A CLASS OF HOLOMORPHIC DIRICHLET-HURWITZ-LERCH
EISENSTEIN SERIES AND RAMANUJAN’S FORMULA FOR
SPECIFIC VALUES OF THE RIEMANN ZETA-FUNCTION

MASANORI KATSURADA AND TAKUMI NODA

ABSTRACT. We show in this paper that complete asymptotic expansions exist for a class
of holomorphic Dirichlet-Hurwitz-Lerch Eisenstein series (Theorems 1 and 2), which,
together with their remainders in exact form (Theorem 3), naturally transfer to several
(additive and multiplicative) character analogues of Ramanujan’s formula for specific
values of the Riemann zeta-function (Theorem 4 and Corollary 4.1), and further to
the (quasi) modular relations for similar character analogues of the classical Eisenstein
series with integer weights (Corollary 4.2). Prior to the (sketched) derivation of our
main formula, we prepare several basic (but new) results on Dirichlet-Hurwitz-Lerch L-
functions (Theorems 5, 6 and Lemmas 1-3), which play underlying roles in all aspects
of the proofs; the detailed version of the proofs will appear in a forthcoming article [16].

1. INTRODUCTION

Let $* be the complex upper and lower half-planes, where the argument of each leaf
is chosen as

H ={zeC|-rm<argz2<0} HT={zeC|0<argz <7}

Throughout the paper, s is a complex variable, «, 3, ;1 and v real parameters, z € H§T
a complex parameter, and x and ¢ any primitive Dirichlet characters modulo f > 1 and
g > 1 respectively. We frequently use the notations e(s) = e?™ ¢, (s) = e(s/h) = e?™is/h
for h > 1, xo(m) = x(a+m) and ¥y(n) = (b + n) for any integers a, b, m and n, also
£(z) = sgn(arg 2) for |arg z| > 0, and further the parameter 7 = eT*)™/25 for » € H*,
where 7 varies within the sector |arg 7| < 7/2.

We introduce here the holomorphic Dirichlet-Hurwitz-Lerch Eisenstein series F;Ea o
defined by

m,n=—0o0
converging absolutely for ¢ > 2, where (and hereafter) the primed summation symbols
indicate omission of the impossible terms of the form 1/0°, and the argument of each
summand is chosen such that arg{a +m + (8 + n)z} falls within [—7, 7[in I, while
within | — 7, 7| in F;’a - The main object of study is the arithmetical mean

(1) B0, Binw32) = o {Fp (510, 503 2) 4 (5500w 2) ),

for which we show that complete asymptotic expansions exist as 7 — 0o (Theorem 1) and
7 — 0 (Theorem 2) both through the sector |arg 7| < 7/2, whose proofs, by means of
Mellin-Barnes type integrals, lead us to to extract exponentially small order terms from
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the remainder (Theorem 3). The asymptotic series in Theorem 2, or even its first deriva-
tive, in fact terminates up to finite terms if s is at any integer point; this combined with
Theorems 1 and 3 naturally transfer to several (additive and multiplicative) character
analogues of Ramanujan’s formula for specific values of the Riemann zeta-function (The-
orem 4 and Corollary 4.1), and also of the (quasi) modular relations for similar character
analogues of the classical Eisenstein series with integer weights (Corollary 4.2). Crucial
roles in the proofs are played by some basic (but new) results on Dirichlet-Hurwitz-Lerch
L-functions, which are prepared in Theorems 5, 6 and Lemmas 1-3, prior to the (sketched)
derivation of our main formulae in the final section.

Let ((s) denote the Riemann zeta-function. Berndt [3] first studied, in the present
direction of research, the case (i, v) = (0,0) of (1.2), and further derived certain character
analogues of Ramanujan’s formula for specific values of ((s), where the results related to
[3] have been shown, e.g, in [2][4]; the reader is referred to [15, Sect.1] for more detailed
history.

