Cut-Elimination for Cyclic Proof Systems with Inductively Defined
Propositions

Daisuke Kimura!, Koji Nakazawa?, and Kenji Saotome?

! Toho University, Japan, kmr@is.sci.toho-u.ac. jp
2 Nagoya University, Japan, knak@i.nagoya-u.ac. jp
3 Intelligent Systems Laboratory, SECOM CO., LTD., Japan ke-saotome@secom. co. jp

Abstract. Cyclic proof systems are extensions of the sequent-calculus style proof systems for logics
with inductively defined predicates. In cyclic proof systems, inductive reasoning is realized as cyclic
structures in proof trees. It has been already known that the cut-elimination property does not hold for
the cyclic proof systems of some logics such as the first-order predicate logic and the separation logic. In
this paper, we consider the cyclic proof systems with inductively defined propositions (that is, nullary
predicates), and prove that the cut-elimination holds for the propositional logic, and it does not hold
for the bunched logic.

1 Introduction

Cyclic proof systems [4] are extensions of the sequent-calculus style proof systems with inductively defined
predicates and they allow cyclic structures in proof trees that represent the induction. The cyclic proof
systems are proposed for many logics such as the first-order logic [4], the bunched logic [1], the separation
logic [2], the linear logic [5], and the linear temporal logic [5]. The cyclic proof systems are considered to be
suitable for (semi-)automatic inductive reasoning [3], since we do not have to fix the proposition to which
the induction principle is applied a priori.

However, it has been already known that the cut-elimination property does not hold for the cyclic proof
systems of some logics such as the first-order predicate logic [7], the separation logic [6], and the bunched
logic [8]. The cut-elimination property is expected in automatic reasoning since to find cut formulas requires
some heuristics.

In this paper, we consider the cyclic proof systems with inductively defined propositions (that is, nullary
predicates), and prove that the cut-elimination holds for the ordinary propositional logic, and it does not
hold for the bunched logic.

The cyclic proof system CLKIDP™P is the propositional restriction of the cyclic proof system CLKID,,
in [4] for the first-order predicate logic. For the full system, Masuoka et al. showed that the cut-elimination
fails. In this paper, we prove the cut-free completeness of CLKIDP™OP,

The bunched logic is logic to express quantitative properties of resources, and it contains both the multi-
plicative conjunction and the ordinary (classical) conjunction. The bunched logic was proposed for applica-
tions of program verification. The assertion logic of the separation logic, which is an extension of Hoare logic
for pointer programs, is a variant of the bunched logic. The cyclic proof system CLBI{}, of the bunched logic
with inductive predicates was proposed in [1]. In this paper, we prove that the cut-elimination does not hold
for CLBI{y,. This part has been published in [8], and we give a summary of the result in this paper.

2 Cyclic Proof System CLKID}:POp

We will use a vector notation, like X , to mean a sequence Xy, ..., X, of syntactical objects, and write |X |
for the length of the sequence X. The set of finite subsets of a set S is written as Pg,,(S). For a natural
number n, we write [n] to mean {0,...,n —1}.

2.1 Syntax of CLKIDPTOP

Definition 1 (Languages). A language £ consists of a finite set PropSym of (non-inductive) propositional
symbols and a finite set {P,..., Py} of inductive propositional symbols. The metavariables) and P are
used for non-inductive and inductive propositional symbols, respectively. The metavariable R is used for
either non-inductive or inductive propotional symbols.

Definition 2 (Formulas). The formulas (denoted by ¢,,...) in £ are inductively defined by
pu=RloAp|leVel| e

An atomic formula is a formula of the form R. The set of formulas and the set of atomic formulas are written
as Fml and Atom, respectively.

For a finite set X = {¢; | ¢ € [n]} of formulas, A X and \/ X are abbreviations of g A -+ A ¢,_1 and
YoV -V p,_1, respectively.

Definition 3 (Inductive definitions). A production rule for P; has the form

(Pj,{Q: € PropSym | i € [m]} U{Py, | i € [n]}).

Qo - Qm-1 Pn, -+ P,
P;

A finite set of production rules is called an inductive definition set.

