TWO INTEGRAL REPRESENTATIONS FOR APERY
CONSTANT AND ITS APPLICATIONS TO MULTIPLE ZETA
VALUES
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ABSTRACT. We generalize the proof of Basel problem by Boo Rim Choe (1987)
to obtain two integral representations for Apéry constant. As applications, we
also show integral representations for multiple values (3,2, ...,2) and ¢(3,2,...,2).

CONTENTS

1. Introduction 2
1.1. Basel Problem: arcsin and ((2) 2
1.2.  Central binomial sums 2
2. Main results 3
2.1.  Arcsin and ((3) 3
2.2.  Multiple zeta, t-values )
2.3. ((2,...,2) and t(2,...,2) 6

2.4. ((3,2,...,2) and £(3,2,...,2) 7
2.5.  Conjecture on central binomial sums 10
3. Other multiple sums 11
3.1.  Multiple T, S-values 11
3.2.  Conjecture on t({2}"™1,1) 12
References 13

This article is based on the author’s talk “T'wo integral representations for Apéry
constant” for Analytic Number Theory and Related Topics, Kyoto RIMS (online)
on October 12, 2021. There are certain overlaps with [9].

Date: December 20, 2021.
2020 Mathematics Subject Classification. Primary:11M32.
Key words and phrases. Apéry constant, arcsin, central binomial sums, multiple zeta values,
Riemann zeta function, Wallis integral.
1



1. INTRODUCTION

1.1. Basel Problem: arcsin and ((2). Let ¢ denote the Riemann zeta function.
Boo Rim Choe (1987) [2] gave evaluation of the integral

2 L aresin x 3

m
1 oo R g =S¢

which provides another proof of Basel problem ((2) = %2 (dating back to Euler
around 1735). Actually, there is a counterpart of this:

2 (larcsin’z  dx 1
2) e — R
as the even part of ((2); we will explain why this equation involes 2/m and
arcsin® z /2! later on. The aim of this article is to show analogous integral evalua-
tion

(3)

dr = =((3),

Jo x 8

/'1 arcsin x arccos x 7

2 / Larcsin? x arccos
0

(4) P 2! T

dr = <((3)

and discuss its applications to central binomial series, multiple values shown as
Theorems 2.8, 2.13. We also make two Conjectures 2.19 and 3.3.

1.2. Central binomial sums. One of important topics in number theory is cen-

tral binomial sums. Informally speaking, it is an infinite series involving (2:)
Lehmer [10] discussed two types of such sums

I o 2n I R o\

Some examples are

i(?) 3 i(?) _ /2

He also presented connection between such series and Maclaurin series of arcsin x
and arcsin® z. Other examples are

> e =560 X = 160)

as they arise in the work of Apery [1] and van der Poorten [14] to prove irrationality

of (3).
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Remark 1.1. For a nonnegative integer n, let
Cn—Dl=2n—-1)(2n—-3)---3-1,
2n)! =2n(2n —2)---4- 2.
We understand (—1)!! = 0!! = 1. Notice that the following relation holds.
M (2n—1)

n

om —  (2p)!!

2. MAIN RESULTS

2.1. Arcsin and ((3). Toward the proofs of (3), (4), we first setup some notation
for convenience.

Definition 2.1. Let R[[z]] denote the set of real power series. For f(x) € R][]],

define W : R[[z]] — R][[z]] by
! du
- ) e

- /f 1—u2

Fact 2.2. Recall from calculus that if f(z) =) a,z" (a, € R) is a convergent

In particular,

power series with the radius of convergence R, then so is f(u)du and moreover
0
it is given by termwise integration

- B 0o a, .
./0 f(u)dU—;TH_lx :

In the sequel, we will use this result without mentioning explicitly.