The paper is organized as follows. Our main formulae (Theorems 1-3) are presented
in the next section, while Section 3 is devoted to stating (additive and multiplicative)
character analogues of Ramanujan’s formula for specific values of ((s) and of (quasi)
modular relations for similar character analogues of the classical Eisenstein series of integer
weights. The results on Dirichlet-Hurwitz-Lerch L-functions are given in Section 4, while
in the final section the proofs of our main formulae are outlined.

2. STATEMENT OF RESULTS

We prepare several notations before stating of our main results.

Let r be a complex variable, 7 and x real parameters, and ¢ any integer. We intro-
duce the Dirichlet-Hurwitz-Lerch L-function K, (7.7, k), together with its companion
Ly, (r,v, k), defined by

Xe(k F’f (kr)
2.1 Ky (r,v,k Rer > 1),
21 / Z S (Ber>)
Xe(k)e{ (v + k)r
@) Lurys = Y MELOEE K, o),
—y<k€Z

which reduce to the Lerch zeta-function ¢(r, 7, k) and to its companion v(r, vy, k) respec-
tively if (x, f) = (¢, 0) with the principal character ¢ modulo 1, and further to the Dirichlet
L-function L, (r) if v € Z, k € fZ and ¢ = —; the functional equation for (2.1) or (2.2)
is given in (4.7) or (4.8) below. We write ¢ = e(z) = ¢ 2™, and introduce the double
g-series S,y ., (7,95 K, A; ¢1"), defined for any r € C, any 7,4, k, A € R and any ¢,d € Z
by

c k O+ DA
Srera(V: 035, X ¢ = Z Xe(R)pa(Dep{ (v + k)rteg{(d + DA} ORI+ /n

—v<k€Z (6+l)
—o<leZ
f—1 g—1
I - +i 0+
=y xela(i)S (0 25 gt
i=0 j=0 f 9
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where S,.(7, d; k, \; q) is the double g-series or generalized Lambert series (defined without
characters) of the form

+ k)4 (0 + 1A
Si (7,056, q) = Z &t (35+l)( )}(Wkw“)

—y<k€Z
—I<IeZ

| e[(6+ l))\}q@)'((ﬂ-l)
=e((n)'s) Y 0+ {1 = e(r)a™}

—0<IEZ

Let Gy = Y217 x(h)es(h) denote GauB’ sum associated with any primitive Dirichlet
character X, 1'(s) the gamma function, (s)y = I'(s + k)/I'(s) for any k € Z the rising
factorial of s. The convention x.(z) = 0 for any x € R\ Z and for any (shifted) character
X modulo f > 1 is used throughout the following, and hence d(x) = ¢(x) for any = € R
denotes the symbol which equals 1 or 0 according to x € Z or otherwise.

We now state our first main result, which gives a transformation formula for (1.2).

Theorem 1. Set
23) Ay (5,00 10) = X(=1) cos(m8) Ly (5, s —1) + L 5,0,10)
= epf(a— a6 EL (e L (1~ 5,1, —(a — )
J X 2F( ) X ) [
+ e‘”is/QLY(l — 8, =, — a)},

where the second equality is derived by the functional equation for L, (r,7, k). Then for
any z € HT, any o, B, 1, v € R and any a € Z, on the whole s-plane we have

(24) Py, (550, 0 v 2) = tho(=B) Ay, (s, p) + ep{ (o — a)u} Gy (217:(/5))8

X {e_Tris/zsl—sﬂ/Jb,Y(Bv — UV, 00— G ql/f)
+ X(_1)¢(_1)eﬂi8/281—s,w_b,y(_67 My —v, —(Oé - a’)? ql/f)}7

the right side of which provides the holomorphic continuation of the left side to the whole
s-plane.

Remark. The g-series Sy_g ., x(£8, Fiu; v, £(a — a); ¢/F) on the right side of (2.4) give
the (convergent) asymptotic expansion as 7 — oo through |arg 7| < 7/2, since each term
of the series is of order Olexp{—27(FL) (Fu+ m)7/f}] as 7 — oo (for m > +pu).

