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1. INTRODUCTION

This is an appendix to the author’s paper entitled “Diffeomorphism classes of the doubling Calabi-
Yau threefolds with Picard number two [Y21]” where he proved that any two of the doubling Calabi-
Yau 3-folds with Picard number 2 are not diffeomorphic to each other when the underlying Fano 3-folds
are distinct. We refer the reader to [Y21] for background on the problem and terminology discussed in
this note.

As listed in Table 1 below, there are 8 doubling Calabi-Yau 3-folds M with Picard number 2
which have the same Hodge numbers (hY!(M), h%1(M)). These 8 overlapping Hodge numbers
(RYY(M), h?1(M)) are listed with v' on the table. Furthermore, in Table 1, V denote the under-
lying Fano 3-folds which are the ingredients for the doubling construction of Calabi-Yau 3-folds in

[DY14]. See [DY 14, Section 6], for more details. This note aims to summarize computational details
of

(i) the cubic forms, and
(i1) the A-invariants
which we will use for the proof of Theorem 1.1 in [Y21].

TABLE 1. The doubling Calabi-Yau 3-folds with Picard number 2 and the underlying
Fano 3-folds with Picard number 1

ID in [FG] | —K3 | AY2(V) | (hBH(M), k21 (M)
1-1 2 52 (2,128)
1-2 4 30 v (2,86)
1-4 8 14 v (2,58)
1-5 10 10 (2,52)
1-6 12 7 (2,48)
1-7 14 5 (2,46)
1-8 16 3 v (2,44)
1-9 18 2 v (2,44)
1-10 22 0 v (2,44)
1-11 8 21 (2,72)
1-12 16 10 v (2,58)
1-13 24 5 (2,56)
1-14 32 2 v (2,58)
1-15 40 0 (2,62)
1-16 54 0 (2,76)
1-17 64 0 v (2,86)
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2. (WHY (M), h>Y(M)) = (2,86) CASE
These doubling Calabi-Yau 3-folds are listed in Table 1 with the underlying Fano 3-folds, (a) ID 1-2
and (b) ID 1-17. Geometric description of the corresponding Fano 3-folds are

(a) a quartic hypersurface in CP*; V' (4) ¢ CP*, and
(b) the projective space CP3.

2.1. ID 1-2: V(4) C CP* case. Let V be a quartic hypersurface in CP*. Note that V is the Fano
3-fold with — K ‘3/ = 4 (see [IsPr99, p.215]). By Lefschetz Hyperplane Theorem, we have more specific
description of V' such as

1
0 0
0 1 0 5 X
H -K
2 2
0 1 0
0 0
1

where ¢ denotes the genus of Fano variety. In particular, H3 = 4 for the ample generator H &

H?(V,Z). Let D € | — Ky| be a smooth anticanonical divisor and let C' € |Op(1)| be a smooth curve

in D which represents the intersection class of D - D. Then the degree of C'is 2g — 2 and this is the
_ K3

reason why g = 12(‘/ + 1 is called the genus of a Fano 3-fold [IsPr99, p.32]. Taking Y; to be the

blow-ups Blg (V') of V along C, we again denote the exceptional divisors by F; for i = 1, 2. Then the

cohomology rings of Y; are

H*(Y;) = C(x}(H), E;) = C{(H;, E;)

(3

and the proper transforms D; of D in Y; are H; — E;. Let § = (—Dq, Dy) = (Ey — Hy, Hy — E3).
Then we see that any element in H?(Y1,7Z) x H?(Y,Z) is written as

(aH1 + bE1, cEs + (a—|— b— C)HQ) = (a+ b)(Hl,HQ) — <b+ C)(Hl — E1,0> — ¢0.

Thus we conclude that

H*(M,Z) = ((Hy, Hy), (H; — E1,0))
up to torsion. Hence in this case, we take e; = (Hj, Hs) and es = (H; — E1,0) as generators of
H?(M,Z).

Now we compute the cubic products of e; in H%(M, Z). Let us denote by 7; : Y; = Blg(V) --» V
two copies of the blow-ups of V along C for i = 1,2. Let L be a fiber over a point on C' under
the blow-up ;. Since the intersection number is preserved by the total transform, we see that H. f’ =
(mfH)3 = H® = 4. Moreover, H;L = 0 and E;L = —1. Let d be the degree of C. Since a hyperplane
in V' will intersect C' in d points, its inverse image H; in Y; will meet the exceptional divisor F; in d
fibers. Thus

H;F;=dL=(2g—2)L=4L and E?=—4H?+8L.
Then we see that
H?E; = 4H;L =0,  H;E? = AE;L = —4 and
E} = —AH?F; +8LE; = -8.

