Some remarks on locally o-minimal structures

前園久智 (Hisatomo Maesono) 早稲田大学グローバルエデュケーションセンター (Global Education Center, Waseda University)

概要

abstract Locally o-minimal structures are some local adaptation from o-minimal structures. They were treated, e.g. in [1], [2]. We try to characterize types of definably complete locally o-minimal structures. And we argue about the dp-rank of them.

1. Introduction

We recall some definitions and fundamental facts at first.

Definition 1. Let M be a densely linearly ordered structure without endpoints.

M is o-minimal if every definable subset of M^1 is a finite union of points and intervals. M is $locally\ o-minimal$ if for any element $a\in M$ and any definable subset $X\subset M^1$, there is an open interval $I\subset M$ such that $I\ni a$ and $I\cap X$ is a finite union of points and intervals. M is $definably\ complete$ if any definable subset X of M^1 has the supremum and infimum in $M\cup\{\pm\infty\}$.

Here we consider densely linearly ordered structures only.

Example 2. [1], [2]

 $(\mathbf{R},+,<,\mathbf{Z})$ where \mathbf{Z} is the interpretation of a unary predicate, and $(\mathbf{R},+,<,\sin)$ are definably complete locally o-minimal structures.

Fact 3. [1] Definably complete local o-minimality is preserved under elementary equivalence.

Thus we argue in a sufficiently large saturated model \mathcal{M} as usual.

O-minimal structures are characterized by means of behavior of 1-types. They consider two kinds of 1-types by the way to cut linear orders of parameter sets, e.g. in [5]. Here we consider nonisolated types only.

Definition 4. Let M be a densely linearly ordered structure and $A \subset M$.

And let $p(x) \in S_1^{or}(A)$, that is, p(x) is complete over A w.r.t. the order relation.

We say that p(x) is cut over A if for any $a \in A$, if $a < x \in p(x)$, then there is $b \in A$ such that $a < b < x \in p(x)$, and similarly if $x < a \in p(x)$, then there is $c \in A$ such that $x < c < a \in p(x)$.

We say that $q(x) \in S_1^{or}(A)$ is noncut over A if q(x) is not a cut type.

And sometimes we call $q(x) \in S_1(A)$ cut (noncut) over A if q(x) contains a cut (noncut) $p(x) \in S_1^{or}(A)$.

Remark 5. Let M be a densely linearly ordered structure and $A \subset M$. And let $p(x) \in S_1^{or}(A)$ be noncut.

There are four kinds of noncut types.

 $p(x) = \{b < x < a : b < a \in A\}$ for some fixed a, or $\{a < x < b : a < b \in A\}$ for some fixed a.

Here we call these types bounded noncut types.

And $p(x) = \{b < x : b \in A\}$ or $\{x < b : b \in A\}$.

We call these types unbounded noncut types.

2. Characterization of definably complete locally o-minimal structures

In o-minimal structures, types of the order relation are complete. Similar argument hold in definably complete locally o-minimal structures to some extent.

Lemma 6. Let M be a definably complete locally o-minimal structure and $A \subset M$. Then any bounded noncut type $p(x) \in S_1^{or}(dcl(A))$ is complete over dcl(A).

Proof;

Let $p(x) \in S_1^{or}(dcl(A))$ be bounded noncut, that is, $p(x) = \{c < x < a : c < a \in dcl(A)\}$ for some fixed $a \in dcl(A)$ (Another case is proved similarly). By local o-minimality, for any formula $\varphi(x, \bar{b})$ over dcl(A), there is an interval $I \subset M$ such that $a \in I$ and $I \cap \varphi(M, \bar{b})$ is a union of finite points and intervals. Thus there is $c \in I$ such that either for any $d \in I$ with c < d < a, $M \models \varphi(d, \bar{b})$, or for any $d \in I$ with c < d < a, $M \models \neg \varphi(d, \bar{b})$. Now we assume that for any $d \in I$ with c < d < a, $M \models \varphi(d, \bar{b})$. We consider the formula $\forall y(x < y < a \longrightarrow \varphi(y, \bar{b}))$. By definably completeness, there is the infimum $e \in M$ such that for any f with e < f < a, $M \models \varphi(f, \bar{b})$ (If $e = -\infty$, then "x < a" implies $\varphi(x, \bar{b})$). And $e \in dcl(A)$.

Notation 7. In the lemma above, for $p(x) = \{c < x < a : c < a \in dcl(A)\}$ for some

fixed $a \in dcl(A)$, there is the infimum $e \in M$ such that for any f with e < f < a satisfies the formula $\varphi(y, \overline{b})$. We denote " b_{φ} " such boundary point in the following.