Lemma 2.3. Let f (z) € R[[z]].
[1] Moreover, suppose it is odd in the form

oo 2k
f(x) = Z ﬁa k+1 T az+1 € R.
k=0
Then .
A2k+1  okt1
%74 = — .
/(@) ; 2%+ 1"

[2] Moreover, suppose it is even in the form

22k
f(x)zz % age v, age € R.
k= O(k)
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Then

T [o¢]
§ : 2k
= — QAo T
2
k=0

2k
Thus, by the opertator W we can “kill” (2%) or ( ) from coefficients and instead

or 5 shows up, respectively.

2k+1
Proof. To show (1), recall that
/1 u2k+1 p (2k,)|| 22k 1
u = = .
0o V1 —u2 2k+DI (39 2k+1
Then 1 (Zk) 2k+1
Wf(.ﬁl:) = / Z ;Tagkﬂx%ﬂ 2du
0 k=0 —u
oo (2k 1 2k+1 i
_ ( k ) 2%+ u - A2k+1  op+1
=3 St [ du = 3

Lemma 2.4. Let f(z) € R[[z]]. Suppose moreover f(0) = 0. Then

(5) (/ 1w, ) :/¥udu

In particular, for x = 1, we have
T 1
%% (/ @ dy) = / f) arccos u du.
o Y z=1 o U

Proof. 1f x = 0, then both sides in (5) are 0. Suppose x # 0. Exchanging order of
the double mtegral (Fubini’s Theorem), we have

([ )= [ e
O/y/m%ﬁdudy
f

= / ﬂaurccosyaly
o Y Z
4

1
f(zu) arccos u du.




O

2.2. Multiple zeta, t-values. As a natural generalization of Riemann zeta func-
tion, let us introduce the following sums.

Definition 2.5. For positive integers i1, ..., 7y such that i; > 2, define the multiple
zeta value and multiple t-value by

o . 1
QUWCTNES Z T o

ni>ng>-->ng

o ) 1
t (i1, iz, ... 1) = E T i
ni>ng>-->ng e

nj; odd

Sometimes it is better to interpret (i1, - ,ix) as

Qi1+ Z | 1 |
mi>ma>-->my (ml)ll (m2)22 c (mk)lk
m;j even

in contrast to t-values.

Fact 2.6. Let {m}" denote the sequence (m,m,...,m). For a multi-index
—_———

i= (al + 1’ {1}b1_1’ a2 + 1’ {1}1)2_17 sy A + 1a {l}bk_l)>
with integers k, a;,b; > 1, define its dual
iJf = (bk —+ 1, {l}ak—l’ bk—l + 1’ {1}%_1—1’ o >b1 + 1’ {l}al_l),

Duality formula for multiple zeta values claims that ((i) = ((if) for all indices
such that the first argument is at least 2. Historically, Drinfeld and Kontsevich
found iterated integral expressions for multiple zeta values and proved the duality in
1990s. Afterward, Kaneko, Hoffman, Zagier and many other researchers developed
the theory.

Example 2.7.
[1] the celebrated Euler-Goldbach theorem claims that

¢(2,1) =<¢(3).

We can derive this relation from iterated integral expressions
1 T T
d 2 d 2 d
R e
o T3 Jo l—z2)y 1—m
1
d Y3 d Y2 d
C(3) = / 993 / aY2 / 0
o YsJo v Jo 1—wm

with changing variables by y; =1 — x4_;.
5
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[2] Observe that
12)=2¢@), 13) = L)
and Hoffman [7, p.4] shows that
{2,1) = —%t(3) FH2)log2 (£ 4(3)).
2.3. ((2,...,2) and £(2,...,2).

Theorem 2.8. For n > 1,

C(gn) - (2ni 1! (5)" e - @ G

In fact, we can prove these by equating coefficients of z?" in

00 s
2

1 (71'37)2” sin lo—OI ( x? )
7o, A\ o = Tz - 7%=
' n+ 1)1\ 2 = — gy

n

and
00 2

R (E)Z"_COSE_ 1 (1_93_)
nz:% (2n)! \ 2 2 E (2n — 1)?

