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1 Introduction and the results

In this paper we consider the algebraic independence of the values of a
power series of the form f(z) = "7, 2%, where {e;}r>0 is an increasing
sequence of nonnegative integers. Let aq, ..., a, be algebraic numbers with
0 <oyl <1 (1<i<r). We consider the following condition under which
the values f(aq),..., f(a,) are clearly algebraically dependent.

(%) There exist a nonempty subset {a;,,...,a; } of {ay,...,a.}, roots of
unity (i,...,(s, an algebraic number v with oy, = ¢,y (1 < g < ),
and algebraic numbers &1, ..., &, not all zero, such that

> &bt =0 (1)
q=1

for all sufficiently large k.

In what follows, Q denotes the field of algebraic numbers. Suppose that
the condition () is satisfied. Then there exists a nonnegative integer kg
such that > ., (o = 0 for all k > k. Hence

s s ko—1 00 s ) s
D oGfla) = &) at=)"> gart=)" ( 5q<§k> ¥ =0
q=1 q=1 k=0 k=ko q=1 k=ko \g=1

and so Y71 & f(a;,) € Q. Therefore we have the following:



Proposition 1.1. If the infinite set of the values {f(a) |a € Q, 0 < |a| <
1} is algebraically independent, then there exist no distinct roots of unity

(i, .-, Cs for which (1) holds.

If {er}r>0 increases rapidly, then the converse of Proposition 1.1 also
holds. More precisely, the derivatives can be included. In what follows,
Zso and f¥(z) denote the set of nonnegative integers and the derivative
of an analytic function f(z) of order | € Z~¢, respectively.

Theorem 1.2 (A special case of Nishioka [4]). Let fi(z) = > ;o y2%,
where {ex}r>0 1S an increasing sequence of nonnegative integers satisfying
limg o0 €p41/€1 = 00. Let oy, ..., a, be algebraic numbers with 0 < |a;| < 1
(1 <i<r). Then the following three properties are equivalent:

(i) The infinite set {fl(l)(oai) |l € Z>o, 1 <i <7} is algebraically depen-
dent.

(ii) 1, fi(e1), ..., fi(ay) are linearly dependent over Q.
(iii) The condition (x) holds for az, ..., a.

By the discussion before Proposition 1.1, the main assertion of Theo-
rem 1.2 is that the property (i) implies (iii); the latter property is broken
by the following condition as is shown in Proposition 1.4 below.

Definition 1.3. A sequence of nonnegative integers {ey}r>o is said to be
distributed infinitely to any of congruence classes if {k € Z=o | ex = a
(mod N)} is an infinite set for all positive integer N and for all a €
{0,1,...,N —1}.

Proposition 1.4. There exist no distinct roots of unity 1, ..., (s for which
(1) holds if and only if {ex }r>0 is distributed infinitely to any of congruence
classes.

Proof. First we prove that, if there exist no distinct roots of unity (y,.... (s
for which (1) holds, then {ex}r>o is distributed infinitely to any of con-
gruence classes. We show the contrapositive. Suppose that there are
a positive integer N and an integer ¢ with 0 < a < N — 1 such that
{k € Z>y | ex, = a (mod N)} is a finite set. Then there exist a nonnega-
tive integer ko and {by,...,bs} € {0,1,..., N — 1} with s < N such that
{ex + NZ | k > ko} = {by + NZ,...,bs + NZ}. Letting ¢ be a primitive
N-th root of unity and noting that s < N, we can take algebraic numbers
&, ..., EN_1, not all zero, such that
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Then, for any k > ko, there exist nonnegative integers by with 1 < i(k) <
s and my such that e = ;) + mp/N. Hence

Z@ ) Z@ )" =0 (k> ko)

and so the roots of unity 1,¢, ..., (N 1 satisfy (1).

