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ABSTRACT. In this paper, we introduce a construction of an invariant for a homology cylinder of a
surface . It is an element of the skein algebra of ¥ and has two aspects. The first is a quantization
of the action of homology cylinders on fundamental groups. In the second aspect, we can extend the
Ohtsuki series, one for integral homology spheres, to our invariant. We use the HOMFLY-PT skein
algebra in this paper. But the main theorem holds in other skein algebras.
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1. INTRODUCTION

In this paper, we introduce a construction of an invariant for a homology cylinder of a
surface Y. It is an element of the skein algebra of ¥ and has two aspects.

The first is a quantization of the action of homology cylinders on fundamental groups.
Turaev [12] used the word, “quantization”, considering the skein algebras as a refinement of
the Goldman Lie algebra. In this paper, we use the word with the same meaning.

In the second aspect, we can extend the Ohtsuki series, an invariant for integral homology
spheres, to ours in this paper. In other words, considering them as homology cylinders of
the closed disk, the first one equals the second one. The action of the homology cylinders on
fundamental groups does not have the information of quantum invariants, but our invariant
has.



In this paper, we will explain some essential definitions and main theorems without proof.
In our theory, a formula for Dehn twists plays an important role. We use the HOMFLY-PT
skein algebras, but the results in this paper hold in other skein algebras.

1.1. Outline. In the second section, we define skein modules. Ignoring the h-torsion part, we
consider simplified skein modules. Furthermore, we set filtrations of them using ”detours”.

In the third section, we introduce a formula for the action of Dehn twists on skein modules
using the Lie action of a skein algebra. Using it, we construct an embedding from the Torelli
group in the completed skein algebras and the Ohtsuki series, which is an invariant for integral
homology 3-spheres.

In the fourth section, we explain how to define homology cylinders. Furthermore, we set
their action on the completed skein modules. It is an analogy for the one on the completion
of the fundmental group.

In the last section, we state our main theorem. We construct an invariant for homology
cylinders being an element of the completed skein algebra and explain its properties.

2. SKEIN MODULES

2.1. Definition of skein modules. In this subsection, we set the HOMFLY-PT skein mod-
ules. Let M be a compact oriented 3-manifolds, 8 a non-negative integer, and J an embedding
J:{1,---,28} x I — OM. Here the symbol I is the unit interval [0,1]. We set £(M, J) as
the set of embeddings ¢’ : M) x I — M satisfying the following conditions.

e MW is an oriented comapct 1-manifold.

o (OMM x 1) c J({1,---,28} x I).

e The embedding J ™! o |8M(1) ' 8M( ) x I — {1,---,2B} preserves the orientations
and indeces the bijective map mo(M™M) — mo({1,---,28} x I).

We call an isotopy class of an embedding of £(M, J) a ribbon tangle and denote by T (M, J)
the set £(M, J)/isotopy.
Let A*(M, .J) be the quotient of Q[p][[h]]T (M, .J) by the relation

b- -
@Zexp(ph) @

2sinh(ph)
h

Furthermore, in this paper, considering the other one

{y € AT(M, J)|there exists m € Z>1 s.t. Ay = 0.},

(trivial knot) = (empty knot).

we set the h-torsion-free skein algebra

A(M,J) = AT(M, J)

e AY (M, J)/{y € AT(M, J)|there exists m € Z>p s.t. h™y = 0.}.

We remark that the Q[p][[h]]-module homomorphism map
A(M,J) = AM,J),y — hy
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is injective. If 8 equals 0, we use a simple denote

AM) A, 0.

Remark 2.1. In general, the Q[p][[h]]-module homomorphism map A*(M, J) — AT (M, J) is
not injective. In this paper, we use the simplified skein module A*(M,.J) in this meaning.