However, we give a different proof here because it suggests the application to
evaluation of ((3,2,...,2) and #(3,2,...,2) in the next subsection. For this pur-
pose, we need a lemma.

Lemma 2.9. For n > 1, |z| < 1, we have

arcsin®" 22k 1 ok
@)l k>m1>;mn_1>o () @RP2mi 2 @m 2
arcsin®* ! x B Z (2:) 1 2k
(2n—1)! o S g 28 2k 1)(2my 1) (2m + 1) ‘
Proof. This is a rephrasing of J.M.Borwein—Chamberland [4, (1.1)-(1.4)]. O
Proof of Theorem 2.8. Lemma 2.9 asserts that
arcsin” z Z 22k 1 2
(2n)! e A (3F) (2k)2(2ma)? - - (2m-1)?
so that
- on
()<, T e

k>mi>-->mp_1>0
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Let z = 1. The left hand side becomes
/ Laresin® u du B arcsin? 1y 1" B 1 ( T >2n+1
o (2n)! Vi—w2 | 2n+1)! |, (n+1)!\2

while the right hand side turns to be %% Hence we proved

C({2}") 1 (W)Qn‘

2

22n (2n +1)!

arcsin®?~1 g

(2n—1)!

1 ™

It is quite similar to show t({2}") = 5 (—)Zn using

o) \2 and the operator
W.

2.4. ((3,2,...,2)and £(3,2,...,2). Wejust found {(2,...,2)and t(2,...,2) above.
A natural subsequence is to evaluate ((3,2,...,2) and #(3,2,...,2) via integrals
on powers of arcsin again.

Definition 2.10. For n > 1, set

I(n) = /1 arcsin” © .
0

X

Example 2.11. Observe the first several values.

(6) 1(1) = 5 log (2)
2 7
(7) 1(2) = - log (2) = £ C(3)
™ 97
) 1) =" 108 (2) - 7 ¢(3)
4 972 93
(9) 1(4) = 1= 1og (2) = 7 ¢(3) + 55 ¢(5)
0 1573 225m
(10 I(5) = 35 Tog (2) ~ o ((3) + 227 ¢(5)
° 4574 675> 5715
(1) 1) = Do)~ o)+ T 5) - 2 ¢qa)
Remark 2.12.
[1] Indeed, Wolfram alpha [15] returns the algebraic expressions (6)-(11) for
integrals

w/2
I(n) :/ y" coty dy
0
7



while she outputs only numerical values for

Laresin™ z
—dx.
0 T

In fact, there is a precise formula for I(n) giving a Q-linear combination
of log 2 and single Riemann zeta values. For the sake of completeness, we
discuss it here although we do not need it in the sequel. Let 1 denote
the Dirichlet eta function, that is, (1) = log2 and 7 (j) = (1 — 2'77) ((j)
(7 > 2). Then, there holds

(12) [@2n+1)= <2”+1)!zn:

(_1>j 2nt1-2j

2j +1
- Gnii—a 1E Y

22n+1

I(2n) = 2" (Z @n m '2]7;(2;+1) (1)”2(1—2_2”_1)§(2n+1)>.

To see this, we remark that Buhler-Crandall [5, p.280] stated

1/2
/ x" cot(mz) dz
0
n! (—1)*=D72 (k) 1 4n(1 — 27771
= +=((-1)"+1) ((n+1).
2n 2. mk (n—k+1)! 2 (2m)n+1
kodd

However, the sign 3((—1)" + 1) must be cos % (for n = 2, the coefficient
of ((3) is negative; see (7)). To correct this, Set

1/2
J(n):= / x" cot(mz) dz
0

n! (—=1)*E=D72 (k) nm4n!(1 — 27771
== + cos — ((n+1).

n 1;71 mk (n—Fk+1)! 2 (2m)ntl
kodd

Then, with y = sin(7x), we find

J(n) = 1 /Oarcsin”(y) dy = 1 I(n).