Next we prove that, if {ej}x>0 is distributed infinitely to any of congru-
ence classes, then there exist no distinct roots of unity (i, ..., (s for which
(1) holds. Assume on the contrary that there exist algebraic numbers
&1, ..., &, not all zero, distinct roots of unity (i, ..., (s, and a nonnegative
integer ky such that

qu ;= (k = ko).
Let N be a positive integer satisfying Cév =1(1<q<s)with N>s. For

each a € {0,1,...,N — 1}, since {k > ko | ex = a (mod N)} # () by the
assumption, we can take k(a) = min{k > kg | e, = a (mod N)}. Then

D L= 6" =0 (ae{0,1,...,N—1}).
q=1 q=1

In particular, we have

1o 1 &1 0

Cl ce CS : _ :

ot ) e 0
Since (i,...,(s are distinct, by the non-vanishing of the Vandermonde
determinant, we see that §, =0 (1 < ¢ < s), a contradiction. H

By Proposition 1.4 we see that, if a sequence {ej}r>o satisfying the
assumptions of Theorem 1.2 is distributed infinitely to any of congruence
classes, then the property (iii) does not hold for any of the distinct algebraic



numbers aq, ..., a,. Since the sequence {k!+ k};>¢ is distributed infinitely
to any of congruence classes, we have the following result as the corollary
to Theorem 1.2.

Corollary 1.5 (Nishioka [4]). Let fa(z) = > rey 28*. Then the infinite
set {fz(l)(oa) |1 € Zsy, a €Q, 0< |a| <1} is algebraically independent.

By Hadamard’s Gap Theorem (cf. Rudin [6, 16.6 Theorem]), power
series Y -, 2% with liminfy . eg+1/ex > 1 has the unit circle [z| = 1 as
its natural boundary. Hence f5(z) in Corollary 1.5 is one of the concrete
examples of power series satisfying the following:

Property 1.6. The infinite set consisting of all the values of a power
series in question and its derivatives of any order, at any nonzero algebraic
numbers within its domain of existence, is algebraically independent.

Here, we introduce another power series which has the unit circle as its
natural boundary and satisfies Property 1.6. Let |z] denote the integral
part of the real number x, namely, the largest integer not exceeding .

Theorem 1.7 (Tanuma [8]). Let w > 0 be a quadratic irrational number.
Define f3(z) = > o0, 25l Then the infinite set {f?fl)(oz) |l € Z>y, a €
Q, 0 < |a| < 1} is algebraically independent.

The sequence { | kw| }r>o is called the Beatty sequence. By Corollary 1.5
and Theorem 1.7, it is expected that, if f(z) =Y .-, 2% has the unit circle
as its natural boundary and if {e;}r>o is distributed infinitely to any of
congruence classes, then f(z) also has Property 1.6. Before constructing
such a power series, we consider power series generated by a geometric
progression, which has simpler structure than {k!+ k};> in Corollary 1.5
or the Beatty sequence {|kw]}i>o0.

Theorem 1.8 (Loxton and van der Poorten [2]). Let d > 2 be an integer
and define fi(z) = > 0, 2. Let au,...,q, be algebraic numbers with
0 < |ay| <1(1<i<r). Then the following three properties are equivalent:

(1) The infinite set {ff)(ai) |l € Z>o, 1 <i<r} is algebraically depen-
dent.

(ii) 1, fa(1), ..., fa(ay) are linearly dependent over Q.



(iii) There ezist a nonempty subset {c,,...,a; } of {ai,...,a,}, nonneg-
atiwe integers ky, . .., ks, roots of unity (1, ..., s, an algebraic number
v with aquq = (v (1 < q <s), and algebraic numbers &1, ..., &, not
all zero, such that

Zﬁqﬁjk =0 (k > 0)-
q=1

By Hadamard’s Gap Theorem, f4(z) also has the unit circle as its natu-
ral boundary. Moreover, the property (iii) of Theorem 1.8 is similar to that
of Theorem 1.2. Hence, imitating Corollary 1.5, we expect to construct a
sequence which is distributed infinitely to any of congruence classes and
which generates a power series satisfying Property 1.6. In this paper we
consider the case of the sum of a geometric progression and an arithmetic
progression. To begin with, we observe the following:

Proposition 1.9. Let ¢ > 1, d > 2, and m be integers. Then, if the
sequence {cd+mk} o is distributed infinitely to any of congruence classes,
then |m| = 1.