In sum, we find the following table of the multiplication of the intersection forms on H?*(Y;,Z):

|H2 L  HYY,Z) | H, E; H*(Y;,7Z)
1, 4 0 H | H? AL
E; 0 -1 E; AL —4H; + 8L

H(Y,,2) H2(Y,,2)
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Plu gging these values into the products, we find that
= (Hy,Hs)® = H} + H3 =8,
eles = (Hy, Ho)*(Hy — F1,0) = H} — HIF; = 4,
(Hy, Ho)(Hy — Fy,0)? = H} —2H?E, + HYE? =4 —4 =0,
= (H, — F1,0)> = H} —3H?E, +3H\F} —E} =4-0+3-(—4) — (-8) =0.

61 62

Next we calculate the A-invariant of the resulting doubling Calabi-Yau 3-fold M. Since V' is a degree
4 smooth hypersurface in C P4, the total Chern classes of V are given by the formula

(1+H)

T = (1+5H + 10H?*)(1 — 4H + 16H*) + O(H?) = 1 + H + 6 H*> + O(H?).

Hence we find that the second Chern classes of Y; are given by
2.1 co(Y;) = 7w} (ca(V) +n¢) — 7} (e (V) - By = TH? — HiE;
by [GH, p.610], where n¢ denotes the class of the blow-up center C' € |Op(1)|. Then the products of
co(M)ande; (i =1,2) are
e1-ca(M)=TH? — HYE) + TH3 — H3Fy =56 = 8 - 7,
ey co(M) = (TH{ — H\Ey)(Hy — Ey)
= 7H} — H?E, — TH?E, + H\E?
=7-4—-4=24=28-3.

Since the subgroup { e € (e1,e2) | e-ca(M) =0} of H>(M,Z) is generated by a single element
3e1 — Teg, the A-invariant of M is

AM) = |(3e1 — Teg)?| = |27€3 — 189¢3ey + 441eqe3 — 343€3)]
=27 -8 — 189 - 4| = 540.

2.2. ID 1-17: CP?3 case. The detailed calculations are written in [Y21]. Hence this subsection only
collects the most basic part of computation on the cubic forms and the A-invariant.

We set V. = CP3, D € |Oy(4)], C € |Op(4)| and 7; : Y; = Blg(V) --» V fori = 1,2,
respectively. Then we have H2(Y;) = C(H;, E;) with E; = 7;(C) and H; = 7}(H) C Y; for
HeH 2(V, 7). Furthermore, the proper transform D; of D in Y; is 4H; — E; for each i. Then the
straightforward computation shows that any element in H?(Y7,Z) x H?(Y3,7) can be expressed as

(a+4b)(Hy,H2) — (b4 ¢)(4H, — E1,0) — ¢, 0 :=(Ey —4H,,4Hy — E») .
This yields that
H*(M,Z) = {(Hy, Hy), (4H; — E1,0))

up to torsion. Taking e1 = (Hy, Hy) and e = (4H, — E1,0) as generators of H'(M,Z), we see that

= (Hi, Hp)* = H{ + Hj =2,
6162 (H1, H2)*(4H, — E1,0) = 4H} — HYEy = 4,

= (Hy,H2)(4H, — F1,0)* = 16H} — 8H{E\ + H E} = 0,

= (4H, — F1)® = 64H} — 48H?E, + 12H,E? — E3 = 0.
As we have seen in Section 2.1, the second Chern class of Y; is c2(Y;) = 22HZ2 — 4H; F; for each 1.
Thus the subgroup { e € (e1,e2) | e-co(M) = 0} of H?(M,7Z) is generated by 6e; — 11ey. Then the

M-invariant is A(M) = |(6e; — 11e2)3| = 4320.
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3. (hY1(M), h?Y(M)) = (2,44) CASE

In this case, the corresponding doubling Calabi-Yau 3-folds are listed in Table 1 with the underlying
Fano 3-folds, (a) ID 1-8, (b) ID 1-9 and (c) ID 1-10. We remark that these Fano 3-folds have the
following geometric description:

(a) a section of Pliicker embedding of SGr(3,6) by codimension 3 subspace, where SGr(3, 6) is
the Lagrangian Grassmannian; V' (1,1,1) — SGr(3, 6),
(b) asection of GoGr(2,7) by codimension 2 subspace; V (1, 1) — GaoGr(2,7), and

®3
(c) the zero locus of ( N VV> on Gr(3,7) where V — Gr(3,7) is the tautological rank 3 vector
bundle over the Grassmannian Gr(3,7).