Next let C* denote the universal coverlng of the punctured complex plane C* = C\ {0},
where the mapping Cx: X = logY log ]Y\ +1 argY e Cis leeCthG (with the range
of argY being extended over R). We define for any X € C and Y € C* the operation

(2.5) C*3Y — Y¥ =exp(XlogV) = exp{X(log |Y| +iargY)}
= [V [Xexp(X argY) € C.

Let e(k) for any x € R denote the point defined by loge(k) = 2mir, and write e(0) = 1.
Then €(k)? = e(yx) holds for all v € R by (2.5).
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We introduce here the generating function F, (X, Y: Z) for (X, ?) € C x C* with the
variable Z € C, defined by

-1 =

- 7Y X+h)/fo(X+h)Z
2.6 Fo(X,Y:2) =Y xu(h)Z— .
(26) T =3

It is convenient for describing specn‘ic values of L, (r,7,k ) at integer points to use the

sequence of functions Cj,, : C x C* 3 (X,Y)— Chx. (X, Y)eC (k=0,1,...) defined
by the Taylor series expansion

~ = Crn (X, Y)
(2.7) P (XY;2) =) =22 2h,
k=0

centered at Z = 0; this reduces to the usual Bernoulli polynomial By(X) if (x, f) =
(t,1) and Y = T, and to the Bernoulli number By ., associated with a shifted primitive
character ., if (X,Y) = (0,1). We in partucular write Cx(X,Y) = Cy.(X,Y) for any
(X,Y) e CxCx (k=0,1,...) (cf. [11, Sect.6, (6.2)][15, Sect.2, (2.15)]). It is then seen
from (2.6) and (2.7) that

J-1
(2.8) Con (X, V) = 713 valb)C (XJT "7

h=0

The reciprocal relations for Cy . (X, Y) are shown in (4.1) and (4.2) below.
We next state our second main result, which gives the asymptotic expansion for (1.2)
as 7 — 0 through the sector |arg 7| < 7/2.

Theorem 2. Let a, 5, i, v € R be any parameters, x, and Yy, with any a,b € Z arbitrary
(shifted) primitive Dirichlet character modulo [ > 1 and g > 1 respectively, and write
z = ™27 with |arg 7| < 7/2 for any z € HT. Set

(29)  Buy (s, 1) = ix(—1)sin(ms) Ly, (5, . —p1)

= iep{(o - a)u}Gx—(Zﬁ/(gs

Fx(-De IR s (- a)) ),
(2'10) 627%(‘9767’/) = ¢< 1) MS/2LTP b( 67_1/) +6_MS/2L%( 767”)

(- Deg {5 — )Gy T (/ g)) L1 = s, — (5~ ),

where the equalities in the second and fourth lines follow from the functional equation for
Ly (r,v,K). Then for any integer J > 0, in the region o > —J we have

(211) FXaﬂPb (Sv Q, ﬁv u, v, Z) = wb(_ﬁ)Bl,xa <S7 «, /.L) + Xa<_a)82,1/1b (Sv Bv V)T_s
+ SJ,Xa,I/Jb (87 «, 57 H, Vs Z) + RJ,Xa,’ng (37 Q, ﬁa M, Vs 2)7

where Sy, ., 15 the asymptotic series of the form

{em(l_S)/QLY<1 =S, M, = a)

Jl.‘l

(2.12) S (850, By p, v 2) = 2x(—1) sin(ms) Z
-1

X Cj+17'¢b—|ﬁj(< >76 ’/))

&

(]+1 Xa8+j7 M)



A CLASS OF HOLOMORPHIC DIRICHLET-HURWITZ-LERCH EISENSTEIN SERIES 5

and Ry, 4, 5 the remainder satisfying the estimate
(2.13) Ry (830, 85,05 2) = O(|7]7)
as T — 0 through the sector |argT| < w/2 —n with any small n > 0.