Next we characterize about the definability of types. We recall the definition.

Definition 8. Let M be a structure.

A type $p(\overline{x}) \in S_n(M)$ is definable if for any L-formula $\varphi(\overline{x}, \overline{y})$, there is an L(M)-formula $d\varphi(\overline{y})$ such that for all $\overline{a} \in M$, $\varphi(\overline{x}, \overline{a}) \in p(\overline{x})$ if and only if $M \models d\varphi(\overline{a})$.

We can prove the next fact.

Fact 9. Let M be a definably complete locally o-minimal structure and let $p(x) \in S_1(M)$. Then p(x) is definable if and only if p(x) is noncut.

We can generalize the fact above for n-types to a certain extent.

Definition 10. [6] Let \mathcal{M} be a sufficiently large saturated densely linearly ordered structure and $A \subset \mathcal{M}$.

We say that $p(\overline{x}) \in S_n(A)$ is noncut over A if;

- 1) n = 1, we define it by the same way as above, and
- 2) $n \geq 2$, let $\overline{x} = (x_1, x_2, \dots, x_n)$, we define inductively, $q(\overline{x}') := tp(x_1 \cdots x_{n-1}/A)$ is noncut over A and $tp(x_n/Aa_1 \cdots a_{n-1})$ is noncut over $A \cup \{a_1, \dots, a_{n-1}\}$ for any realizations $a_1 \cdots a_{n-1}$ of $q(\overline{x}')$.

Fact 11. Let M be a locally o-minimal structure and let $p(\overline{x}) \in S_n(M)$ be noncut. Then $p(\overline{x})$ is definable.

Next we characterize definably complete locally o-minimal structures by the notion of forking. We recall some definitions.

Definition 12. A formula $\varphi(\bar{x}, \bar{a})$ divides over a set A if there is a sequence $\{\bar{a}_i : i \in \omega\}$ with $tp(\bar{a}_i/A) = tp(\bar{a}/A)$ such that $\{\varphi(\bar{x}, \bar{a}_i) : i \in \omega\}$ is k-inconsistent for some $k \in \omega$.

A formula $\phi(\bar{x}, \bar{a})$ forks over A if $\phi(\bar{x}, \bar{a}) \vdash \bigvee_{i < n} \psi_i(\bar{x}, \bar{b}_i)$ and each $i < n, \psi_i(\bar{x}, \bar{b}_i)$ divides over A.

In some papers, they consider the notion of dimension for (definably complete) locally o-minimal structures, e.g. in [3].

Definition 13. Let M be a densely linearly ordered structure without endpoints and let $X \subset M^n$ be a nonempty definable subset.

The dimension dim(X) of X is the maximal nonnegative integer d such that $\pi(X)$ has a nonempty interior for some coordinate projection $\pi: M^n \longrightarrow M^d$.

According to the argument in [7], we recall some lemmas.

Lemma 14. Let \mathcal{M} be a sufficiently large saturated definably complete locally o-minimal structure and $A \subset \mathcal{M}$. And let p(x), $q(x) \in S_1(A)$ (with dim(p) = dim(q) = 1).

Then either

- (a) (i) all A-definable $f: p(\mathcal{M}) \longrightarrow q(\mathcal{M})$ are increasing, or
 - (ii) all A-definable $f: p(\mathcal{M}) \longrightarrow q(\mathcal{M})$ are decreasing.
- (b) In case (i), whenever $B \supset A$, $a \in p(\mathcal{M})$ and $a > dcl(B) \cap p(\mathcal{M})$, then $dcl(aA) \cap q(\mathcal{M}) > dcl(B) \cap q(\mathcal{M})$,

In case (ii), whenever $B \supset A$, $a \in p(\mathcal{M})$ and $a < dcl(B) \cap p(\mathcal{M})$, then $dcl(aA) \cap q(\mathcal{M}) > dcl(B) \cap q(\mathcal{M})$.

In the lemma above, we just say that if there is a function f between $p(\mathcal{M})$ and $q(\mathcal{M})$, then f has these properties. There is no definable function between a cut type and a noncut type. By this lemma, they consider characteristic extensions of complete types in o-minimal structures. Here we adapt the argument for noncut types.

Definition 15. Let $p(x_1, \dots, x_n) \in S_n(A)$ of dimension n and $A \subset B$.

Fix some sequence $\eta = (\eta(1), \dots, \eta(n))$ where each $\eta(i)$ is 1 or 0.

For $1 \le i \le n$, let $p_i(x_1, \dots, x_i)$ be the restriction of p to the variables x_1, \dots, x_i .