It is often written as

In the following, let (P;,®; ;) be the i-th production rule for P;, and @ be the inductive definition set
{(P),@j.0)}i4
Definition 4 (Sequents). A sequent of CLKID,, has the form I' = A, where I" and A are finite sets
of formulas. The left-hand side and the right-hand side of - in a sequent are called the antecedent and the
succedent of the sequent, respectively. Let S be a sequent. Then the antecedent and the succedent are denoted
by L(S) and R(S), respectively.

We write ¢1,...,¢0m F ¢1,...,¢n instead of {¢1,...,om} F {d1,...,dn}. We also write I',¢ and I}, I%
instead of I' U {¢} and Iy U I, respectively.

A sequent I' = A is called normal if ' U A C Atom. A strongly normal sequent is a normal sequent and
its antecedent consists of non-inductive propositional symbols.

2.2 Semantics

Let 0, 1 and 2 be the empty set), a singleton set {#}, and {0, 1}, respectively. A valuation (denoted by v)
is a function from PropSym to 2. The interpretation [£]¥ and the approximating interpretation [R]%,, are

defined as the least element in 2 that satisfies the following:

[Q1Y = [QIV. = v(Q),

[0 A 1]y = [eols N [ea]2,
[eo Verls = [wolt ULealy,
[-l? =1\ [#]2,
712 = JIPily .,

[[Pj]]f,o =0,
HPj]]g,k—&-l = U ﬂ HR]]?UP,]C
i REP;;

We often omit the superscript ¢ and write [¢],. We write v = ¢ when [¢], = 1.

Definition 5 (Validity). A sequent S is valid if and only if v = \/ R(S) holds for any valuation v such
that v = N\ L(S).

(Ax) where 'NA #

I'-A (Wk) where ' C I and A C A’

' A I'E A
I+ A,lfF Z,soFA (Cut)
A g (M

Fig. 1. Inference rules of CLKIDE™P (except (UL) and (UR))

2.3 Cyclic Proof System CLKIDP'OP

The cyclic proof system CLKIDBrOp is a sequent calculus style proof system for the classical propositional
logic with inductive definitions.
The right unfolding rule and the left unfolding rule for @ are defined as follows.

Definition 6 (Right unfolding rule). Let {Qo,...,Qm—1,Ph,,---
rule (UR);; is the following:

. Pr, .} be @;;. The right unfolding

FFAaQO FFA»Qm—l FFA,PhO FFA,P}L

I'FAP

— (UR);;
Definition 7 (Left unfolding rule). For each set {®;;}o<i<x, of production rules of {P;} in @, the left
unfolding rule (UL); is the following:

[d0F A L@ - A
TP FA (UL)

We often omit the subscripts j,¢ in (UR);; and j in (UL); when the indexes are not important or are
obvious from context.
The inference rules of CLKIDP™P are the rules shown in Figure 1 and (UL) and (UR).

Definition 8 (Derivation and pre-proof of CLKIDPT®P), Let S be a sequent of CLKIDP™ P A deriva-
tion (denoted by D) of S is a finite derivation tree constructed by using the inference rules of CLKIDPTOP,
and the sequent at the root is S. The sequent at a node w of D is written D(w). A leaf node of D is called a
bud if it does not appear at the conclusion position of (Ax). An internal node C of D is called a companion
of a bud B if the sequent at C' is the same as that of B.

Let B be the set of buds in D and X be a subset of B. A pair (D, R) is called a pre-proof of S with open
buds X when D is a derivation of S and R is a function that assigns each bud in B\ X to its companion. If
X is the emptyset, (D, R) is called a pre-proof of S.

A trace and the global trace condition in a pre-proof (D, R) with X is defined in a similar way to the
trace defined in [4].

Definition 9 (Cyclic proof of CLKIDPYOP). Let (D, R) be a pre-proof of S with X. It is called a cyclic
proof of S with open buds X if it satisfies the global trace condition. If X is the emptyset, (D, R) is called a
cyclic proof of S.

Theorem 1 (Soundness of CLKIDPT®P), et (D, R) be a cyclic proof of S. Then all sequents in D are
valid.

Proof. 1t is shown in a similar way to the soundness theorem of CLKID,, [4].

