(x, 20) NI (20, 21) A0 (21, 22) AO(22, %)), and define 6™ (z,y) similarly
for m < w. Note that in particular, §(c;, M)’s are pairwise disjoint.

Let d be any realization of tp(co/A). Then d =/, , F(xz,¢;), thus d = \/,_, 0(x,c;),
implying that there is p(x) € tp(co/A) such that ¢(z) = \/,_,, 0(x,c;), that is, (M) can
be partitioned as {¢(M) Nd(¢;, M) i < n}. Note that we can say ¢(x) is A-invariant;
this is possible because A is a set of imaginaries, not a hyperimaginary.

Claim 1. For any d/,a” |= ¢(x),
a'a” = §%(x,y) if and only if a’,a” € p(M) N §(c;, M) for some i < n.

Proof. Assume = 62(a’,a”), hence there is some a* such that = d(a’,a*) A d(a*,d”).
Suppose a’ and a” belong to different components for a contradiction. Then
Eo(ci,a’) ANd(a,a*) Ao(a®,a”) ANd(d”, ¢))

for some i # j < n, implying ¢;c; = 0*(z,y), a contradiction.
For the converse, suppose a’,a” € p(M) N d(¢;, M) for some i < n. Then = d(d’, ¢;) A
d(ci,a). O
Now define

L(z,y) = (mp(z) A=) V (p(2) A ply) Ad*(z,y)).
Since @(x) is A-invariant, L is an A-definable equivalence relation with finitely many

classes, (M), (M) N (co, M), -+, (M) N d(cp—1,M). Note that some imaginary
b(€ acl(A)) is interdefinable with ¢/L ([1, Lemma 1.10]).



SHELAH-STRONG TYPE AND ALGEBRAIC CLOSURE OVER A HYPERIMAGINARY 5

Claim 2. ¢/F and b (or equivalently, ¢/L) are interdefinable over A.
Proof. Let f € Auta(M). Then

f(c/F) =c/F iff F(f(c),c) holds iff |= 6*(f(c),c)
iff L(f(c),c) holds iff f(¢/L) =c¢/L,

where the second logical equivalence follows since: Otherwise, = 6%(f(c), ¢) but F(c;, f(c))
and F(c, ¢;) hold for some i # j < n. But then we have = 6*(¢;, ¢;), a contradiction. [

By Claim 2, H = w(Aut.,4(M)) = m(Autpa(M)) where b € acl*i(A).
U

However, contrary to [5, Corollary 5.1.15], in general acl(e) and acl®d(e) need not be
interdefinable; the error occurred there due to the incorrect proof of [5, 5.1.14(1) = (2)].
An example presented in [3] for another purpose supplies a counterexample. Consider the
following 2-sorted model:

M = ((M1> St {g%/n tn 2z 1})’ (M2> 52, {g%/n tn 2z 1})a 5) where

(1) My and M, are unit circles centered at origins of two disjoint (real) planes.

(2) S; is a ternary relation on M;, defined by S;(b, ¢, d) holds if and only if b, ¢ and d
are in clockwise-order.

(3) g /n 18 @ unary function on M; such that g /n(b) = rotation of b by 27 /n-radians
clockwise.

(4) 6 : My — M, is the double covering, i.e. §(cos t, sin t) = (cos 2t, sin 2t).

(5) Let M be a monster model of Th(M) and My, My be the two sorts of M.

In [2, Theorems 5.8 and 5.9], it is shown that each Th(M;) has weak elimination of
imaginaries (that is, for any imaginary element c, there is a finite real tuple b such that
¢ € dcl(b) and b € acl(c)), using the B. Poizat’s notion of weak elimination of imaginaries
([7, Chapter 16.5]). The following fact is a folklore, whose explicit proof was observed in
RIMS model theory workshop by I. Yoneda ([8]).

Fact 13. A (complete) theory T' has weak elimination of imaginaries if and only if every
definable set has a smallest algebraically closed set over which it is definable.

Remark & Definition 14.