We define an extension $p_B^{\eta} \in S_n(B)$ of p. Choose a realization (b_1, \dots, b_n) of p_B^{η} inductively as follows;

 $b_1 \in p_1(\mathcal{M})$ and if $\eta(1) = 1$, then $b_1 > dcl(B) \cap p_1(\mathcal{M})$, while if $\eta(1) = 0$, then $b_1 < dcl(B) \cap p_1(\mathcal{M})$.

For some realization b_1, \dots, b_i of $p_i(x_1, \dots, x_i)$, let b_{i+1} be a realization of $p_{i+1}(b_1, \dots, b_i, x_{i+1})$ such that:

```
if \eta(i+1) = 1, then b_{i+1} > dcl(B, b_1, \dots, b_i) \cap p_{i+1}(b_1, \dots b_i, \mathcal{M}) and if \eta(i+1) = 0, then b_{i+1} < dcl(B, b_1, \dots, b_i) \cap p_{i+1}(b_1, \dots b_i, \mathcal{M}).
```

Lemma 16. [7] Let $p(\bar{x}) \in S_n(A)$ of dimension n and let $q(y) \in S_1(A)$ of dimension 1.

Then there is $\eta \in {}^{n}2$ as in the definition above such that;

for any $B \supset A$ and any realization \bar{a} of $p_B^{\eta}(\bar{x})$, $dcl(\bar{a}A) \cap q(\mathcal{M}) > dcl(B) \cap q(\mathcal{M})$.

By the lemmas above, we can prove the next fact.

Proposition 17. Let \mathcal{M} be a sufficiently large saturated definably complete locally o-minimal structure. And let $c \in \mathcal{M}$ and $A \subset \mathcal{M}$ with $\dim(\operatorname{tp}(c/A)) = 1$, and $A \cup \{c\} \subset B$.

Moreover let $r(x) \in S_1(B)$ be a bounded noncut type of c over dcl(B) satisfying $r \upharpoonright Ac \nvdash r$. Then r(x) divides over A. Sketch of proof;

Let $r(x) := \{ c < x < d : d \in dcl(B) \}$ (Another case is proved similarly). As $r \upharpoonright Ac \nvdash r$, there is an L(B)-formula $\varphi(x, \overline{b}) \in r(x)$ such that for any L(Ac)-formula $\psi(x) \in r(x)$, $b_{\varphi} < b_{\psi}$.

Case 1. $c \equiv_A b_{\varphi}$.

We consider an automorphism $\sigma \in Aut_A(\mathcal{M})$ such that $\sigma(c) = b_{\varphi}$. And let $b_{\varphi}' = \sigma(b_{\varphi})$. Thus $c < b_{\varphi} < b_{\varphi}'$.

Case 2. $c \not\equiv_A b_{\varphi}$.

Now there is an L(A)-formula $\psi(x)$ such that $\neg \psi(x) \in \operatorname{tp}(c/A)$ and $\psi(x) \in \operatorname{tp}(b_{\varphi}/A)$. As for any L(A)-formula $\psi(x) \in r(x)$, $b_{\varphi} < b_{\psi}$, so for any d with $c < d < b_{\varphi}$, $\models \psi(d)$.

In the lemmas above, let $p(\bar{x}) = \operatorname{tp}(cb_{\varphi}/A)$, $q(x) = r(x) \upharpoonright A$, and the noncut extension $p'(\bar{x}) \in S^{\eta}(\bar{b}cA)$ of p such that for any $c'b_{\varphi}' \models p'(\bar{x})$, $dcl(c'b_{\varphi}'A) \cap q(\mathcal{M}) > dcl(\bar{b}cA) \cap q(\mathcal{M})$. If $c < c' \le b_{\varphi}$, then $\models \psi(c')$, a contradiction. Thus $c < b_{\varphi} < c' < b_{\varphi}'$.

We iterate this construction infinitely many times and prove that the formula $c < x < b_{\varphi}$ divides over A.

Corollary 18. Let \mathcal{M} be a sufficiently large saturated definably complete locally o-minimal structure. And let $A \subset B \subset C \subset \mathcal{M}$ and $p(x) \in S_1(C)$ be a cut type over C.

Suppose that there is $d \in B$ with $dim(\operatorname{tp}(d/A)) = 1$ and a bounded noncut type $q(x) \in S_1(dcl(B))$ of d such that $q \upharpoonright Ad \nvdash q$ and $p \vdash q$.

Then p(x) divides over A.

3. Dp-rank of locally o-minimal structures

We recall some definitions.

