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1 Introduction

In this paper, I present an original generalization of Fact3.3 of [2] to the case
of 2-manifolds with boundary. The classical Gauss-Bonnet theorem is discussed
on regular surfaces, and it is well known that there are two types, the local and
global theorem. The following theorem is a generalization of the classical global
Gauss-Bonnet’s theorem for coherent tangent bundles.

Theorem 1.1 (Fact3.3 of [2]) Let (M,&,{, ),D,p) be a coherent tangent
bundle over a compact oriented 2-dimensional manifold M, and suppose that the
singular set X(p) consists of singular points of the first and admissible second

kind. We denote by K the Gaussian curvature of the induced metric ds®> =
©*(, ). Then it holds that

1 .

%/MKdA:X(Mﬂ—X(M—)+#S+—#Si (1)
2 M) = KdA + 2 sds, 2
(M) /M + /w“ s 2)

where #ST (resp. #S~) are the numbers of positive (resp. negative) singular
points of the second kind, and ks is the singular curvature of ().

The concepts described in the above theorem are defined precisely in §2. 1
discuss a generalization of (1) and (2) for manifolds with boundary (See Theo-
rem3.3 for details).
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2 Preliminaries

From now on, let M be a compact oriented 2-manifold with boundary.

The set of C*°- functions on M is denoted by C*°(M), and the set of C'°°-
sections of a vector bundle £ is denoted by T'(£). Let £* be a dual vector
bundle of £. (, ) € T(E* ® £) is called an inner product on &, when ( | )
defines a positive definite inner product on each fiber £, (p € M). A map
D :I(TM) xT'(€) 3 (X,§) — Dx¢& € I'(€) is called a connection on & if, for
any f,g € C*(M),X,Y e I(TM),&,n € (), the following conditions hold.

(1) Dyxygv& = fDx&+ gDyé,
(2) Dx (£ +n) = Dx&+ Dxn,
(3) Dx(f€) = (Xf)§+ fDx¢.

A connection D on &£ with an inner product is called a metric connection if it
holds that

X (&) = (Dx&m) + (& Dxn) (X e (TM),&,n € T(E)).

Definition 2.1 Let £ a vector bundle of rank 2 with an inner product (, ),
D :T(TM)xT(E) = I'(€) a metric connection on &, and ¢ : TM — £ a bundle
homomorphism. A 5-tuple (M, &,(, ), D, p) is called a coherent tangent bundle
if, for any X,Y € I'(T'M), it holds that

Dxp(Y) ~ Dyp(X) — ¢(IX.Y]) = 0.

Example 2.2 Let (M, g) be a 2-dimensional Riemannian manifold and V :
I(TM) x T(T'M) — T'(TM) a Levi-Civita connection on TM. If we take an
identity map id : TM — TM as a bundle homomorphism, then a 5-tuple
(M,TM,g,V,id) is a coherent tangent bundle. This shows that the concept of
coherent tangent bundles is a generalization of Riemannian manifolds.

From now on, let £ be a oriented vector bundle.
If, for each point p € M, (ds?), : T,M x T,M — R is defined by

(ds?)p(v1,v2) = (pp(v1), 0p(v2)) (V1,02 € T,M),

ds? is called the first fundamental form of p. A point p € M is called a reqular
point of ¢ if ¢, : T,M — &, is a linear isomorphism. A point p € M is called a
singular point of ¢ if ¢, is not a linear isomorphism. The set of singular points
of ¢ is denoted by X(¢p).

Let (U;u,v) be a positive local coordinate system of M, {e;, es} an positive
orthonormal basis field on &|y, and {wy,ws} a dual basis field of {e1,ea}. If a
section p: U — E*|y A E*|v is defined by

= w1 Awa,



then p is independent of the choice of positive orthonormal basis fields of £ |-
Therefore, p is defined on M. A differential 2 form dA on M is called a signed
area form of € if, for each point p € M, (dA), : TyM x T,M — R is defined by

(dA)y(v1,v2) = p(pp(v1), 0p(v2)) (V1,02 € T,M).