Proof. We show the contrapositive. Assume that |m| # 1. Put
N = max{gcd(c,m), ged(d,m)}.

We distinguish the following two cases:

First we consider the case of N > 2, which includes the case of m =0
by d > 2. Since cd® + mk = 0 (mod N) for all & > 1, the sequence
{cd* + mk} >0 is not distributed infinitely to the congruence classes other
than 0 modulo N.

Secondly we consider the remaining case of N = 1, which implies |m| >
2. Let p be a prime factor of m and put N’ := p?. Then the shortest
period modulo N’ of the sequence {mk};>¢ is equal to 1 or p, respectively
according as m is divisible by p? or not. Since the shortest period modulo
N’ of the sequence {cd"};>¢ is a divisor of ¢(p?) = p(p — 1), that of the
sequence {cd® +mk}i>o is also a divisor of p(p — 1), which is smaller than
N'. This means that there are some congruence classes modulo N’ to which
the sequence {cd* + mk} >0 is not distributed infinitely. O

From the discussion above, we have the following result.



Main Theorem 1.10. Let ¢ > 1, d > 2, and m be integers. Define

f(Z) _ Z ch’“%—mk.
k=0

Then, the infinite set {fO(a) | | € Zsy, o € Q, 0 < |a| < 1} is alge-
braically independent if and only if |m| = 1.
Proof. If the infinite set {fU(a) | 1 € Zsp, a € Q, 0 < |a| < 1} is alge-
braically independent, then so is the infinite subset {f(a) | @ € Q, 0 <
la| < 1}. By Proposition 1.1, there exist no distinct roots of unity (i, . .., (s
for which (1) holds. Then by Proposition 1.4, the sequence {cd® + mk}i>0
is distributed infinitely to any of congruence classes. Hence by Proposi-
tion 1.9, we have |m| = 1.

The converse is immediate from Theorem 1.11 below. O]

Theorem 1.11. Let ¢ > 1 and d > 2 be integers. Define

(0.9] o0

g(z) = Z el h and g (2) = Z P

k=0 k=0
Then, each of the infinite sets {gV(a) | | € Zsp, a € Q, 0 < |a] < 1} and
{7 () |l € Z=y, a €Q, 0< |a| <1} is algebraically independent.
By Propositions 1.1, 1.4 and Theorems 1.7, 1.11, we have the following:
Corollary 1.12. Each of the sequences {|kw|}r>0, where w > 0 is
a quadratic irrational number, and {cd® + k}rso, {cd® — k}i>0, where

c > 1, d > 2 are integers, is distributed infinitely to any of congruence
classes.

2 Lemmas

In this section we prepare several lemmas for proving Theorem 1.11. The
following lemma is a well-known fact on linear recurrences.

Lemma 2.1 (cf. Shorey and Tijdeman [7, Theorem C.1]). Let
p1(Y),...,ps(Y) be nonzero polynomials with algebraic coefficients and
01,...,05 nonzero algebraic numbers. Let

Ty = sz(]f)ef (k > 0>~ (2)



Put d; = degp; (1 < i < s), m = >."_ (d +1), and define algebraic
numbers by, ..., b, by

S

[[(X —0)" " = X™ — by X" = — by
i=1
Then
Tham = 01Tpam_1+ - + b7k (k’ > 0)
holds.

The following lemma plays a crucial role in making the descent method
work in the proof of Theorem 1.11.

Lemma 2.2 (A special case of Lemma 2.3 of Ide, Tanaka, and Toyama
[1]). Let d > 2 be an integer. Then, for any integer N > 2, there exist a

positive integer N1 and a nonnegative integer uy such that Ny,u; < N and
d"N = d* (mod N) for any k > uy.