In the above description (b), GoGr(2, 7) denotes the adjoint Go-Grassmannian which is the zero locus
of the section s € /\3 C7 corresponding to the Go-invariant 3-form. See [FG], [IsPr99, Chapter 4],
[DO08, Section 5] for more details. Systematically, all of these Fano 3-folds are expressed as anticanon-
ically embedded Fano 3-folds V' = V5, 5 C CP9*+! with Picard number 1 and genus g. Moreover,
we may assume that Pic(V') = H - Z where H is the unique generator of H?(V,Z) and H = — Ky
for each case (a) g = 9 : Vig € CP, (b)g = 10 : Vig € CP'M and (c) g = 12 : Vay C CP'3,
respectively.

3.1. ID 1-9: Vig C CP! case. Firstly, we consider case (b). Let V = Vjg C CP!! be an anticanoni-
cally embedded Fano 3-fold with genus g = 10, Pic(V') = Z - H and —Ky = H. Here and hereafter,
we use the same notation as in Section 2. According to [FG], we have — K ‘3/ = 18 and

1
0 0
0o 1 0
3.1) PPAVY=0 2 2 0.
0o 1 0
0 0
1

Let D € |Oy (1) be an anticanonical divisor and C' € |Op(1)| a smooth curve in D. Setting Y; to be
two copies of the blow-up Bl (V) for i = 1,2, we see that H2(Y;) = C(H;, E;) and H*(M,Z) =
((Hy, Hy), (H; — E1,0)) up to torsion. This yields that generators of H?(M,Z) are given by e; =
(Hl, HQ) and €y = (Hl — El,O).
In the same manner as the previous computation in Section 2.1, we find that H f’ =18, H;L = 0 and
E;L = —1 where L is a fiber over a point on C' under the blow-up. Moreover, for d = deg C, we have
H,E; =dL = (29 —2)L = 18L and

H?FE; = H,(H;E;) = 18H;L = 0.

Let 7 = 2g be the number of branches of the double curve Y; D C ﬂ> C C V. By the list in [GH,
p.623], we see that
E? = —dH? + (4d +2g — 2 —27)L
= —18H? 4 (72 +20 — 2 — 40)L = —18H? + 50L,
H,E? = H;(—18H? +50L) = —18H? + 50H;L = —18 - 18 = —324,
E? = F;(—18H? + 50L) = —18F;H? + 50E;L = —50.

Consequently, we have the following table of the multiplication of the intersection forms on H?*(Y;, Z):
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|H} L HYY,,Z) | H; E; H2(Y;,7)

H; 18 0 H; H? 18L
E; 0 -1 E; 18L —18H? + 50L
H(Y;,Z) H(Y;,Z)

Substituting these values into the cubic products, we see that
et = (Hy, Ho)* = H} + H3 = 36,
eley = (Hy, Ho)*(Hy — F1,0) = H} — HXFE, = 18,
ere3 = (Hi, Hy)(Hy — E1,0)* = H{ — 2H{E) + H Ef = —306,
es = (H, — E,0) = H) — 3H?E, + 3H\E? — E} = —904.
Next we compute the A-invariant of the doubling Calabi-Yau 3-fold M. Since V = Vi3 ¢ CP!!
is an anticanonically embedded Fano 3-fold with — Ky = H, we see that the first Chern class of V'

is given by ¢; (V) = H. In order to find the second Chern class of V', we use the Riemann-Roch-
Hirzebruch formula

n p
(3.2) > (=1)%dim HY(V,QP) :/ td(V) ch(/\ T*V>
q=0 v
for n = 3 and p = 0. This yields the equality
5 1 1 1 0
> (-1)? dim HY(V,Q°) = / (1 +5a(V)+ E(cl(V)2 + (V) + ﬂcl(V)cz(V)) ch(/\ T*V)
q=0 v
(3.3)
1
e A0 ROt L p02 _p03 = — e (V)ee(V)
24 J,/