Let ¢ = e(i/7) = e(=1/2) = e 2™/7 and 1 Fy(%;Z) and U(k; \; Z) denote Kummer’s
confluent hypergeometric function of the first and second kind, defined respectively by

A(5z) =3 (i’;izlzk

k=0
for any (r,\) € C x (C\ Z<p) and |Z| < 400, and

1 (0+) —wafi—l w A—k—1 w
r<ﬁ>{e<m>—1}/oo ‘ (Lt w)y™d

for any (r,\) € C? and |arg Z| < /2, where the latter can be continued to the whole
sector |arg Z| < 3mw/2 by rotating appropriately the path of integration (cf. [7, p.273,

Uk N Z) =

6.11.2(9)]).
An application of the connection formula
I'(A) ; r'(\) .
2.14 F ( : Z) _ LW c@ming (o 2 (Zymiln) 2
(2.14) Ly F(A—/@)e U(k )+F(/-@)e e

X U\ —r; \je=@miz)

for 0 < |argZ| < 7 (cf. [7, p.259, 6.7(7)][14, Sect.10, (10.5)]) leads us to extract the
exponentially small order terms S, _, | z(£(o—a), 2v; £, F(B—0); §/9) (as 7 — 0) from
the remainder in (2.11) or (2.13); this eventually yields the following Theorem 3.

Theorem 3. In the region o > 1—J with any J > 1 and in the sectors 0 < |arg 7| < 7/2,
we have the formula

(215> RJ?XG)d’b(S;a7/8;M7V. Z)
(2
— ey{(B — by, 2N ”/ 97 (D)8 50 — 0,5 — (5 — b 39)
+ x(—l)ef(”mé’lfﬁ,x@(—(Oé —a),—v;—p, B —b;79)}

F DD e (8 = DG 2o I (s B2,

where the expression
(2.16) ST, 4, (810, 851,13 z)

x(m)ypme{(=(a = a) + m)(=p)te,{(v +n)(=(8 = b))}
Z (v+mn)t=s

a—a<m
—v<n

x Fy {2 (—(a — a) + )(V+n)/g7'}

el x(m)p(n)e{(=(a = a) + m)(=p)yeg{(=v +n)(5 — b)}
Z (v +n)t=s

a—a<m
v<n

X FS,J{zﬂ-eE(T)ﬂ-i(—(Oé —a)+m)(—v+n)/gr}
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holds with
(2.17) Fo;(Z)=U(s+ J;s+ J; 2).

Furthermore, for any integers J and K with J > 1 and K > 0, in the regiono > 1—J— K,
we have the formula

(218)  S) (S50, B v 2)

_p(=e(n)eg{=(8 = b)r}Gy )i) (s + )y
N (27 /es(T)mi/2g)s—1 Z J+k+1)

k=0
Ly(s+J +k,—(a—a), =p)Criks10_ .oy omsy ((E(T)B), Ee(T)V))
5 (ea(‘r)m‘/Q )s+J+k + RJKXa " (8; o, By, v Z)

in the sectors 0 < |arg | < 7/2, where R K yu, 18 the remainder satisfying the estimate

(2.19) R o (83,0, B 1, v5.2) = O(|7]7H7K)

as T — 0 through n < |arg 7| < m/2 — 0 with any small n > 0. Here the constant implied
in the O-symbol depends at most on s, a, b, p, v, J, K and 7.

Remark . The formulae for Ry, s and Sj, ., above in fact reveal that the instances
of ‘exponentially improved asymptotics’ and ‘Stokes’ phenomena’ respectively, which are
normally observed in the theory of differential equations in the complex domain, also
occur in the present situation of generalized holomorphic Eisenstein series.

3. CHARACTER ANALOGUES OF RAMANUJAN’S FORMULA AND OF CLASSICAL
EISENSTEIN SERIES

The combination of Theorems 1 and 2 with Theorem 3 in fact yields several character
analogues of Ramanujan’s formula for ((2k + 1) as well as (quasi) modular relations for
the classical Eisenstein series of integer weights.