antl Y antl

Thus, I(n) = 7" J(n). Writing down the cases for the index even and
odd with k = 25 + 1, we get (12), (13) and hence justified (6)-(11).
[2] We can also view I(n) as a log-sine integral:

1 n 1 —1
arcsin” x , 1 arcsin” ' x
I(n) = ——dz = |log x(arcsin™ x 10 T————dx
( ) /0 - \[ g ( y )]g g T2

0
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w/2
=-n / y" ! log(siny)dy.
0

See J.M.Borwein-Broadhurst-Kamnitzer [3] for relation of such integrals
and central binomial series, for example.

Theorem 2.13. For n > 0,
(@B.{2}") 2 /1 arcsin® 2z arccos z
22n+3 TJo (2n+2)! x
1 arcsin® ™! x arccos «
163,21 = ,/0 (2n +1)! x
The proof is quite same to the one for Theorem 2.8. Hence we omit it.

Remark 2.14. Recently, Lupu [11], Murakami [12] and Zagier [18] obtained sim-
ilar results. Each of their proofs is different from ours.

€T,

xX.

Example 2.15. For n = 0, we have

(14)

/1 arcsin x arccos xd:v _ ZC(?))’
0 x 8

2 (! arcsin x arccos x 1
15 — de = =((3
(15) WA SRE AT g = 1(3)

as we mentioned in Introduction. For n > 1, with arccosxz =

T _

5 — arcsinz, we see

that
£(3,2) = /0 arcs;n Iarc‘;osxdx - % (gI(S) - 1(4)) - 654 (37%¢(3) — 31¢(5))
B2 22 (Tr) - 16) = o ()~ 1¢6)
£(3,2,2) = % (21(5) - 1(6)) - ﬁ (274¢(3) — 6072¢(5) + 381¢(7))
and so on.

Corollary 2.16. Let Q|[r,((3),((5),...,((2n + 3)],, 5 denote the set of all ele-
ments of degree 2n-+3 in the rational polynomial ring in 7, {(3), ((5),...,((2n+3)
with grading degm = 1 and deg ((2j + 1) = 2j + 1. Then

O 13.12)) € Q. C(3).C6). ... C2n+ By

Remark 2.17. Not all multiple values satisfy such a property. For example, as

mentioned before,

7'('2

t(2,1) = 5 log2 — %C(S)

involves a rational multiple of 7% log 2.
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2.5. Conjecture on central binomial sums. Keeping iterated integrals in mind,
now we discuss powers of log x as certain operator; at the end, we make one con-

jecture.
For f(x) € RJ[[z]] such that f(0) = 0, it is the technique to consider

/ f(z)

to construct another series as we often encountered.
We can generalize this little more by changing the part “[ %” with the iterated

integral
/da:/da: /dx_/logrx
x x ZL‘J_ rlz
e
Fact 2.18 ([13, p.1, 57-58]). For integers n > 1,7 > 0, we have
1 r
1 _ T
/ x”—Og Ty = (=1) .
0 rlx nrtt
Let us see what if we apply this idea to arcsin integrals. Again, recall that

' o (Qkk) p2k+1
arcsinT = Z ﬁ%——l—l
k=0

We now see another central binomial series

/1 . logx d f: (Qkk) 1 /1 2k+1logx d i (2:) 1
— aresin t—— dx = RLES T o7 dr = Y 2
0 x prd 2% 2k +1 J, x 22k (2k +1)3

k=0

and similarly
2k

! . log*x = (3 1
/0 arcsin r 2':2: dﬁzgﬁm

Wolfram alpha [15] says that

1
log x 1
— i dr = —(7° 4+ 127 log? 2).
/Oarcsmx ol 48(77 + 127 log” 2)

1 1 2 1 ) )
/0 arcsin x ozg,;xx dx =1 —(6m¢(3) + 4 log® 2 + 73 1log 2).

This is only computer calculation. Hence let us state it as a conjecture.