Suppose that co (V) = aH? for a € Q. Then the Hodge diamond (3.1) and the equality (3.3) imply that

| 4
— H3=1 & a=-
24 ), ° “73

by [, H* = (=K}) = 18. Thus, we find c2(V') = 3H?2. As we have seen in (2.1), the second Chern
classes of Y; are given by
c2(Vi) = mi (c2(V) +ne) —mi (e (V) - Ei
=7 GH2 + H2> — H,E; = gﬂf — H,E;.
Then the products of co(M ) and e; are

7 7
e1-co(M) = -H} — HEy + §H§ — H3E; =84 =614,

3
7
€9 - CQ(M) = (Hl — El)CQ(}/l) = (H1 — El) (§H12 — HlEl)
T 4 , 7
= gH} + HiEf = 5 184 (=324) = —282 = —6 - 47.

Since the subgroup { e € (e1,e3) | € ca(M) = 0} of H?(M,7Z) is generated by 47e; + 14ey, we see
that the A-invariant of M is given by

AM) = |(47eq + 14e2)| = 4733 +3-47% - 14 - eey + 3 - 47 - 14%e1e3 + 143e3| = 5529560.
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3.2. ID 1-8: Vi C CP'0 case. Secondly, we shall consider case (a). We refer the reader to [Y21] for
details. The most essential part of the calculation can be summarized as follows.

We suppose that V = Vig € CP10, g =9, Pic(V) = Z - H and — Ky = H. Furthermore, we have
—K3} =16 and

Setting D € |Oy(1)|, C € |Op(1)| and w; : Y; = Blg(V) --» V fori = 1,2, we see that
H?(Y;) = C(H;,E;) and H*(M,Z) = ((Hy, H3),(H; — E1,0)) up to torsion. Hence two gener-
ators of H2(M,7Z) are taken as e; = (Hi, Hy) and ey = (H; — Ey,0). Consequently, we find the
values of the cubic forms as follows:

= (Hy, Hy)? = H} + H3 = 32,
eies = (Hy, Ho)*(Hy — E1,0) = H} — H{Ey = 16,
eres = (Hy, Hy)(Hy — E1,0)*> = H} — 2HEy + H E? = —240,
ey = (Hy — F1,0)® = H} —3H{E, + 3H,F? — B} = —708.
As we computed in Section 3.1, the second Chern class of V' is calculated by the Riemann-Roch-

Hirzebruch formula (3.2), from which we conclude that co(V') = 3 H?. Thus the second Chern classes
of Y; are

3 5
co(Y;) =} (§H2 + H2) — HE; = §H3 — H;E;

for i = 1,2. Then the subgroup { e € {e1,e3) | - ca(M) = 0} of H?>(M,Z) is generated by 27e; +
10ez. This implies that the M-invariant is A\(M) = |(27e1 + 10e2)3| = 1672224.

3.3. ID 1-10: Voy C CP' case. Finally, we consider case (c), that is, V = Vs C CP' is an
anticanonically embedded Fano 3-fold with genus g = 12, Pic(V') = Z - H and — Ky = H. Note that
the unique such 3-fold with Aut(V') = PGL(2, C) is called the Mukai-Umemura 3-fold, and we refer
the reader to [DO08, Ti97] and references therein for more details.

As one can see in [FG], the Hodge diamond of V is

(3.4) YVY=0 0 0 0

and —K} = 22. Let D € |Oy(1)| be an anticanonical divisor, C' € |Op(1)| a smooth curve in
D and Y; two copies of the blow-up Blo(V) as usual. Then we see that H%(Y;) = C(H;, E;) and
H?(M,Z) = ((Hy, Hs), (H; — E1,0)) up to torsion. Hence two generators of H?(M,Z) are given
by ey = (Hi, Hs) and e3 = (H; — F1,0). The straightforward computation shows that H? = 22,
H;L = 0and E;L = —1. Furthermore, we have

H;E; =dL = (29 —2)L = 22L.  and
H?FE; = H,(H;E;) = 22H;L = 0.
6



Again, let 7 = 2g be the number of branches of the double curve C 2L C C V. Then we see that
E? = —dH? + (4d +2g — 2 — 27)L
= —22H? 4 (88 +24 — 2 — 48)L = —22H? + 72L,
H;F? = H;(—22H? + 72L) = —22H} + 72H;L = —22 - 22 = —484,  and
E} = Ej(—22H? + 72L) = —22F;H? + 72F;L = —72.