Theorem 4. Let k be any integer, o, B, and v any real parameter, x and 1) the primitive
Dirichlet characters modulo f > 1 and g > 1 respectively, a and b be any integers, write
g = e and § = e >™/7, and suppose further that [,g > 2 or o, 3 & Z if k = 1. Then
we have

(3.1) ef{(a - G)N}fk_lGx{%(—ﬁ)Ly(h —p, a0 —a) + Sk.wb,y(ﬁ, —HV,— Qg ql/f)
+ (=DM X (D= D) Sk, x (=B, 1 =1, — (@ — a); ql/f)}
_ (_27_‘_)14 g:l (_'i)jcj,Xa—LaJ (<a>7 g(/”))ck-i-l—j-,%_mj (<ﬁ>7 E(y)) k=i

o JUE+1—7)!
= (=1eg{(B — b)rH(—igr) Gy
% {Xa(_o‘)LE(ka v, —(B =) + Sy (e — a, vy, —(B — b); 3'9)
+ (DN EDY(=DS, 5 (=0 = a), —v—p, f = b:77) }
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which is transformed through the replacement (7,q, x,v¥) — (1/7,q,X, ) into

(32 e(B =Dl Cu{Rul—) Lok, v, —(5 b))
+8kyw‘( —a,V, U5 — (B )’ql/g)
(D D=~k (@ = @), —vs =1, B~ biq7) |
Ny <<5>,€<u>>ck+1_j,ya_ (@) &)
— (—2m) jz:; Vo-15] TET= ) Lo -

= x(=Der{(a = a)ubifr) G { B (=B)Ly(k, —p,a = a)
+ 85,0 (B —mivia = a;g'Y)

+ (_1)k_1X(_1)w(_1)8k,$_b,x(_67 w; =, —(Oé - a); é\l/f) }
Remark. 1t is worth noting here that a hidden (but crucial) role is played by the connec-
tion formula (2.14) in producing various Ramanujan type formulae as in Theorem 4 and

Corollary 4.1 below for specific values of the Riemann zeta-function.

Let L, .(r) for any ~ € R and ¢ € Z denote the exponential Dirichlet L-function
attached to a (shifted) primitive Dirichlet character x. modulo f(> 1), defined by

. (kr)
Ly (1) = (7,0, k) Z xel ef il (p=Rer >1),

and By ,, (k=0,1,...) the k-th Bernoulli number attached to x., defined by

= Cpy (0,1) fklzxc () (k=0,1,...).

The case (o, 8, u,v) = (0,0,0,0) of Theorem 4 implies the following result.

Corollary 4.1. Let k be any integer, x and i any primitive Dirichlet characters modulo
f>1 and g > 1 respectively, a and b any integer, and suppose further that f,g > 2 or
a,B &7 if k=1. The we have

(33) G0 L alk) + Sex(0,0:0,—a: ¢77) 4+ (—1)F (<1 (1)
k+1

o . RSV AN G k ( )ByxaBkH—jnzz k—j

X Sky_,x(0,0;0,a;5q )} (—2m) jz:; TGRS brk=J

= lﬂ(—1)(—iTg)k_le{X(a)L@,b(k) + 8y (—a,0;0,0:79)

+ (=D Iy (=D (=18, 5 (a, 0;0,0;9) }
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which is transformed through the replacement (7,q,x,¥) — (1/7,q,X, %) into
(B4) TR Lyak) + Sk (~,0;0,0,"%) + (= 1) (= 1)u(~1)

k+1
L]B Bk""l —JXa k—j

_ . e VLAY G
XSk,x,w(aaoaoaoaq )} ( 27‘-) ; (k}—f‘l—])

— XD G DO Lalk) + S, 1 (0,00, ;777

(DX DU(-1)S,5, (0,0:0,0:377) |

Remark . The values of exponential Dirichlet L-functions appear in (3.3) or (3.4) only
whien (a, f) =1 or (b,g) = 1, othewise the formula merely gives the relation between the
double g-series and the polynomials (in 7) with the coeficients of the Bernoulli numbers
attached to Dirichlet characters; the original Dirichlet L-function cases are thus excluded.