The following lemma is deduced from Lemma 2.1.

Lemma 2.3 (A special case of Lemma 2.2 of Ide, Tanaka, and Toyama
[1]). Let d, N, Ny, and uy be inlegers as in Lemma 2.2. Define

Ry =" (k>0),

where {r}i>0 s a linear recurrence of algebraic numbers of the form (2)
and ¢ is an N-th root of unity. Then { RN k+u,+o k>0 (0 < 0o < Ny — 1)
are linear recurrences satisfying the same recurrence relation

RNl(k—i-m)—l—ul—i—a - blRNl(k+m—1)+u1+a + e+ mele—l—ul—l—U (k > 0)7

where by, ..., b, are algebraic numbers defined by

[J(xX -0 = X —pxm = — by,

i=1
and d; (1 <i<s), m are as in Lemma 2.1.

Let 21, ..., zs be variables and d > 2 an integer. Denote z = (zy,. .., 25),

dk)=(d*,...,d"), and 2%% =(0 .. ") (3)

’ s



Lemma 2.4 (A special case of Lemma 2.4 of Ide, Tanaka, and Toyama
[1]). Let N be a positive integer and let {R;(f)}kzo (0 <o < N—1) be linear
recurrences of algebraic numbers satisfying the same recurrence relation

Rl(fi-)m - blRl(f(:—)m—l +o mel(cU) (k" 2 O)
Define
o N1 i Nk+u+o éj
=3 > ROTI ()
k=0 o= J=1

where u 1s a nonnegative integer and {q,...,Ls are nonnegative integers
not all zero. Then f(z) (= f(z40)), f(z2™), ..., f(z4m=DN) satisfy
the functional equation

f(z) by -+ -+ by f(zd(N)) b(z)
f(z4M) B 1 0 --- 0 f(z4CN) N 0
f(zd((m—l)N)) O 1 0 f(zd(mN)) 0
where b(z) is a polynomial in variables z1, . . ., zs with algebraic coefficients.

The following lemma is used for constructing the Mahler functions in
the proof of Theorem 1.11.

Lemma 2.5 (Loxton and van der Poorten [2]). Let oy, ..., a, be algebraic
numbers with 0 < |oy| < 1 (1 < i < 71). Then there exist multiplicatively
independent algebraic numbers fi,..., B, with 0 < [5;] <1 (1 < j < s)
such that

o= G (1<i<) )
=1

where §; (1 < i <r) are roots of unity and l;; (1 <i <r,1<7<s) are
nonnegative integers.

Remark 2.6. In Lemma 2.5, at least one of ¢;1,...,¥;, is positive for any
7.

Lemma 2.7 (Ide, Tanaka, and Toyama [1]). Let {b,(f)}kzo (1 <i < p)
be sequences of complexr numbers which are eventually periodic with period
N. Let d1,...,0, be complex numbers with |6;| =1 (1 < i < p) and 0;/6;
(1 <i<j<p) are not N-th roots of unity. If



b

Zb,(f)éf -0 (k— o),
i=1
then b,(f) =0 (1 <i < p) for all sufficiently large k.

3 Proof of Theorem 1.11

We denote by Flz,..., 2] and by F[[z,..., 2] the ring of polynomials
and that of formal power series in variables zq, ..., z, with coefficients in a
field F, respectively.