Definition 19. An independent partition pattern of a partial type $p(\bar{x})$ is a sequence of formulas $(\varphi^{\alpha}(\bar{x}, \bar{y}^{\alpha}))_{\alpha < \kappa}$ and tuples \bar{b}_{i}^{α} for $a < \kappa$ and $i < \omega$ satisfying that;

for any $\alpha < \kappa$, $\{ \varphi^{\alpha}(\bar{x}, \bar{b}_{i}^{\alpha}) | i < \omega \}$ is k^{α} -inconsistent for some $k^{\alpha} < \omega$, and for any $\eta \in \omega^{\kappa}$, $\{ \varphi^{\alpha}(\bar{x}, \bar{b}_{\eta(\alpha)}^{\alpha}) | \alpha < \kappa \}$ is consistent with $p(\bar{x})$.

For a theory T, the invariant $\kappa_{inp}^n(T)$ is the smallest infinite cardinal κ such that no n-type has an inp-pattern of cardinality κ .

A formula $\varphi(\bar{x}, \bar{y})$ has the *independence property* if there are sequences $(\bar{a}_i : i < \omega)$ and $(\bar{b}_I : I \subset \omega)$ such that $\models \varphi(\bar{a}_i, \bar{b}_I)$ if and only if $i \in I$.

A formula $\varphi(\bar{x}, \bar{y})$ has the tree property of the second kind (TP_2) if there are tuples

 $(\bar{b}_i^{\alpha})_{\alpha,i<\omega}$ such that $\{\varphi(\bar{x},\bar{b}_i^{\alpha}) \mid i<\omega\}$ is 2-inconsistent for any $\alpha<\omega$, and for any $\eta\in\omega^{\omega}$, $\{\varphi(\bar{x},\bar{b}_{\eta(\alpha)}^{\alpha}) \mid \alpha<\omega\}$ is consistent.

We call the *burden* of $p(\bar{x})$ the supremum of the cardinalities κ of all inp-patterns for p. It is known that the burden of p is equal to the (classical) weight of p in simple theories.

Theorem 20. e.g. [15]

For any theory T,

 $any\ formula\ \varphi(\bar x,\bar y)\ \ with\ |\ \bar x\ |=n\ \ is\ NTP_2\ \ if\ and\ only\ \ if\ \kappa^n_{inp}(T)\leq |\ T\ |^+\ \ (<\infty\).$

Definition 21. An independent contradictory types pattern is a sequence of formulas $(\varphi^{\alpha}(\bar{x}, \bar{y}^{\alpha}))_{\alpha < \kappa}$ and tuples \bar{b}_{i}^{α} for $\alpha < \kappa$ and $i < \omega$ satisfying that;

for any $\eta \in \omega^{\kappa}$, the following set of formulas is consistent,

$$\Gamma_{\eta}(\bar{x}) := \{ \varphi^{\alpha}(\bar{x}, \bar{b}_{i}^{\alpha}) \mid \alpha < \kappa, i < \omega, \, \eta(\alpha) = i \} \cup \{ \neg \varphi^{\alpha}(\bar{x}, \bar{b}_{i}^{\alpha}) \mid \alpha < \kappa, i < \omega, \, \eta(\alpha) \neq i \}.$$

Theorem 22. e.g. [11]

If T is NIP, then $\kappa_{ict}(T) = \kappa_{inp}(T)$. Otherwise, $\kappa_{ict}(T) = \infty$.

And we recall the definition of dp-rank from [16].

Definition 23. Let $p(\bar{x})$ be a partial type over a set $A \subset \mathcal{M}$. We define the dp - rank of $p(\bar{x})$ as follows.

The dp-rank of $p(\bar{x})$ is always greater than or equal to 0. Let μ be a cardinal.

We say that $p(\bar{x})$ has dp-rank $\leq \mu$ if given any realization a of p and any $1 + \mu$ mutually A-indiscernible sequences, at least one of them is indiscernible over Aa.

And we say that p has dp-rank = μ if it has dp-rank $\leq \mu$, but it is not the case that it has dp-rank $\leq \lambda$ for any $\lambda < \mu$.

We call p dp - minimal if it has dp-rank 1, we denote $\operatorname{rk-dp}(p) = 1$.

We call p dependent if it has an ordinal dp-rank, that is, $\operatorname{rk-dp}(p) < \infty$.

And we call p strongly dependent if $\operatorname{rk-dp}(p) \leq \omega$.

There exists many examples whose theories are dp-minimal. For example, structures of superstable with U-rank = 1, C-minimal, p-adics, ordered set with finite width, tree, and so on. Here we recall the next fact. It is proved by the argument about the notion of Vapnik-Chervonenkis density (or VC-minimality).