2.2. Filrtrations and completions. At first, we set a finite-type filtration of the free Z-
module with basis T (M, J). Using graphs we define them. We prepare the notations of
graphs.

e A uni-quad-valent graph is a graph, whose every vertex is either univalent, bivalent,
or quadvalent.

e A vertex-ordered uni-bi-quad-valent graph is a uni-bi-quad-valent graph such that, for
each vertex of it, we fix a cyclic orientation of edges around the vertex.

Definition 2.2. A vertex-ordered uni-bi-quad-valent directed detour-graph T is a vertex-
ordered uni-bi-quad-valent directed graph whose edges Edge(T) are classified as detour edges
and direct ones satisfying the conditions.

e The indegree of a quad-valent vertex or a bi-valent vertex equals the outdegree of it.
o A uni-valent vertex or a bi-valent vertex does not have detour edges.
e The neighborhood of a quad-valent is as the figure.

detour detour
direct direct

Let M be a compact oriented 3-manifold, § a non-negative integer, and J an embedding
{1,--,28YxI — OM. Weset EV4(M, J) as the set consisting of all embeddings e : I'xI — M
satisfying the conditions for a vertex-ordered uni-bi-quad-valent directed detour-graph I'.

(1) Denoting the set of uni-valent vertex of T' by Base(T"), we have
e(Base(I') x I) C J({1,---,28} x I).
(2) The embedding
()" 0 eiBase(ryxr : Base(T) x I — {1,--+ 28} x I
preserves the orientations and induces the bijective map
((J) ™" © €Base(ryx1)« : mo(Base(T') x I) = mo({1,--+ ,28} x I).
(3) For any quad-valent vertex of I, the neighborhood of e(o x I) is as the figure.
cyclic order (e, ez, es, eq)
oM\ (0, ks
el ~,(;’ O) €2

We denote by £Y4 (M, J) C EV4(M, J) the subset

VM, ) e {e:T' xTI— Mlee &YYM,J),{quad—valent vertex of I'} = n}.

For an embedding e¥? : T' x I — M being an element of £Y4(M,.J), we set \IJZ—Vd(eVd) €
ZT (M, J) by the following steps.
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e Let op,---,0, be the quad-valent vertices of I'.  We denote by e; the detour edge
attaching o;.

e We denote by Cross the set of quad-valent vertices of I. For a map ¢ : Cross — {0, +1},
we choose the embedding e va , € £(M, J) satisfying the conditions.

(1) The image of e.va , equals the one of the original eV? as oriented ribbon tangles
except for the neighborhood of []7_, eVd(e;).
(2) In the neighborhood of €V%(e;), the image of v, 1S as

(the neighborhood of eVd(ej)) N (the image of e.va 4)

"":::_T..::""" if (o) = 0

x ° / if(o;) = 0.

e The embedding e.va 4 represents T,va , € T (M, J).
o We set \IJZ—Vd(eVd) € ZT(M,J ,J") as

N B S S R Rl O
¢:Cross—{+1,0}

For a non-negative integer n, we denote by F"ZT (M, J) C ZT (M, J) the submodule gener-
ated by

{Ulva(eV)e¥ e €YU (M, J)}.
We set a finite-type filtration {F™A(M, J)}n>0 as the set
U21'+j2n{hiX|X € FjZT<M, J)}
generates the submodule F™A(M, J) as Q[p][[h]]-module. Using it, we consider the completion
AM, ) S Y AM, J)/FTA(M, J)
and a finite-type filtration {F™A(M, J) }n>o of A(M, J) by
FrAM, J) L ker(A(M, J) — A(M, J)/F"A(M, J)).

3. LIE ACTIONS AND A FORMULA FOR DEHN TWISTS.
3.1. Skein algebras and a Lie structure. Let S be a compact oriented surface, § a non-
negative integer, and j be an injective map. We use simple denotes

A(S, ) A(S x 1,5 xidy), A(S,5) D AS x I, x idy),

A(S) - A(S x 1), A(S) S A(S x 1),



where the symbol I means the unit interval [0, 1]. Using the embeddings

1+t
eup:SXI%SXI,(p,t)i—)(p,%),

t
€down - SXI—)SXI?(pft) = (p7§)7

we define the multiple of A(S) by

A(S) x A(S) = A(S),Ly x Ly = L1Lo < enp (L

Furthermore, we set the right and left actions of A(S) on A(S, j

def.