Proof of Theorem 1.11. First we prove the algebraic independency of
{gV(a) | I € Zsp, « € Q, 0 < |a|] < 1} and secondly we verify that
the algebraic independency of {g~W(a) | | € Z>p, a € Q, 0 < |a| < 1}
can be proved in the similar way. We assume on the contrary that there
exist distinct algebraic numbers o, ..., q, with 0 < |oy| <1 (1 < i < r)
and a nonnegative integer L such that {g" (o) |0 <1< L, 1 <i<r}is
algebraically dependent. For each | (0 <1 < L), let

Then we see that {g;(c;) | 0 <1 < L, 1 < i < r}isalgebraically dependent.
Let G, Bj,4;; (1 <i <r, 1 <j<s)beasin Lemma 2.5. Then the algebraic
numbers ai,...,q, are expressed as (4). Let zj,..., 2z, be variables and
z=(21,...,25). Foreach [;i (0 <I< L, 1 <i<r), define

00 s cd®
9i(z) = Z(Cdk + k)lafgdk (H ij> :
k=0 j=1
Then by (4) we have g;(8) = gi(e;) (0 < I < L, 1 <14 < r), where
B = (B1,...,0s). Thus {g;(B) | 0 <1 <L, 1 <1< r}is algebraically
dependent. Take a positive integer Ny such that CZ-NO = 1foranyi (1 <i<
r). Then by Lemma 2.2 there exist a positive integer N; and a nonnegative

integer u; such that
cd™™ = cd®  (mod Np) (5)



for any k > uy. Then, using Lemma 2.3 with (5) and applying Lemma 2.4
to

oo N-1 s
Nik+ui+o l  Nik+ui+o cdN1ktuito H lij
§ E (cd + N1k +uy + 0)'a ¢ 2

k=0 o=0 j=1

ch1k+u1+0'

Ul—l S Cdk
= gu(z) = Y_(cd" + k)al¢” (H zf”’) (0<I<L 1<i<y),

j=1
we see that gli(zd(le)) 0<I<L 1<i<r 0<p<m(l)—1) satisfy
the Mahler type functional equation of the form

gii(2) by - - bm(l) gu(zd(N))
gli(zd(N)) 1 0 --- 0 gh-(zd(zN))
i zd((rr;(l)—l)N)) 0 1 0 g Zd(.m(l)N))
— m(l
e (@=)"", (6)

where m(l) (0 < [ < L) are some positive integers. Moreover, by the
vanishing theorem of Masser [3], all the conditions required for Mahler
functions are satisfied. Then by Theorem 2 of Nishioka [5], {g;(z4") =
gi(2) |0 <1< L, 1<i<r}is linearly dependent over Q modulo Q|z].
Thus there exist algebraic numbers ¢;; (0 <1 < L, 1 <i < r), not all zero,
such that

Z Z cLigii(z Z Z Cli Z (cd® + k)l akcd (H zf]> € Qlz]. (7)

1=0 i=1 1=0 i=1 j=1

We may assume that ¢; (0 <1 < L) are not all zero for any i (1 <1 <r).
Hence there exists a sufficiently large integer R such that the roots of the
polynomials Zleo c; X! (1 < i <r) are inside the circle | X| = R. Then by
(7) we have

r ©¢}

Zchz (cd* + k) alce (H zj> — G(2) €Qlz]. (8

1=0 i=1 k=R j=1

Take an integer k; so large that

cd™ > max{degz G(z), max {&de}}. (9)

=t =yl =/ =



Since ¢1; (1 < j < s) are not all zero by Remark 2.6, we have

s cdF Tk s
deg, (H zf”) = cd"h Z ;> ed™ > deg, G(z)

j=1 j=1

for all k£ > 0. Let S be the subset of {1,...,r} consisting of the indices i

such that
s cdFi s cdk1
i - Iy
(H%ﬁ) -~ (HZJ)
j=1 j=1

for some k; > R. Then for all i € S and k > 0,

cdk+ki

s s ed*th
(H 2 ) = (H zjl ) , (10)
=1 =1

and for alli € {1,....7}\ S, k>0, and k' > R,

s cd” s edktk
> 0,
(HZf) # (H%”) -

Jj=1 Jj=1

Therefore, comparing the coefficients of ([]}_, fl'j)c‘ik+k1 in (8), we have
L
. k+k;
>3 anled ™t 4k k) ol <0 (11)
i€S 1=0

for all £ > 0. Expanding (11), we have

L
Z Z CliCZ‘Cdk+ki af+ki Z (u qi w) (Cdk—i—kz)ukvkzu

€S =0 ut+v+w=l
L L-u L

= Z Z Z Z (u vl _l U — U> czic“Cfdkm (O‘idu)kiki_u_v(aidu)kk’v

€S u=0 v=0 [=u+v

=0 (12)

for all £ > 0. Let 67 > 6r_1 > --- > 61 be the distinct absolute values of
a;d" (ieS, 0<u<L)and let