3 Cut-Elimination of Cyclic Proof for Classical Propositional Logic

This section shows that CLKIDBrOp enjoys the cut-elimination property.
By the soundness theorem of CLKIDP™P any sequent S of CLKIDP™P that has a cyclic proof is valid.
We show the following cut-free completeness to show the cut-elimination property for CLKIDBIOp.

Theorem 2 (Cut-free completeness of CLKIDPYOP). ¢t S be a sequent of CLKIDP™P . [f S is walid,
then S has a cut-free cyclic proof.

This theorem will be shown by the following three steps:

— =
Claim 1 A valid strongly normal sequent, namely sequents of the form 6 F @', P’, has a cut-free non-cyclic

proof (Proposition 1). o

Claim 2 A valid normal sequent, namely sequents of the form a, ? F @', P’ has a cut-free cyclic proof
(Proposition 3).

Claim 3 A valid sequent S has a cut-free cyclic proof (Theorem 2).

First we show Claim 1.

Definition 10 (Unfolding tree). An unfolding tree uTree(P) of an inductive proposition P is inductively
defined as follows.
uTree(P;,0) = 0,

) _JQ - Q Ty - T, D1 ={Qo---,Qs; Pjy,---, P, },
uTree(Pj,nJrl)—{ P, i) | pe whvee(Py om) for 0< i< r |

uTree(P)) = U,5o uTree(P;, n).

For each T' € uTree(P), we define Lvs(T') by the set of (non-inductive) propositions at the leaf nodes in

From the definition it is immediately followed that uTree(P;,n) C uTree(P;,n + 1) for any n and P;.
Lemma 1. v = P; if and only if there exists T € uTree(P;) such that v = A Lvs(T').

Proof. To show the only-if part, we show the claim that, for any n, [P;]} = 1 implies v |= A Lvs(T") for some
T € uTree(P;) by induction on n. The case of n = 0 is trivially shown by [P;]% = (. Assume that n > 0
and [P;]? = 1. Then there exists I and [R]?~! =1 for all R € ;. By the induction hypothesis, for each
Py, € @;, there exists ny, and T}, € uTree(P, ny) such that v = A Lvs(Ty). Let n be the maximum number
of ng’s. Then T} € uTree(Py, n) holds for any k. Define T' by

Ql Qs Tl T’r (P]l)

= P,

Hence we have T' € uTree(Pj,n + 1) C uTree(P;). We also have v = Lvs(T') since Lvs(T) = {Q | Q €
@;1} U, Lvs(T). Therefore the only-if part is immediately obtained from the claim.

For showing the if-part, we prove the claim that, for any n, k and T, if T' € uTree(Py,n) and v = Lvs(T),
then v |= Pg. This claim is shown by induction on n. The case of n = 0 is trivially shown by uTree(Pg,0) = 0.
Assume that n > 0, T € uTree(Py,n) and v |= Lvs(T). Then there exist @) = {Q1,...,Qs, Pryy..., Pr, }
and T; € uTree(Pg,,n — 1) such that

@ - QT - T,

t:
Py

(P, 1)-

For each i, by v = Lvs(T;) and the induction hypothesis, we have v |= Py,. Hence [A @k,], = 1 holds by
using v = Q for all @ € &y ;. Therefore [Pry = U{[A Pr,]v | 1 <1< My} = 1. The if-part is immediately
obtained from the claim.

Proposition 1. Any valid strongly normal sequent has a cut-free non-cyclic proof.

Proof. Let S be a valid strongly normal sequent 5 F Q' iy -+, Pj,,. Define the valuation v by v(Q) =1
if Q e Q, v(Q) = 0 otherwise. Then v \/Q’ orv =P for some 4 since v = /\a and S is valid. If
%

vE \/Q’ there exists Q' € Q’ such that v = Q’. So Q' € by the definition of v. Thus we have a cut-free
non-cyclic proof of S by using (Ax) and (Wk). Otherwise v = P;, for some . Then, by Lemma 1, there
exists T' € uTree(P},) such that v = A Lvs(T"). Now we consider the following claim: if 7" € uTree(Py,n) and

v = ALvs(T”), then @ + Py has a cut-free non-cyclic proof. It is enough to show this claim, since a cut-free
non-cyclic proof of @ + @', P;,,..., P}, is constructed by applying (Wk) to the cut-free non-cyclic proof of
F P;, obtained from the claim.