If a signed area density function A € C*°(U) is defined by
0 0
(e () ()

S(e)NU ={peU|Ap) =0}, dA = Adu A dv.

then it holds that

In particular, dA defines a C*-differential 2 form on M. On the other hand,
dA := |\|du A dv does not depend on the choice of positive local coordinate
systems of M. Thus, dA defines a continuous differential 2 form on M, and dA
is called an area form of £. If we set

M* = {pe M\S(p) | dd, = dA,}, M~ = {pe M\3(p) | d4, = ~dA, },

then X(¢) is coincide with 9M ™ and M ~, respectively. Using a signed area
density function A, we have

MTNU={peU|AXp)>0}, M NU={pe M| Xp)<0}.
Since {ej1, ez} is the positive orthonormal basis field on £|y, it holds that
2<DX61‘7€Z‘> = <DXei7ei> + (ei,DXei> = X<€Z‘7€i> =0 (X S F(TU))

Thus, Dxe; is orthogonal to e, and a C'°°-differential 1 form w on U is defined
by
Dxel = —W(X)eg, DX€2 = w(X)el.

The exterior derivative dw does not depend on the choice of positive orthonormal
basis fields of £|y. Therefore, dw defines a C*°-differential 2 form on M. Let
K be the Gaussian curvature of ds? on the set of regular points of . Then it

holds that
KdA  (on M*\S()),

dw = KdA = { ~KdA  (on M~\X(gp)).

A singular point p € 3(p) NU is called non-degenerate if it holds that
(Au(p); Ao(p)) # (0,0).

If p € ¥(¢)NU is non-degenerate, by the implicit function theorem, there exists
a regular curve v(¢) on U through the point p such that it holds A(y(¢)) = 0.
This curve 7 is called a singular curve, the tangent vector 4(t) is called a singular
vector, and a 1-dimensional vector space generated by #(t) is called a singular



direction. A tangent vector v € T,U\{0} at p € £(¢) NU is called a null vector
if it holds that ¢,(v) = 0, and a vector space generated by the null vector is
called a null direction. We remark that a null direction at a non-degenerate
singular point is 1-dimensional.

From now on, we assume that X() consists of non-degenerate singular points
of . A singular point of () is called a singular point of the first kind (resp.
singular point of the second kind) if the singular and null direction at the point
are different (resp. same). If there are only singular points of the first kind
around a singular point of the second kind of ¢, the point is called an admissible
singular point of the second kind.
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null direction
null direction

singular curve
Figure 1:

From now on, we assume that () consists of singular points of the first
kind and admissible second kind.

If a singular point p € X(¢) N U is a first kind, there is a singular curve
v(t) through the point p. Since the point p is the first kind, the singular and
null directions at the point p are different, and the singular and null directions
along ~ change continuously, so we retake (U;u,v) such that (¢) N U consists
of singular points of the first kind. Then we set

1 (040 (§(1)), Dsyy (0 0 9))
ey (Y (@) ’

where 7(t) is a null vector at each point y(¢) such that {%(t),n(t)} is positively
oriented, and we set

Ap () := (dN) 56y (0(1))5 |y (F(1)] = \/<%f(t)(”'/(f))7%(t)(ﬁ(t)»-

The equality (3) is called a singular curvature. We remark that s is independent
of the choice of parameters of 7, the orientation of =y, the orientation of M, and
the orientation of £. If a point p € M be an admissible singular point of the sec-
ond kind and 7(t) is a singular curve through p, r,(t)ds (ds := |¢~ ) (5(t))|dt)
defines a bounded differential 1 form on ~(¢).

Consider triangulating M. We triangulate M* U (¢) such that vertexes
are singular points of the second kind. Then we triangulate M by subdividing
such that their triangles on M* are properly congruent on ¥(¢). As a result,
such a triangulation has the following properties.

rs(t) := sgn(Ay(t)) 3)

e Singular points appear on edges of a triangle, and the interior of the
triangle consists of regular points. A singular point appears on an edge



other than a vertex only if the edge consists of singular points (Such an
edge is called a singular edge).

e A triangle has at most one singular edge.

e All edges other than a singular edge are gathered at singular vertexes from
directions other than a null direction.

e There is no possibility that points at both ends of a singular edge are
singular points of the second kind at the same time.