X, ={(,u)]i€S, 0<u<L, |ud|=0)



for each t (1 <t <T'). Then we have S x {0,...,L} = X;U---U Xp. By
(12), we obtain

Z >, ZZ (wl_u_ >chcgd’“*’“( )k ()R

=1 (i,u)eX; v=0 l=utv

T L
=Y "ok
t=1 v=0
— 0 (13)

for all k > 0, where

= > Z (uvl_u_ )Clz ¢ (R “(aéilu) . (14)

(tu)eXy, l=utv

u+v<L
Note that each sequence {a,(f’v)}kzo is bounded since |a;d"/0;] = 1 and
|G| = 1. We give a lexicographical order to (t,v) € {1,...,T} x{0,..., L},
namely, (T,L) > (I, L—-1) >--- > (T,0) > (T"—1,L) > --- > (1,1) >
(1,0). We prove by induction on (¢,v) from (7T, L) down to (1,0) that

a" =0 (15)

for all sufficiently large k. First, we see that a,iT’L) = 0. Indeed, if (i,u) €
Xp,then u = L, since d > 2. Thus, if v = L, then we have u+v = 2L > L,

and so a,gT’L) is an empty sum. Hence a,gT L _ = 0. Assume that for all (¢,v)
with (t, U) (t(), U())
a,(f -

for all sufficiently large k. Then by (13), we have
ST aik =0
(t,v)<(to,v0)
and hence

A =~ ST Aok

(t7’())<(t07’00)
to—1

L
e D S A Y (16)

0<wv<wy t=1 v=0



for all sufficiently large k. Note that if vy = 0, the first sum of the rightmost
side of (16) is an empty sum. Dividing both sides by 6 k*, we have

to—1 L
a}(fo,vo) - E : tov Lv—vo _ E :E : (9 ) LV—v0
0<v<vy t=1 v=0 to

Since v — vy < 0, the first sum of the right-hand side tends to zero as k
tends to infinity. The second sum of the right-hand side also tends to zero
as k tends to infinity, since 0; < 0;, if 1 <t <ty — 1. Therefore, we have

al™™ -0 (k- o0). (17)

Here we write (i,u) ~ (',u') if (q;d*)™ = (apd®)™. Then ~ is an equiv-
alence relation on Y = {(j,u) € X3, |u+vo < L}. Let Y =Y, U---UY,
be the partition of Y with respect to ~. For each ¢ (1 < ¢ < p), we fix a
representative (i,, u,) of Y, and let
Oél'qduq
Oy,
Then |9, =1 (1 < ¢ <p), and 9,/0y (1 < ¢q < ¢ < p) are not Ny-th roots
of unity. In addition, for each (¢,u) € Y, letting
Ozidu
O:,
with &, an Nj-th root of unity, we have by (14) the expression

to v) _ o sed TR qu kg l—u—vg azdu)k
Z Z (u Vo l _u— UO) Lic’G (cud")"k; ( 0,

(z u)€Y l=u+wvg

_ Z b}(ﬂQ)ék
q=1

0y =

- gzuéq

where
L l
k+k; 7 l—u—vg
-3 ) > ( )z G gkl ngh,
ey w vyl —u— vy

}k>0( <1
SO are {b,(f o (1< ¢

Cd’“*’“ ) are eventually periodic with period N; by (5),

Since { <r
<p). By (17) and Lemma 2.7, we have

B =0 (1<q<p)