A(S) x A(S,5) = A(S,7), L x T — LT =" eup(L) U edqown(T),
def.
)

A(S,7) x A(S) = A(S,7), T x L = TL = eu(T) U edown(L).

U edown(LQ).

)
) by

Then, for any elements x,z1,x9 € A(X), z € A(X, ), we have
zT1T2 — oz € hA(S),
xz — zx € hA(S, j)
by the skein relation. Since the homomorphism map
A(S,5) = A(S,5),y = hy
is injective, we can define the bracket and the action by

of. 1
[Sl?1,$2] dzf E(SULTQ — SUQ:El) S A(S),

o(z)(z2) def %(arz —zz) € A(S, J).

The first makes (A(S), [, +]) a Lie algebra, and the second (\A(S, j), o) a Lie module of A(S).
The finite type filtrations satisfy the following.
Proposition 3.1 ([11]). For any n,m € Z>q, we have
F"A(S)F™A(S) C F"™A(S)
F"A(S)F™A(S, j) C F"™™A(S, 7)
FMA(S, §)F™A(S) € F*T™A(S, j)
[F"A(S), F™A(S)] € F"T™ 2 A(S)
a(F"(A(S)))(F™A(S, j)) C FMTM2A(S, ).
Using this proposition, we can define the above operations in completions such as
A(S) x A(S) — A(S)
A(S) x A(S, 5) — A(S, 5)
A(S, j) x A(S) = A(S, j)
[+ ] - A(S) x A(8) = A(8)

a(-)(-) - A(S) x A(S, 5) — A(S, 7).

o



3.2. A formula for Dehn twists. In this subsection, we introduce a formula for the action
of a Dehn twists using the Lie action. In our theory, this formula plays an important role.
There exist other versions of this formula in some skein algebras.

At first, we set a significant element L 4 € /T(S 1% I) by the following steps where S = R/Z.

e For any n € Z>1, we denote by [, an element of A(S* x I) represented by a knot
presented by the figure.

e For any n € Z>q, we set [, as

n —h)i—1
l/ d;f {Z]l (_]L Z’Ll—‘r ,ij:n,ij/EZZl lil T lij (n € ZZQ
n
2p (n=0).
e For any n € Zxq, we set I/ € A(S! x I) as

n

g def. n! n—j
W e
§=0

Then we have I/ € F"A(S! x I).
e Setting a sequence {vn}nez., by (log(z))? = ZHGZZQ vp(x — 1)™, we define Ly €
A(S x I) as

1
L% > vl — §p3h2.
nGZZQ

The above equations to define L4 € A\(S 1'% I) is complicated, but we can characterize it by
the theorem.

Theorem 3.2 ([11]). Lett = toix(ly be the Dehn twist along the simple closed curve S* x {%}
For z € .,Zl\(S1 x I), z satisfies the two conditions
(1) We have
(1! N
> ——(t=id)'(y) = o (2)(y)
iEZZl

for any B € Z>1, any j: {1,--- ,28} = 9(S' x I), and any y € ﬁ(sl x 1,7).
(2) The embedding from the annulus S* x I to the disk D? induces a Q|p][[h]]-module
homomorphism map

€trivial knot - A\(Sl X I) - "Z{(D2) = Q[p][[h]]
Then we have

€trivial knot (Z) =0.

if and only if z = L 4.



The first condition is crucial in our theory. We use the skein relation crucially only to
prove the first one. By the second condition, there exists no ambiguity of L 4. To construct
invariants, we use the second one. Using this theorem, we have the following.