(1) For each element b of sort i = 1,2, ¢°(b) means (gi/n)m(b) where r is a rational

number m/n.
(2) For each element b of sort 2, 671 (b) = {cg, 1}, the d-preimage of b.
(3) For a set of elements B = B; U By of M where each element of B; is of sort i,

c(B) = {g}(b) : 7 € Qb€ B} U{5(g}(b)) : 7 € Q,b € By}
U{gl(b):reQbeBIU | 07(g20)).

reQ,be Ba

(4) Note that in the above item, the substructure generated by B is formed by omitting
the last union: J,equen, 9 (97(b))-

Lemma 15. Let B = {by, - ,b,_1} be a subset of M. Then
acl(B) = cl(B).
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Proof. Say B = {bo,"** ,bm_1,bm, -+ ,b,_1} where by, -+ ,b,_1 are of sort 1 and the
others are of 2. Choose any element b of sort 1. If

b {gi(bi):reQi<miu | (gFMB))
reQ,m<i<n

then b ¢ acl(B) since there are infinitely many elements which are infinitesimally close to
b and there is an B-automorphism mapping b to each such element.
Likewise, for an element b of sort 2, if

b {g>(0(b;) :r € Qi <m}U{g(b;) : 7 € Q,m <i<n},
then b ¢ acl(B). Thus acl(B) C cl(B).
For the converse, it is easy to observe that

{gt(bs) :r € Qi <m}U{g2(8(b)) : 7 € Q,i <m}
U{g2(8(b;)) : 7 € Q,m <i<n} Cdcl(B) and

U 07 m) Cad(B)

re@,m<i<n
since each b € U, cqme<icn 0 (97(bi)) has at most two B-automorphic images (has only
one B-automorphic image if m # 0). U

Proposition 16. Th(M) has weak elimination of imaginaries.

PT’OOf. Let (p(xay()u T 7yn—1) € Land B = {b()v T 7bn—1} = {b(]v T 7bm—l}U{bm7 T 7bn—1}
where bg, -+ ,b,,_1 are of sort 1 and the others are of 2. According to Fact 13, it suf-
fices to show that there is a smallest algebraically closed set over which (M, B) =
©(M,bg, -+ b, 1) is definable.

Since there is some ¢; such that 0(c;) = b; for each i € {m,--- ,n — 1}, we may
assume that every element of B is of sort 1. Choose D = {dy, - ,d;_1} C B such that
{g(d;) :r € Q,i <k} = {g}(b;) : 7 € Q,i < n} and d; ¢ cl(D) \ {d;} for each i < k.
Then p(M, B) is definable over D and there is some minimal subset D’ of D such that
©(M, B) is definable over acl(D’) by Lemma 15. O

Now for i = 1,2, we let E;(z,y) if and only if z and y in M, are infinitesimally close,

le.
Ei(z,y) == )\ (Si(x,, 9%/(2) V Sily, 2, 9}/ (1)),
1<n
which is an (-type-definable equivalence relation. Let b € My, ¢, € M; where d(c) =
0(c’) = b. Note that ¢, are antipodal to each other and ¢/F;, ¢ /FE; are conjugates over
b/ Es, hence ¢/ Ey,d /Ey € acl(b/Es).

Theorem 17. acl(b/Es) and acl®d(b/Es) are not interdefinable.
Proof. We prove following Claim and then conclude.
Claim. acl®d(b/Es) is interdefinable with b/Fj.

Proof. To lead a contradiction, suppose that there are distinct imaginaries d, dy € acl®i(b/Es)
such that dy =/, d2. Weak elimination of imaginaries of Th(M) (Proposition 16) implies
that acl®d(dy,ds) and D := {d € M : d € acl®(d,ds)} are interdefinable (x). In partic-
ular, D C acl®*d(b/Ey) N M. However, for any infinitesimally close d,d’" € M, (i = 1,2),
there is f € Auty/g,(M) sending d to d’. Hence indeed D = (), which contradicts (x)
(because dy =/, d2 and dy # dy € acl®i(dy, dy)). O
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Now ¢/Ey,d /Ey € acl(b/Es) \ del(b/ Es) = acl(b/E5) \ dcl(acl®d(b/Es)).
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