Consequently, we have the following table of the multiplication of the intersection forms on H?*(Y;, Z):

|H? L HYY,,Z) | H; E; H2(Y;,7)
H; 22 0 H; H? 22L
E; 0 -1 E; 22, —22H? + 72L
H(Y;,Z) H(Y;,Z)

Substituting these values into the cubic products, we see that
e3 = (Hy, Hy)® = H} + Hj = 44,
etes = (Hy, Hy)*(Hy — E1,0) = H} — H{Ey = 22,
= (Hy, Hy)(Hy — E1,0)*> = H} —2H?E, + H E? = —462,
es = (H, — F,0)> = H} —3H?E, + 3H\E? — E} = —1358.
Now, we compute the A-invariant. As we have seen in Section 3.1, the first Chern class of V' is given

by ¢1(V) = H. In order to calculate the second Chern class of V', we use (3.2) forn = 3 and p = 0.
Then we obtain

1
3.5) R0 — ROT 4 ROZ — p0% = — | ¢ (V)eo(V).
24 Jy

Suppose that c2(V') = aH? for a € Q. Since the left hand side of (3.5) is 1 by (3.4), we see that

1 12
— [ aH?’=1 & a=—=
24 ), ¢ “T 1

where we used [i, H® = (—K}) = 22. Thus, we find cz(V) = £ H?2 By (2.1), the second Chern
classes of Y; are

c2(Y;) = i (ca(V) +mc) — i (cr(V)) - E;

. (12 23
=7 (ﬁH2 + H2> — HE; = EHZ? — H,FE;.
Then the products of co(M) and e; are
23 23
e1-co(M) = EHf — H?E, + EHQ — H3E, =92 =246,
23
€9 - CQ(M) = (H1 - E1>CQ<Y1> = (H1 - E1> (ﬁH% — H1E1>
23 23

= EH{’ + H\E? = 1722+ (—484) = —438 = 2219,

Since the subgroup { e € (e1,e2) | - co(M) = 0} of H?(M, Z) is generated by 219¢; +46e2, we see
that

AMM) = [(219¢; + 46€5)3| = [219%€3 4 3- 2192 - 46 - eZeq + 3 - 219 - 46%e1e2 + 463e3| = 122507896.
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4. (hH1(M), h*Y(M)) = (2,58) CASE
Now we consider the case where the doubling Calabi-Yau 3-folds have the same Hodge numbers
(RYY (M), h?1(M)) = (2, 58), that is, the underlying Fano 3-folds are (a) ID 1-4, (b) ID 1-12 and
(c) 1-14. These Fano 3-folds are described as follows:

(a) a complete intersection of three quadrics in CP%; V/(2,2,2) c CPS,

(b) a hypersurface of degree 4 in the weighted projective space CP(1,1,1,1,2);
V(4) c CP*(1%,2), and

(c) a complete intersection of two quadrics in CP°; V(2,2) C CP°.

4.1. ID 1-14: V(2,2) C CP? case. Let V be a smooth complete intersection of 3 quadrics in CP?,
which is the Fano 3-fold with —K? = 32 and

By the adjunction formula, we see that
Ky) = (Keps + V()] = —4H, and
Ky = (Ky) + V)], = (-4 +2)H = —2H

where H € H(V,Z) is the ample generator and V' (2) C CP? is a smooth quadric hypersurface in
CP®. Let D = 2H € | — Ky/| be an anticanonical divisor and C € |Op(2)| a smooth curve in
D representing the intersection class of D - D. For i = 1,2, we take the blow-ups Y; = Blg(V)
which have the cohomology rings H?(Y;) = C(H;, E;). Then the proper transforms D; of D in Y; are
2H; — E;. Thus we set § by (—D1, D) = (FEy — 2H,,2Hs — E3). We observe that any element in
H?(Y1,7Z) x H?(Ys,7) is written as

(aHy 4+ bE1,cEs + (a+ 2b — 2¢)Hy) = (a + 2b)(H1, Hy) — (b+ ¢)(2H; — E1,0) — c0.
Consequently, we find that
H?*(M,Z) = ((H, Ha), (2H — E,0))

up to torsion. This implies that two generators of H?(M,Z) can be taken as e; = (Hy, Hs) and
€y = (2H1 - El,O).
In order to compute the cubic forms in H°(M, Z), we first see that the Fano genus g of V is