The claim is shown by induction on n. The case of n = 0 is trivially shown. Suppose that n > 0, TV €
uTree(Py,n) and v = A Lvs(T”). Then there exist &5 = {QY,...,QY, Py,, ..., Py} and T; € uTree(Py,,n—1)

such that
o @ QT T
Py

By v = ALvs(T;) and the induction hypothesis, a F Py, has a cut-free non-cyclic proof. We also have
cut-free non-cyclic proof of @ F QY for all 1 <14 < s, since v |= QY. Therefore we have a cut-free non-cyclic

proofofaFPk:
GrQr - Grq Grp, - GrB,

a’—Pk

Next we show Claim 2. Before that, we need to discuss the finiteness of sequents that can appear in a
cut-free cyclic proof for a given sequent, which is our key observation in this section.

(UR)g,

Definition 11 (Extended subformulas). The set of extended subformulas exSub(y) of ¢ is inductively
defined as follows:

exSub(Q) = {Q},
exSub(—¢) = {—¢} UexSub(y),
exSub(p10ps) = {p10¢pa} UexSub(pr) UexSub(ps) (Ois A, V),
exSub(P;,0) = {F;},

) =
exSub(Pj,n+1) ={Q | Q € | J#;} U J{exSub(Py,n) | P € U®;},
exSub(P;) = U exSub(Pj,n).

n>0
For a set X of formulas, exSub(X) is defined by | J{exSub(y) | ¢ € X}.

Lemma 2. The following claims hold.
(1) If ¢ is a subformula of v, then ¢ € exSub(y)) and exSub(y) C exSub(v)).
(2) If P € |J®;, then exSub(P) C exSub(F;).
(3) P; € exSub(yp) implies exSub(P;) C exSub(yp).
(4) eXSub() is finite for any formula ®.

Proof. (1) is shown by induction on ¢. To show (2), assume P € |J®;. Then exSub(P,n) C exSub(P;,n+1) C
exSub(FP;) for any n. Hence we have exSub(P) C exSub(FP;). (3) is shown by induction on ¢ using (2). We
only consider the case of P;. This case is immediately obtalned from the claim: P, € exSub(P,,n) implies

exSub(Py) C exSub(P,) for any n, k,u. This claim is shown by induction on n. The case of n = 0 is easily
shown since P, = P,. Assume n > 0 and Py € exSub(P,,n). Then P, € exSub(Ps,n — 1) C exSub(Ps) for
some Ps € |J&,. Hence, by (2), we have exSub(P;) C exSub(Ps) C exSub(P,). For (4), the finiteness of
exSub(yp) is shown by induction on ¢ since the number of proposition symbols is finite.

Let X be a set of formulas. We define Seq(X) by {I'F A | ' UA C exSub(X)}. Seq(I" - A) is also
defined by Seq(I" U A). By the above lemma, Seq(X) is a finite set if X is finite. Hence Seq(S) is finite for
any sequent S since both the antecedent and the succedent of S are finite.

The finiteness of cut-free cyclic proofs in CLKIDBrOp is stated as follows.

Proposition 2 (Finiteness of cut-free proofs in CLKIDErOp). We have the following claims.

(1) Let S € Seq(X) and =55+ be an instance of an inference rule R # (Cut) in CLKIDE™P. Then
S; € Seq(X) for all1 <ien.

(2) Let D be a cul-free derivation of S with open buds B in CLKIDP™P. Then all sequents in D belong
to Seq(S).

Proof. The claim (1) is shown by case analysis of the inference rules in CLKIDP™P by using Lemma 2. To
show the cases (UL) and (UR), it is enough to prove the following fact: if P; € exSub(X), then (J&; C
exSub(X). Assume P; € exSub(X) and &;; = {Q1,...,Qk, Pjy,..., P}, } taking arbitrary [€ {1,..., K,}.
Then exSub(P;) C exSub(X) holds by Lemma 2 (3). Thus we have Q; € exSub(P;,1) C exSub(P;) C
exSub(X). We also have P;, € exSub(P;;) C exSub(P;) C exSub(X) by Lemma 2 (2). Therefore we obtain
U®; C exSub(X) since $;; C exSub(X) holds for any 1 <! < M;. The claim (2) is shown by induction on
D using (1).