for all sufficiently large k. Thus
a/]({to 00) =0

for all sufficiently large k, and (15) is proved. In particular, noting that

(7,u) € Xj if and only if |a;| = minyeg |ay| = 61 and u = 0, we have
-y Zch et ki kl<9 ) —0 (18)
€S, =0
|O‘1| 01

for all sufficiently large k. Renumbering the indices i (1 < i < 7), we
may assume that {i € S | o] = 01} = {1,...,7}. Put N == S0, ik
(1 <i<rg). Then A\; # 0 (1 < i < ry) since k; > R. Multiplying both
sides of (18) by 6%, we have

To
§ k+k; cdktki _
=1

for all &k > kg, where kg is taken to be sufficiently large. Then, using (10),
we have

0 cd®
Z Aigoi(z Z Ai Z k¢t <H )
=1 =1 k=0

7=1
ro  kotki—1 ) cd"
3y et (114
1=1 j=1
€ Q[z], (19)

namely {goi(z) | 1 < i < ry} is linearly dependent over Q@ modulo Q|[z].
Noting that

goi( Zacd’“<H ) , (20)

j=1
we see by (3) and (5) that

g0i(2) — ;" gos (") € Q2] (21)
for each i (1 <1 <ry). Multiplying (21) by Aio{Nl, we get
)\Z’Oéi_ng()i(Z) — )\igol-(zd(Nl)) € @[Z] (22)



Then, replacing z with 4™ in (19) and substituting (22) into it, we have

Z AiOzZ-_ngol'(Z) - @[Z]
=1

We write i ~ i if o' = ozjyl. Then ~ is an equivalence relation on
Z =A{1,...,r0}. Let Z = Z,U---U Z, denote the partition of Z with
respect to ~ such that |Z;] < --- < |Z,|. Renumbering the indices i

(1 <i < 1), we may assume that Z; = {1,...,r}. Letting i, be the
representative of Z, and subtracting

Nl Z Ao, go@ € Q[z]

from (19), we have

Z A( )gOZ Z )‘ (1_ lp )902( ) Q[ ]

1<i<ry, 1€Z\Z)
N1 #aNl
ip

and thus {go;(2) | i € Z\ Z,} is linearly dependent over Q modulo Q[z].
Continuing this process, we see that {go;(2z) | i € Z1} = {g0i(2) | 1 < i <
r1} is linearly dependent over Q modulo Q[z]. Here, either of the following
two cases holds:

(i) There exists 1 <14’ < 7 such that o) # a2 (i € {1,..., 7} \ {i'}).
(ii) For each 1 <17 < 1, there exists i’ # i such that Ozf-vl = af,vl.

If (i) holds, then 7; = 1 and so go;(2) € Q[z], which contradicts (20). Hence
(ii) holds, namely o' = --- = ot and the functions go;(z) (1 <4 < 1)
are linearly dependent over Q modulo Q[z], which imply respectively that
Ny > r; > 2 since oy, ..., ., are distinct and that the values gy;(3) (1 <
i < rp) are algebraically dependent. Since a{v l=... = aﬁl, we can write
a; =&ap (1 <i<ry), where & (1 <i <) are Ny-th roots of unity with
& = 1. Let 2y be a variable. For each ¢ (1 <7 <), we define

Za é'cdk cd’“. (23)



Since h;(a1) = Yp a0t = gu(B) (1 < i < 1), the values hy(ay)
(1 < i < rp) are algebraically dependent. By N; > 2, from Lemma 2.2
there exist a positive integer N, and a nonnegative integer us such that
Ny, uy < Ny and

cd™™2 = ¢d¥  (mod Ny) (24)

for any k > us. Then by (23) and (24) we see that

hi(zo) — oy (™) € Qlz]
for each ¢ (1 <7 < ry). Hence h;(2) (1 <14 < ry) are Mahler functions of
one variable and so, only by Theorem 2 of Nishioka [5], they are linearly
dependent over Q modulo Q[zy]. We may assume that all the coefficients
of the linear dependence relation of h;(z) (1 <i < 7"1) are nonzero. Then,