Theorem 24. [14], [17]

Weakly o-minimal theories are dp-minimal.

But there are examples of locally o-minimal structures whose theories have the independence property.

Many results are proved under the strong assumption that structures $M \prec \mathcal{M}$ are dp-minimal.

Proposition 25. [13]

Let M be an inp-minimal linearly ordered structure without endpoints and $A \subset M$. And let M be $|A|^+$ -saturated and $p(x) \in S_1(M)$.

Then the following are equivalent;

- 1. p(x) divides over A.
- 2. There exist $a, b \in M$ such that $p \vdash a < x < b$ and $a \equiv_A b$.

We can prove the next fact under the same assumption.

Fact 26. Let \mathcal{M} be a sufficiently large saturated definably complete locally o-minimal structure and $A \subset \mathcal{M}$. And let $Th(\mathcal{M})$ be inp-minimal.

Moreover let $p(x) \in S_1(dcl(A))$ be an unbounded noncut type.

Then p(x) does not fork over \emptyset .

4. Further problems

For definably complete locally o-minimal structures, we can prove the next fact easily.

Lemma 27. Let M be a definably complete locally o-minimal structure and $A \subset M$ with $dcl(A) \neq \emptyset$.

Then the isolated 1-types of $Th(M, a)_{a \in A}$ are dense.

Thus I will try to characterize definably complete locally o-minimal structures by means of prime models.

And I will try to characterize locally o-minimal structures satisfying some additional conditions of their theories. The additional conditions are; definably complete, dp-minimal, strongly dependent, NIP or NTP_2 .

References

- [1] C.Toffalori and K.Vozoris, Note on local o minimality, Math.Log.Quart., 55, pp 617-632, 2009.
- [2] T.Kawakami, K.Takeuchi, H.Tanaka and A.Tsuboi, Locally o minimal structures,
 J. Math. Soc. Japan, vol.64, no.3, pp 783-797, 2012.
- [3] M.Fujita, Locally o-minimal structures with tame topological properties, J. Symb. Logic, to appear.

- [4] A.Pillay and C.Steinhorn, *Definable sets in ordered structures*. I, Trans of A.M.S., vol.295, no.2, pp 565–592, 1986.
- [5] D.Marker and C.Steinhorn, Definable types in o minimal theories, J. Symb. Logic, vol.59, no.1, pp 185–198, 1994.
- [6] A.Dolich, Forking and independence in o minimal theories, J. Symb. Logic, vol.69, pp 215–240, 2004.
- [7] Y.Peterzil and A.Pillay, Generic sets in definably compact groups, Fund. Math, 193, pp 153-170, 2007.
- [8] S.Shelah, Dependent first order theories, continued, Israel J. Math., vol.173, pp 1–60, 2009.
- [9] S.Shelah, Strongly dependent theories, Israel J. Math., vol.204, pp 1–83, 2014.
- [10] E.Hrushovski and A.Pillay, On NIP and invariant measures, J. Eur. Math. Soc., vol.13, pp 1005—1061, 2011.
- [11] H.Adler, Strong theories, burden, and weight, Preprint, 2007.
- [12] A.Onshuus and A.Usvyatsov, On DP minimality, strong dependence and weight, J. Symb. Logic, vol.76, no.3, pp 737–758, 2011.
- [13] P.Simon, On dp-minimal ordered structures, J. Symb. Logic, vol.76, no.2, pp 448-460, 2011.
- [14] A.Dolich, J.Goodrick and D.Lippel, Dp-minimality: basic facts and examples, Notre Dame J. Form. Logic, vol.52, no.3, pp 267–288, 2011.
- [15] A.Chernikov, Theories without the tree property of the second kind, Ann. Pure. and Appl. Logic, vol.165, pp 695-723, 2014.
- [16] I.Kaplan, A.Onshuus and A.Usvyatsov, Additivity of the dp-rank, Trans of A.M.S., vol.365, pp 5783–5804, 2013.
- [17] M.Aschenbrenner, A.Dolich, D.Haskell, D.MacPherson and S.Starchenko, *Vapnik Chervonenkis density in some theories without the independence property*, *I*, Trans of A.M.S., vol.368, no.8, pp 5889–5949, 2016.
- [18] L.van den Dries, $Tame\ topology\ and\ o-minimal\ structures$, London Math. Soc. Lecture Note Ser, 248, Cambridge University Press, 1998.
- [19] F.O.Wagner, *Simple Theories*, Mathematics and its applications, vol.503, Kluwer Academic Publishers, Dordrecht, 2000.