Corollary 3.3. The orientation preserving diffeomorphism iyey : St x I — SY x I,(s,t)
(—s, —t) induces a Q|p][[h]]-algebra homomorphism map irey : A(S' x I) — A(S' x I). Then
we have

Z.1rev(L.A) = L.A‘

We can prove this corollary by the direct computation but can do it using Theorem 3.2.
Since iyey (L 4) also satisfies the two conditions in Theorem 3.2, we have iyey (L 4) = L 4.

We return to the story about a compact oriented surface S. For any simple closed curve
c C S, we choose an embedding e, : S' x I — S satisfying

eo(S' x (5D =c
Then e, induces a Q[p][[h]]-algebra homomorphism map
et A(S' x I) = A(S).
We set an element L 4(c) € A(S x I) by

La(c)  eo(La).

By Corollary 3.3, this element L 4(c) does not depend on the choice of the orientation of c.
Using this element, we have the following theorem.

Theorem 3.4. For any € Z>o, any injective map j : {1,--- ,28} — 95, and any y €
A(S, j), we have

(—1)"! . NG
> - i) = o))

iGZZl
In other words, we have
1
il

telw) = exp(o(La) (1) 3 5(o(La) ().

=1

~

We prove the theorem using the first condition of Theorem 3.2. We call L 4(c) an element
describing a formula for the Dehn twists in the HOMFLY-PT skein algebra. Kawazumi-
Kuno [3][4] abd Massuyeau-Turaev [5] discovered one for the Dehn twists in the Goldman Lie
algebra. Our formula is an analogy for one of them.

3.3. Applications of the formula for the Dehn twists. In this subsection, we introduce
some applications of Theorem 3.4. Let X, 1 be a surface of genus g with a connected non-empty
boundary. Considering the action of the mapping class group

M(Sg1) L 7o (Diff S, 1 fixing 95,1 pointwise)

of 341 on the homology groups H;(X,Z), we call its kernel

ker(./\/l(Egyl) — Aut(Hl(EgJ, Z))
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the Torelli group and denote it by Z(X,1). It is well-known that the set

{te,t(c1, ¢2) : bounding pair}

C1%co

generates Z(2,,1), where a bounding pair is a pair of simple closed curves bounding a compact
subsurface.

Theorem 3.5. We can consider the set F?’.Zl\(Eg,l) as a group whose multiple is the Baker-
Campbell-Hausdor(f series bch. We set a group homomorphism ¢ : Z(341) — (F3A(X41), bch)
by

((terte,) = Laler) = La(ea).

Then it is well-defined and injective.

We prove the theorem by Theorem 3.4 and Putman’s relation [6] of the Torelli group. It is
needless to say that the first condition in Theorem 3.4 is essential, but the second one is also
essential.

Using this embedding, we construct an invariant for integral homology 3-spheres. We obtain
them by the following steps.

e We take a standard embedding ey, : Hy — S3 from a handle body H in the sphere

53, which means the closure S3\eg, (Hy) is also a handle body. We remark that we
do not need the assumption that ey, is standard.

e We take a diffeomorphism representing an element & € Z(3, 1) and denote it by the
same symbol &.

e We fix a closed disk D in the boundary 0H, of the handle body H, and consider the
closure 0Hy\D as Sy 1. We obtain a 3-manifold

S3(em,, €) <

= H, UEHgIBHg°(§UidD) Hg\GHg (H)

gluing the two handle bodies Hy and H,\en,(H,) by a new map ey jop, © ((Uidp).
Then 83(eHg,£) is an integral homology 3-sphere. Conversely, it is well-known that
we can get any integral homology 3-sphere in this way.

About the integral homology 3-sphere S3(e H,,§) obtained in this way, we set a series defined
by the following.

e Considering ¥, ; as an embedded surface in the sphere S3, the tubular neighborhood
ex,, Sg1 x I — S
of the embedding induces a Q[p][[h]]-module homomorphism map
€5yt A(Xg1) = A(S?) ~ Qpl[[h].

e Using the injective map ¢ in Theorem 3.5, we set a series zA(S?’(eHg,f)) as

2a(8¥(eny ) S ew,  ((C©O)) € QUL
i=1

Then we have the following theorem.