—K3 32
9= TiTag T
Then the straightforward computation shows that H? = 32, H;L = 0 and E;L = —1 where L is a

fiber over a point on C' under the blow-up. Furthermore, for d = deg C, we have
H,E; =dL = (29 —2)L = 32L and
H?E; = Hy(H;E;) = 32H;L = 0.
In the same manner as in Section 3, let us denote the number of branches of the double curve C by 7.
Then we find that
E? = —dH? + (4d+ 29 — 2 — 27)L = —32H? + (128 + 34 — 2 — 68)L = —32H? + 92L,
H,E? = H;(—32H? + 92L) = —32H? + 92H,L = —32-32 = —1024,  and
E} = F;(—32H? + 92L) = —32F; H? + 92F;L = —92.
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In the following table, we summarize the values of the multiplication of the intersection forms on
H?**(Y;,Z):

| Hf L HYY:Z) | Hi Li H(Y;, 7)
H; 32 0 H; H? 32L
E; 0 -1 E; 32L —32H?+92L
H?(Y;, Z) H*(Y;, Z)

Substituting these values into the cubic forms, we find that
et = (Hy, Ho)® = H} + H3 = 64,
eles = (Hy, Ho)*(2Hy — E1,0) = 2H} — H{Ey = 64,
eres = (Hy, Hy)(2H, — E1,0)* = 4H} — 4H?Ey + H1 E? = 4-32 — 1024 = —896,
= (2H, — E1,0)3 = 8H? — 12H?E, + 6H E? — B} =8-32 + 6 - (—1024) — (—92) = —5796.
Next we compute the A-invariant. Since V is a complete intersection of two quadrics in CP5, the
total Chern classes of V' are given by the formula
(1+H)S 6
(14+2H)? 2
= (1+6H +15H*)(1 —4H + 12H*) + O(H?) = 1 + 2H + 3H* + O(H?).
Hence the second Chern classes of Y; are computed as
(Vi) = mi (c2(V) +ne) — mi (e (V) - Ei
= 7} (3H? 4+ 4H?) — 2H,;E; = TH? — 2H,F;.

= (1+6H + ( >H2)(1+2H)‘2+0<H3)

Then the products of c2(M ) and e; are given by
e1-ca(M)=TH} —2H?F) + THy — 2H3Fy = 448 = 2° . 7,
ey - co(M) = (2H, — E1)(TH? — 2H, F))
= 14H} — AH?E, — TH?E, + 2H, F?
=14-32-2-29= 1600 = 2% . (—25).

Since the subgroup { e € (e1,e2) | e-ca(M) =0} of H*(M,Z) is generated by a single element
25e1 + Teq, the A-invariant of M is

AMM) = |(25e1 + Tea)?| = [25%€3 + 3-25% - Tedeq + 3 - 25 - T2ejed 4 T3¢l
= |25% .64 4+3-25%-7-64+3-25-7%.(—896) + 7% - (—5796)| = 3440828.

4.2. ID 1-12: V(4) € CP(1%,2) case. Let V be a smooth hypersurface of degree 4 in the weighted
projective space CP*(1%,2), which is the Fano 3-fold with — K3, = 16 and

1
0 0
0 1 0
WUV)y=0 10 10 0.
0 1 0
0 0
1

By the adjunction formula, we find that
Ky = (Kp+ [V])|,, = (Op(=6) + Op(4))|,, = Op(-2)|,, = Ov(—2)

where we denote the weighted projective space CP*(14,2) by P. Let D = 2H € | — Ky/| be a smooth
anticanonical divisor and C' € |Op(2)| a smooth curve in D. Let Y; = Blg (V) be the blow-ups
9



of V along C' and H?(Y;) = C(H;, E;) the cohomology rings of Y; for i = 1,2. For the proper
transforms D; = 2H; — E; of D in Y, we set 0 by (—Dy, Da) = (Fy — 2H,2Hy — Es). Repeating
the same computation in Section 4.1, we see that two generators of H?(M,Z) are e; = (Hy, H) and
€y = <2H1 - E1,0>.
Now we compute the cubic products of e; in H5(M, Z). Firstly, the genus of the Fano 3-fold V is
given by
-K3 16

_ 1=2 11—
9=—>5 * 5 T

Secondly, we readily see that
H? =16, H;L =0, E;L =-1
H,E; =dL = (29— 2)L = 16L,  and
H?FE; = H;(H;E;) = 16H;L = 0.
Let 7 = 2¢g be the number of branches of the double curve C'. Then we find that
FE? = —dH? + (4d+2g — 2 — 27)L = —16H? + (64 + 18 — 2 — 36)L = —16H? + 44L,
H,E? = Hi(—16H? + 44L) = —16H} + 44H;L. = —16 - 16 = —256,  and
E} = Ej(—16H? + 44L) = —16E; H? + 44FE;L = —44.