We next state the (quasi) modular relations of generalized Eisenstein series. Let § and
v are any real parameters, y any primitive Dirichlet character modulo f > 1, and define

2¢'(0) if (x, f, k) =(:,1,0),
Ak = . .
L(1 =k, x) otherwise,

be(v, B) = 2C1(0,e(v)) + 1+ ¢,(0) + ¢, (0) if k=0and g € Z,
RSP = o1 —k,v,—B) otherwise,

where (,(r) = ¢(r,0,k) = ¥(r,v,k) for v € Z denotes the exponential zeta-function.
We then introduce the generalizations, ;. (5,v;2) (j = 1,2) for any k € Z satisfying
(—1)% = x(—1), of the classical Eisenstein series Fy(z), defined by

2
(3.5) Eypx(B,v52) =1+ Kﬂ,k,x(ﬁa viq),
X
b (v, 21"
(36) Eapvi2) = op 2B o 2 o (8,50,
' ak,YGx
where T (8,v;q) (j =1,2) are the generalized Lambert series of the form

1
B7)  Tusn(fivia) = _{Sl—kw,x (8,0; V,O;ql/f) St b (8,0 -, 0,07 }

fk 1 s VU (B f A4 n)k—tgtB) (h/ f4n)
[ZX Z 1—c(v)q h/f+n

n=0

f el (—BY(—y n)k—1g(=B) (h/f+n)
P ) 3 LB S ) g ]

1— e(—v)gh/T+n

h=1 n=0
(38> 7-27k,x(/37 v, Q) = @{Sl—k X L(07 v 07 _ﬁ, (]) + Sl—k7X7L (07 - 07 ﬂ, Q) }

[ZX Z () +n)(=A) () +mn)* "W

1— g/ @'+m

n=0

£330 el sk >'+n)k_1qh(<_”>'+n)]'

_ agf((=v)4n
— — 1 — gf((=v)'+n)
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Then the combination of Theorems 1 and 2 with Theorem 3 yields the following (quasi)
modular relation.

Corollary 4.2. For any real parameters  and v, for any primitive Dirichlet character
x modulo f > 1, any integer k satisfying (—1)* = x(=1), and for any z € H* we have

o 1k
39) Bux(Bi—1) = #By(Bmz) + o) [csflam{a(ﬁ)(log? -0-1)

ap Gy 2 4 4
2 k
+

1Co i J<<ﬁ>7€<u>>zj+k_1]
—0 2= k=) 7

which reduces in particular when (B,v) = (0,0) to

1 271 logz 1 1
3.10) E 7(0,0;——> = F20,(0,052) — J < T3 ) N
(3.10)  Fiox . 20x(0,0;2) O«o,xGx{ M ori T2 T 122) T

J

for k =0, while for k =1 to

1 Bl z
A1 ISR ( ) 7__) =zF51. » U = )
(3.11) 1xc( 0,05 =2 ) = 2B214(0,052) + e
and for k =2 to
1
(312) ELQX <0, 0, ——> = 22E2727X(07 0, Z) + 5]@16—%.
z i

4. BASIC PROPERTIES OF DIRICHLET-HURWITZ-LERCH L-FUNCTIONS

We present in this section several basic (but new) properties Dirichlet-Hurwitz-Lerch
L-functions, together with several associated results, which play underlying réles in es-
tablishing our main formulae. Let Onk denote hereafter Kronecker’s symbol. Then the
reciprocal relations for Cy . (X,Y") are given as follows.

Lemma 1. For any (X,Y) € C x C*, and any ¢,k € Z with k > 0 we have
(4.1) Ch (1= X,T/7) = (~1)x(—1)C(X, T,
(4.2) Crno(0,1/Y) = (1) x (=D {Cin. (X, V) + 81 xc(0)}
= (=1 X (=1)Ckx. (X, V) = Brax-<(0).
where 1)Y € C* is the point defined by [1/Y | =1/|Y| and arg(1/Y) = —arg V.