Theorem 3.6. The above map
z 4 : {diffeomorphism types of integral homology cylinders} — Q[p][[h]]

is well-defined. In other words, for any integral homology 3-sphere M, the series za(M) is
an invariant.

Using the Reidemeister-Singer stabilizer, we prove the theorem. Furthermore, in our recent
work, this invariant has the following property.
Theorem 3.7. For any integral homology 3-sphere M, changing variables
Nlogq
q—q
we obtain a series (zA(M))ny) from za(M). Then (z4(M))n)) equals the sl(N)-quantum
invariant, the sl(N)-Ohtsuki series.

his —q+q

The theorem says that the invariant
z 4 : {diffeomorphism types of integral homology cylinders} — Q[p][[A]]
has no new information but all information of sl(N)-quantum invariant.

Remark 3.8. The above results hold in Kauffman bracket skein modules. For details, you
can see our paper [8][9][10].

4. HOMOLOCY CYLINDERS

In this section, we recall the definition of homology cylinders and introduce an action of
homology cylinders on skein modules.

Let 3 be a compact, connected, and oriented surface with a non-empty boundary. A
homology cylinder of ¥ is a pair (M, «) of a 3-manifold and a diffeomorphism « : M —
0(¥ x I) satisfying the two conditions. The first is that M is compact, connected, and
oriented. The second is that a has the property

ker(a : Hy(( x 1), Z) — Hy(M,Z))
=ker(H(0(X x I),Z) — Hy(0(X x I),Z)induced by the natural embedding).

For two homology cylinders (M, a!) and (M?, o?), if a diffeomorphism x : M! — M? satisfies
al =a? °X|onm1, we call they are isomorphic. We denote by H(X) the set of isomorphic classes
of homology cylinders of ..

We can define the composition of H(¥). We fix two homology cylinders (M' a') and

(M?,a?) of ¥.. We set a new 3-manifold M*' o M? as the quotient of M ]] M? by the relation

o*(p,1) ~ o (p, 0)
and a new diffeomorphism (! U a?)ppop2 : (8 x I) = O(M*' o M?) as

a1(p, 1) ift=1
1 2 ozl(p,2t—1) if te [%al]
a Ua o 1) = .
@B =3 o itrefo,d
Ofg(p, 0) if t=0.

<o



Then the pair (M! o M?, (a' U a?)10p2) is also a homology cylinder. The composition

() o () HE) xH(E) = H(D),
(M1 al), (M?,02)) = (M' o M2, (o' Ua®)apions)

makes H(X) a monoid.
We fix a homology cylinder (M, «) and an injective map j : {1,---,28} — 0%. We consider
the following three embeddings.
o Let @ : (X x I) x I — M be the tubular neighborhood of the embedding surface
OM = a(9(X x I)).
o Let 1p: X x I — 9(3 xI)x I be the tubular neighborhood of the embedding surface
¥ x {0} x {1} satisfying the conditions.
— For any p € X, we have (y(p,0) = (p,0,1).
— There exist a positive number € > 0 such that ¢o(p,t) = (p,€et, 1) for any p € 0%
and t € [0, 1].
o Let 11 : ¥ X I — 9(X x I) x I be the tubular neighborhood of the embedding surface
Y x {1} x {1} satisfying the conditions.
— For any p € ¥, we have 11(p,1) = (p,1,1).
— There exist a positive number € > 0 such that ¢1(p,1 —¢t) = (p,1 — €et, 1) for any
p € 9% and ¢t € [0, 1].

The compositions & oty and @ o ¢y of them induce the Q[p][[h]]-module homomorphism maps
(@ 010+ - A(S,5) = A(M, o (j x idp)),
(@ou)s AS,§) = A(M, a0 (j x idy)).