Triangles obtained by triangulation are classified into the following four
types.

(1) A triangle consists of regular points.

(2) A triangle with one singular vertex consists of regular points except for
that vertex.

(3) A triangle with one singular edge consists of regular points except for that
edge, and does not have singular points of the second kind.

(4) A triangle with one singular edge consists of regular points except for that
edge, and have a singular point of the second kind.

We remark that, at a non-degenerate singular point p, there exists a positive
local coordinate system (u,v) with the origin at point p such that the null
direction is parallel to the u-axis along the singular curve passing through point
p. If the vertex A of AABC is a singular point and we take the above local
coordinate system (u,v) around A, the angle ZA is defined as follows:

m if the u-axis passes through the interior of AABC,
LA = .
0 otherwise.
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3 The Gauss-Bonnet Theorem

Let (t) be the parameterization of one of the sides of the triangles obtained by
triangulating M. We define the geometric curvature ry of v as follows:

e O T e 0). Do)

ka(t) if () € S(p), P30 (YD) I?




Theorem 3.1 (Local Gauss-Bonnet Theorem) Let (M,E,(, ),D,y) be a
coherent tangent bundle over a compact oriented 2-manifold. If AABC is a
triangle obtained by triangulating M, then it holds that

/ /%gder/ KdA=/A+/B+/C -
ONABC NABC

Let p € () be an admissible singular point of the second kind. The sum of
interior angles on side M (resp. M ™) at p is denoted by a(p) (resp. a_(p)).
Then it holds that

at(p)+a_(p) =2m, ay(p) —a_(p) € {—27,0,27}.

A point p is called positive (resp. null, negative), If ay(p) — a—(p) > 0 (resp.
ot (p) —a—(p) =0, ay(p) — a—(p) <0).

Figure 3:

Suppose that ¥(¢) and OM satisfy the following conditions:
(1) X(¢) and OM are transversal.
(2) All singular points on ¥(p) N QM are the first kind.
(3) The null direction of a singular point on X(¢)NAM is not tangent to M.

(1) implies that tangent directions of X(¢) and M at a singular point on OM
are different. (2) implies that a null direction at the singular point on OM is
not tangent to X(y).

Definition 3.2 We take alocal coordinate system (u, v) around a singular point
p on OM such that the null direction along the singular curve is parallel to the
u-axis. The point p is called positive (resp. negative) if the u-axis passes through
M+ (resp. M™)

The sum of interior angles on side M ™ (resp. M ™) at a singular point p on OM
is denoted by 81 (p) (resp. S—(p)). Then it holds that

By(p) + B-(p) =7, B(p) — B-(p) € {~7,7}.

By Definition3.2, a point p is positive (resp. negative) if and only if it holds
that S (p) — B-(p) = (vesp. B4(p) — B-(p) = —7).



Figure 4:

Theorem 3.3 Let (M,E,(, ), D, ) be a coherent tangent bundle over a com-
pact oriented 2-manifold with boundary M, and suppose that the singular set
Y(¢) consists of singular points of the first kind and admissible second kind.
We set

/ KdA = KdA + KdA.
M M+ M-
Then it holds that

/ KdA+2/ I{SdS—F/ Rgds = 2mx(M)—n(#(X(p) NOM)),
M S(e) M

/ ngds+/ KdA = 2m {X(MT) — x(M ™)} +2m(#ST — #57)
oM M

+m(#(2(0) NOM)T — #(X(p) NOM) "),

where #ST (resp. #S57) are the numbers of positive (resp. negative) singular
points of the second kind, #(X(p) N IM) is the numbers of singular points on
OM, and #(X(p) NOM)™T (resp. #(X(p) NOM)~) are the numbers of positive
(resp. negative) singular points on OM .

Remark 3.4 The result presented here is closely related to Theorem 2.20 of [4].
Their theorem is a generalization of Theorem B of [1] to the case of manifolds
with boundary, and it is generalized by considering peaks instead of admissible
singular points of the second kinds. Several applications are presented in [4].
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