Proof. First (4.1) is obtained by comparing the coefficients of Z* on both sides of the
equality

(4-3) P (1= X, 1/Y; Z) = x(=D)F (X, Y - 2),
which is derived as follows: The left side of (4.3) equals
Z(1 V)= XH0/F (1=K +1)2 Z}?(X+h—f)/f€(f—X—h)Z

f—
ZXl - A7) ef? — 1 Z Y ielZ _1

\,,\.
»—IO

7Y (X+h)/f o—(X+h)Z
1—YleJfz

X(=1)xe(h)

~
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where the summation index is changed as h +— f — 1 — h in the second member; this
readily concludes (4.1).
Next (4.2) is obtained by comparing the coefficients of Z* on both sides of the equality

(1.4) P 0.1/7:2) = x(-D{F 0.V -2) + x(0) 2},
which is derived as follows. The left side of (4.4) equals

f-1 Z(”l“/f/)h/fehz
X—c(h)m

A e YA

! / vV h/f,—hZ
(—=Z)Yhfe
= —h —c)— = —1D)x.(h)—
> xl vy ;x( Ixelh) o

{0 (5 - )

fj _\YMFe—hZ
0 i S o-2)

where the summation index is changed as h +— f — h in the second member; this readily
concludes (4.0). O

Lemma 2. For any v,k € R, any (shifted) primitive Dirichlet character x. modulo f > 1,
and any ¢,k € Z with k > 0 we have

(4.5) Chix_omyy (=), €(=R))

(D" (=D {Choxo_,, (1), €(5)) + Fraxe(—7) }
(=D X (=1)Chor,_,, (1), E(R)) = Brax—c(7)-

Proof. We first treat the case v ¢ Z. Then —y = (=1 — |v]) + (1 — (7)) shows that
|—v] = —1—[v] and (—y) =1 — (v), and hence

Ck,X_C_L_ﬂ (<_7>7 g(_’%)) = Ck»Xl—C+[’7J (1 - <A/>’T/€(K))7
which concludes (4.5) in this case, by (4.1).
Next for v € Z, we see v = |v|, —y = |—7] and (—v) = 0, giving
Ck*X—c—[—'yJ (07 ’é/(_’%)) = Ck7X—c+L"yJ (0,T/€</€))
= (=" X(=D{Chx. |, (0,€(K)) + draxe—1+(0) },

which concludes (4.5) in this case, since xc—[](0) = x.(—7) for v € Z. O

Lemma 3. For any integers ¢ and n, and any (shifted) primitive Dirichlet character x.
modulo [ > 1 we have

f-1

(4.6) Z Xe(h)ep(nh) = ef(—nc)Gyx(n).
h=0
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Proof. Let d € Z satisfy ¢ = d (mod f) with 0 < d < f. Then the left side of (4.6) equals

f-1  f+d—1

ZXd Jer(nh) (Z+ > ) h)es{n(h —d)}
h=d  h=f
f-1 d-1
= ef(— ZX Jer(nh) + > x(k+ fep{n(k+ f)}
—=d k=0
f-1
— es(—nc) 3" x(R)es (nk),
k=0
which, together with the standard evaluation of Gaufi’ sum, concludes (4.6). U

The following functional equation holds for K, (r,7v,x) or L, (r,v,k) (cf. [16, Theo-
rem 4]).

Theorem 5. For any real v and k, any integer ¢, and any (shifted) primitive Dirichlet
character x. modulo f > 1, we have the functional equation, in the whole r-plane,

G, I'(1—-
(A7) Ly(rmm) = #
+ e ™R (1 =7, —k,y — )}
— e {nly— >}%{x<—1>e““—”/%x<1 =y~ €)
+ il T)/QLY(l — 1=K,y —0)},

{X<_1)€M(177')/2KY<1 — TR, _<7 - C))

or equivalently,

(48) Koy (rm) = ef(—re) DL L)

(D™ P Le(1 = v, = (v = )

o)
+ e R (1~ —k,y — )}
= eyl m) S DR (L = - )

+ e ONPR(1 =~k — o)),

Proof. Suppose first that Rer > 1. Rewriting the summation index in (2.2) as k — h+ fk
(h=0,1,...,f=1,k=0,1,...), we have

f—1
h
(4.9) Ly (r,y,6) = f7" xc(h)%/}(“%v“)
h=0
f-1 I 5
= f Xc( ) 271T)1 7«){ mi(1— 1‘)/2¢(1_T7H’_%)