Then we have the following.

Theorem 4.1. Using the above notation, the Q[pl][[h]]-module homomorphism maps

Qlp
(@o10)s : A(S,§) = A(M, a0 (j x idp)),
(@ou)st A(S,§) = AM, a0 (j x idy))
are 1somorphisms.

It is easy to check that the maps (@ o)« and (& o t1), are surjective. We can prove that
(@ otg)s and (& o t1), are injective using the formula for Dehn twists. We remark that we
need the skein modules to be h-torsion free in our proof.

Remark 4.2. By the above theorem, the structure of the skein algebra .Z(M,j) simplified in
two ways becomes clear. The first is to simplify it like Stallings’s theorem [7] in a group. The
second is to ignore the h-torsion part of AY(M, 7).

Using the above theorem, we set a monoid homomorphism map as
TAMA L (R) = Aut(A(S,5)), (M, o) = (@0 1)y o (@ 0 to)s.

We call the map ‘I’%‘“A an action of H(X) on the completed skein algebra .,Zl\(Z, j). This
monoid homomorphism map is related closely to an invariant defined in the next section.
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5. MAIN THEOREMS
We can construct an invariant
CaH(E) = AX)
for homology cylinders in a similar way in Theorem 3.6. We do it in the following. First, we
obtain a homology cylinder in the steps.

e We take an embedding ey, : H; — ¥ x I from a handle body H, in the 3-manifold
Y x 1.

e We take a diffeomorphism of the surface ¥, representing an element £ € Z(X,1) and
denote it by the same symbol £.

e Taking a closed disk D in the boundary 0H,, we consider the closure 0H,\D as the
surface ¥;1. We get a 3-manifold (X x I)(en,,§), the quotient of the disjoint sum

Hy 1% x I\en,(Hygy) by the relation

r € OHy ~ ep on, o (EUidp)(x) € ¥ x I\en,(Hy).
Then the pair (X x I)(en,,§) = (X x I)(en,,§),idgxxr)) is a homology cylinder.
Conversely, Habegger [1] proved that we obtain any homology cylinder in this way.

Next, we construct an invariant C4((S x I)(en,,§)) € A(T) of (2 x I)(en,, &) in the following
steps.

e Considering the surface ¥, is an embedded one in ¥ x I, the tubular neighborhood
exyy ¢ ug1 X T = XN x T
induces a homomorphism map
ex,, P A1) = A(D).
e Using the emAbedding (4 in Theorem 3.5, we set an element ZA((E x I)(en,,§)) of the
completion A(X) as

CA((S x D(en, €) 2 hloges, , (exp A1)

Then the theorem holds.
Theorem 5.1. The above map
Ca:H(E) = FPAR)

s well-defined. In other words, for an isomorphic class = € H(X) of a homology cylinder,
CA(Z) is an invariant. Furthermore, we have

VEAE)(4) = exp(e(Ca(E) )
for any B € Z>o, any injective map j : {1,--- ,26} — 0%, and any y € A\(Z,j).

In this way, we obtain an invariant 4 : H(2) — F3.A(Y) for it describing the action gpued

on the completed skein module A(X, 7). Furthermore, (4 has the following property.
11



Theorem 5.2. We fiz an embedding e : ¥ x I — S3, which induces the two maps

ey : H(X) — {diffeomorphism types of integral homology cylinders},
er D A(X) = A(S?).
Here we consider A(S®) as Q[p][[h]]. Then we have

E)
h

)

zA(e4(E)) = ex(exp(
for any = € H(X).

Remark 5.3. It is unclear whether the element

EA(( x Dfen, ) L hlog(es, , (exp A

belongs to F?’.Zl\(Z). Using another algebraic definition not introduced in the paper, we can
check Ca((X x I)(en,,€)) € F3A(Y).
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