similarly to the case (i) above, if there exists 1 < i’ < 7 such that a;'? #
ab? (i€ {1,...,m}\ {i'}), then hy(z) € Q[z], which contradicts (23).
Otherwise, renumbering the indices i (1 <1 < 1), we see that there exists
some 79 (2 < r9 < N3) such that oziVQ = ... = 04%2 and h;(zg) (1 < i <r9)
are linearly dependent over Q modulo Q[z]. Iterating this process finite
times, we reach Ny > Ny > N3 > --- > Ny = 1 by Lemma 2.2. Since
aq, ..., , are distinct, similarly to the case (i) above, we lead to a
contradiction.

Now we verify that a similar argument can be applied to ¢~ (2)
S0, 2% F in proving the algebraic independency of {g~(a) | I
Zso, « € Q, 0 < |a| < 1}. Assume that {g V() |[0<I< L, 1<i<r
is algebraically dependent. For each [,i (0 <[ < L, 1 <i <r), define

00 cd®
0 () = 3 (edt — arte (H f) |
k=0

j=1

w—/mH

Then {g;(B) | 0 <1 < L, 1 < i < r} is algebraically dependent. By
(5), Lemma 2.3, and Lemma 2.4, we see that gl;(zd(le)) 0<I<L, 1<
i <71, 0<p<m(l)—1) satisty the functional equation of the form (6)
with g,; in place of g;;. Then by the vanishing theorem of Masser [3] and
by Theorem 2 of Nishioka [5], there exist algebraic numbers ¢; (0 < 1 <
L, 1 <i<r), not all zero, such that

L r L r 00 cd"*
) SEEED 9 2 SR LR | S

=0 =1 =0 =1 = j=1



We may assume that ¢; (0 <1 < L) are not all zero for any i (1 <1 <r).
Let R be a sufficiently large integer such that the roots of the polynomials
S X! (1 <i <) are inside the circle |X| = R. Then we have

ZZC[Z Z (cd® — k)’ _kCCdk (H f) = G (z) € Q[z].

=0 =1 = 7=1

Take an integer kq so large that
cd™ > max{degz G (z), max {Kide}}.

—bt =yl =] =

{1,...,r} and the nonnegative integers k; (i € S). Then, similarly to (11),
we see that

Similarly to the case of g(z) = Y02, 2" % we define the subset S of

Z Z Clz Cdk—i-k — k. )IQ—k k; Ccdk+ki —0

€S =0

for all £ > 0. Expanding this equation, we have

Y ()

1€S u=0 v=0 |=u+tv
x e G (o )R (k)T (o ) (k) = 0
for all kK > 0. Let 07 > 071 > --- > #; be the distinct absolute values of
o{ldu (1€S, 0<u<L)and let
X;={G,u)]|i€S, 0<u<L, |o'd"| = 0;}
for each t (1 <t < T). Define

alz(tvv)

—1 qu
Y ¥ (Ml_u_ >acc;d’“”i(aﬂw’“(—ki)l—u—v(—“ietd )

(i,u)eXy, I=utv
u+v<L

Then, similarly to the case of g(z), we can prove that

L -tk L Ck_l k
d i —k; l ) .
> Sac i ui() =
€S, =0 1
o =6,



for all sufficiently large k. Renumbering the indices i (1 < ¢ <), we may
assume that {i € S| |a; | = 6;} = {1,...,70}. Then we see that

ro ro ko+k;—1 s cd"

N ek 0 —
Z Aigoi(2) = Z Ai Z a; e H z;" € Qlz],
=1 =1 k=0 7j=1

where \; = 320 ci(—k)' # 0 (1 < i < 7). This implies that {gy,(2) |
1 < i < 1y} is linearly dependent over Q modulo Q[z], and the proof is
completed in a similar way to (19) and thereafter. O
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