The following table collects the values of the multiplication of the intersection forms on H?*(Y;, Z):

|H? L HYY,,Z) | H; E; H2(Y;,7)
H; 16 0 H; H? 16L
E; 0 -1 E; 16L —16H? +44L
H*(Y;, 7.) H(Y;,Z)

Substituting these values into the cubic forms, we find that
e} = (Hy, Hy)® = H} + H3 = 32,
eley = (Hy, H2)*(2H, — E1,0) = 2H} — HXFE) = 32,
ered = (Hy, Hy)(2H, — F1,0)2 = 4H} — 4H?E| + H1E? = 4-16 — 256 = —192,
es = (2H, — E1,0)3 = 8H? — 12H?F, + 6H\E? — E3 =8 -16 + 6 - (—256) — (—44) = —1364.

Let us compute the A-invariant. Since V' is a hypersurface of degree 4 in the weighted projective
space CP*(1%,2), the total Chern classes of V' are given by

(1+ H)*(1+2H) 4
(1+4H) 2
= (1+4H +6H*)(1+2H)(1 — 4H + 16 H*) + O(H?)

=1+2H +6H? + O(H?).

= (1+4H + ( ) H?)(1+2H)(1+4H) " + O(H?)

Thus the second Chern classes of Y; are
co(Y;) = 7} (6H? + 4H?) — 2H; E; = 10H? — 2H,E;.
Then we see that the products of co(M ) and e; are
e1-co(M) =10H; — 2HFy + 10Hy — 2H3Ey = 320 = 20 . 5,
es-co(M) = (2H, — Ey)(10H? — 2H\ E))
= 20H} — 4H?E, — 10H?E, + 2H, E?
=20-16+2-(—256) = —192 = 20 . (=3).
10



Since the subgroup { e € (e1,e2) | e-co(M) =0} of H>(M,Z) is generated by a single element
3e1 + Heo, the A-invariant of M is
MM) = |(3e1 + 5e2)3| = |3%€3 +3-3% - 5eey + 3 -3 - 52erel + 5el|
=127-32+3-27-5-32+9-25-(—192) 4+ 125 - (—1364)| = 208516.
4.3. ID 1-4: V(2,2,2) C CP° case. We refer the reader to [Y21] for the detailed computation of this
example. This subsection collects the minimum amount of calculation necessary to see the values of
the cubic forms and the A-invariants.

Let V = V(2,2,2) C CP® be a complete intersection of three quadrics in CP%. As usual, we
set D € |Oy(1)], C € |Op(1)|and 7; : Y; = Blg(V) --» V for i = 1,2. Then we see that the
proper transform D; of D in Y; is H; — E; and H?(Y;) = C (H;, E;) for each i. Thus any element in
H?(Y1,7Z) x H?(Ys,7) can be written as

(a + b)(Hl, HQ) - (b + C)(Hl - El,O) - C(S, 0= <E1 — Hl, H2 — E2> .
This implies that
H*(M,Z) = ((Hy, H2), (H1 — E1,0))
up to torsion. Setting e; = (H1, Hy) and e3 = (H; — E1,0) as generators of H'(M,Z), we find that
el = (Hy, Hy)® = H} + Hj = 16,
eley = (Hy, Hy)*(H, — E1,0) = H} — H?E, = 8,
ere3 = (Hy, Ho)(Hy — E1,0)? = H} — 2H{E, + H Ef = —56,
(Hy — F1,0)® = H} —3H?F, +3H,F} — E} = —164.

In the same manner as the previous calculation in Section 4.1, the second Chern class of Y; is co(Y;) =
4H? — H;E; for each i. Consequently, the subgroup { e € (e1,e3) | e-co(M) =0} of H?(M,Z) is
generated by e; + 2e5. Hence we conclude that the A-invariant is A(M) = |(e1 + 2e3)3| = 1920.

ey =
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