;r‘

=0

(
pmi(1=)/2 (1 h)}j
k)

by the functional equation for ¢(r,, k) or ¥ (r,v, k) (cf. [15, Proposition 1]).
Suppose next that Rer < 0. Then the h-sums on the rightmost side of (4.9) equal,
by changing the order of the h-sum and the inner k-sums (for the defining series of




12 KATSURADA AND NODA

(1 —r, 25, F (v + 1)/ f)),

F-1
1
> ————> xe(We{k(F (v + 1)}
(£ + k)
Fr<k h=0
1 _
= mef{k@(v — )G X(Fk) = X(FD Ex(1 -7, £5, F(y = ©))
Fr<k ' '
respectively, where the second equality holds by (4.6) and the third by (2.1); this readily
concludes (4.7). O

Theorem 6. For any v,x € R, any (shifted) primitive Dirichlet character x. modulo
f>1, and any c,j € Z with 7 > 0 we have

- er{(v—0o)k} , _
(410)  ResrmiLy, (79:0) = Coy,y(0),20) = LD ),
: 1 -

(4.11) Ly (=, 7, k) = _mcﬁrl,xc_m (1), ¢(K)) = djoxe(—7)
Proof. 1t follows from (2.2), (4.9) and
(4.12) Lo (r,y,6) = Ly, (r, (7). K)
that the left side of (4.10) equals, by [15, Lemma 4, (4.4)] and (2.8),

/-1 f-1

_ +h _ +h _
Y e, (n R ) Yy e (2R )
h=0 h=0

which further equals, by (4.6),

-1
F7 " Xemp (Wer{((0) + h)k}o(r) = [ ep(()m)ep{—(c = [7])R}G X (K)d(k),

and this readily concludes (4.10).
Next from (4.9), the left side of (4.11) equals, by [15, Lemma 4, (4.5)],

-1
y : h

fJ ZXC—L’VJ (h)lb(—?, <’Y>f+ 7/€>

h=0

=y Zixc—m (h){_j%Cj+1(<7>f+ h,@f(m)) _ 5j05(<7>f+ h) }7

which concludes (4.11) from (2.9), since 0{((y) + h)/[} = Onod(y) and 6(7)xc—|4(0) =
Xe(—7) for any ¢,y € Z. -

5. OUTLINE OF THE PROOFS

Let (u) for u € R denote the vertical straight path from u — ico to u + ico. The key
ingredient of the proofs is the formula

(51) FXa,l/)b(S; OZ,B;/L7 v, Z) = wb(_B)AXa(SJ 047/14) + 21(3; Z) + 2—1—(3; Z)’
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obtained by applying a modification of (so called) Atkinson’s Dissection device (cf. [1]),
where X (s; 2) are the Mellin-Barnes type integrals of the form

. reTY )y L
52) Bl =xEORENGT T [ e

X Ky(l—s —w, Fp, £(o — a)) Ly, (—w, £6, £v) 277/ f)“dw

with a constant v’ satisfying «' < min(—o, —1); these converge absolutely over the whole
s-plane, and hence the right side of (5.1) provides there the holomorphic continuation of
the left side.

Theorem 1 can be shown by substituting the defining series of K (1—s—w, Fpu, £(a—a))
and Ly, (—w,£8, £v) into the integrands on the right side of (5.2), while Theorem 2 by
moving the path in (5.2) to the right from (v’) to (u,) with J —1 < uy; < J for J € Z>o,
and then collecting the residues of the relevant poles at w =5 (j = —1,0,...,J —1).

Theorem 3, on the other hand, can be derived by substituting the functional equations
for Kx(1 — s —w, Fp, £(ov — a)) and Ly, (—w, £5,£v) into the integrands of X (s; z2)
after their paths are moved to (u,), and then apply the connection formula (2.14) to the
resulting expressions.
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