Conjecture 2.19.

EOO 0 N
7 ™ 7 10,
L2k (26 +1)7 48 &
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oo 2k
G) 1 1 30, 3
L = —(6m((3) + 4m log” 2 log 2).
;2% 2k + 1)4 15 0mC(3) +dmlogm 2+ log2)
Remark 2.20. Jiangiang Zhao pointed out (e-mail) to the author that we can

prove these with Xu-Zhao [17, Theorem 8.12] (for m = 4,k = ()) without much
trouble.

3. OTHER MULTIPLE SUMS

3.1. Multiple 7', S-values. Following Xu-Zhao [16], let us introduce more general
multiple sums here.

Definition 3.1. For a multi-index (i, ...,4;) with i, > 2, define a multiple T-
value (MTV) and a multiple S-value (MSV) by

1
T i)=2 Y L

1k ik—l 71
g >ng_1>->ng Tk p—1 -+ - T
n; = j (mod 2)

1
. -\ ok
Sigy.nyiy) =2 g T o
NE>Ng_1>>N1 N Ng_q -1
nj = j+1 (mod 2)
We understand that the empty index () has weight 0 and

C(0) =t@) =T(0) =S0) =1.

TABLE 1. Conjectural dim sequences

nli0123456 7 8 9 10 11 12 13
z»(1 011122 3 4 5 7 9 12 16
t. |1 01 2 3 5 8 13 21 34 55 89 144 233
7. /1 01 1 2 2 4 5 9 10 19 23 42 49
S,|1 012 3 46 10 15 22 32 52 76 7

For n > 0, let MZV,,, MtV,,, MTV,,, MSV,, denote the set of Q-span of all
MZVs, MtVs, MTVs, MSVs of weight n, respectively. Moreover, let

zp, = dimgq MZV,,, t, = dimq MtV,,
T, = dimg MTV,,, S, =dimgMSV,,.

By (dn)n>0 and (fn)n>0, we mean Padovan and Fibonacci sequences; to be more
precise, they are ones satisfying

dozl,d1:0,d2:1 and dn:dn_g—l—dn_g fornZ?),

fo=0,fi=1and f, = fn_1+ fns for n > 2.
11



Conjecture 3.2.
[1] (Zagier) z, = d, for n > 1.
[2] (Hoffman) t, = f, for n > 2.

What about T,,, S,,? Kaneko-Tsumura [8], Xu-Zhao [16] observed that the con-
jectural sequence (7),)o<n<13 satisfies restricted Fibonacci relation

Top = Top—1 +Tor—2, 1<k<6.

Here we also observe that the conjectural (S, )o<n<13 satisfies restricted Padovan-
like relation

Sokr1 = Sop—1 + 2592, 1<k <5,
Thus, Si3 is conjecturally equal to
92 %2 x 32 =116.
There might exist such relations for all (7},),>0, (Sn)n>0 throughout. We are plan-

ning to pursure these details at another opportunity.

3.2. Conjecture on t({2}"*1 1). We evaluated ((3,{2}"),t(3,{2}") together in
Theorem 2.13. Notice that

(3, {2}")" = ({2, 1)
so that MZV duality implies
¢, {21 = ({23 0).

It is now natural to ask what ¢({2}""1 1) is.
With (7), (9), (11) and [7, Appendix|, we observe that

H2.1) = (W—Q log2 — 54(3)> _ 12

2\ 4 2!
1 (7 03 I(4)
2,2,1) = — | —log2 — —7* — = —
220 = o (o2 - et + 3oces)) = L
1 /b 4574 67572 5715 1(6)
2,2,2,1) = — ( = log (2) — _ 200 _ 16
22,20 = o (T os() - o)+ 2o o) - o) = 1§
It would be nice if we can generalize this.
Conjecture 3.3 ([6]). For n > 0,
F({21 1) = /1 arcsin® 2 g @
o (2n+2)! =z
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