Definition 12. Let S be a normal sequent 6, Pj,,...,Pj, F Z. The set
Ldec(s) ¢! {é,qul,ll,...,qumylm FEI1<L <My forall i€ {1,...,m}}

is called the left decomposition of S.

Let X and Y be sets of sequents. A sequent S is said to be cut-free derivable from X (denoted by X > 5)
if S has a cut-free derivation with open buds B and all sequents at B are in X. We write X >Y if X > S for
all S € Y. We note that the relation >> is transitive, namely X > Y and Y > Z implies X > Z.

Lemma 3. Ldec(S) > S holds for any normal sequent S.

Proof. Assume that S is 6,1:’]-1, ..., P, F 2. Define Ldec' (S, {j1, ..., jx}) by
{a,le,...,ak,ij+l,lk+l,...,@Wlm FE|1<l <M, forallie {k+ 1,...,m}}.

We note that Ldec’(S,0) = Ldec(S) and Ldec'(S,{j1,...,jm}) = {S}. It is enough to show the claim
Ldec'(S, {j1,---,jr}) > Ldec'(S, {j1,- .., jr+1}) for any k € {0,...,m — 1}, since
Ldec(S) = Ldec'(S,0) & Ldec'(5, (j1}) & -+~ Ldec'(S, {j1,. - jm}) = {5},

holds by the claim, and then Ldec(S) > S is obtained from the transitivity of .
In order to show the claim, take arbitrary S € Ldec'(S,{j1,...,jx+1}). Then S has the form

5,?,]33- 3 F =, where ? and 8 are P ,..., P and @, 010

¢, Po, 1,85 - 6,?,¢jk+]7MMH,3F5(UL)
G.B.p, BF= :

k419

D 1., respectively. We have

k412

k41,10

which is a cut-free derivation of S from Ldec’(S, {j1,...,jk}). Thus Ldec'(S, {j1,...,jk}) > S holds for any
Ldec'(S, {j1,---,jk+1}). Hence Ldec’ (S, {j1,- ..,k }) > Ldec’ (S, {j1,- ., jkr1})-

Input Sp: normal sequent
Output (D, R, B): a cut-free CLKIDBrOp/ proof (D, R) of Sg with open buds B

D:= Sy (single node (only root) derivation of Sy with bud Sp)
A := {root} (set of current bud nodes)
B:=0
R:=0
while A # 0 do
Take w € A and let S be D(w).
A= A\ {w}
if S is strongly normal then
B :={w} U B; continue (a)
if an internal node v is on a path from root to w s.t. D(v) = D(w) then
R :={(w,v)} UR; continue (b)
Update D replacing S at the node w of D by w Ldec (c)
A= {wl)~~~7wn}u-’4:
where wq, ..., w, are new children of w for Si,...,S,, respectively.
done

return (D, B, R)

Fig. 2. Algorithm: normProof

The derivation of S from Ldec(S) constructed in the above proof is a multiple times application of the
(UL) rule. We note that, for any S; € Ldec(S), all inductive predicates in L(S) are eventually unfolded by
the rule instances of the (UL)-rule in the path from S to .S;, that is, any trace following this path contains a
progressing point.

We consider an inference rule (Ldec) of the form

ST - S,

5 (Ldec), where {S1,...,S,} = Ldec(S),

which is admissible in CLKIDPTOP.

Definition 13. CLKIDBIOP/ is a proof system whose inference rules are obtained from those of CLKIDP™P
replacing the (UL)-rule by the (Ldec)-rule. A preproof in CLKIDBIOP/ (with open buds) is defined in a similar
way to that of CLKIDP P A cyclic proof in CLKIDBIOP/ (with open buds) is defined by a preproof in which
any infinite path passes through an infinite number of rule instances of the (Ldec)-rule.

Lemma 4. If there is a cut-free cyclic proof of S in CLK[ngpl with open buds B, then there is a cut-free
cyclic proof of S in CLKIDP"P with open buds B.

Proof. Assume that P’ is a cut-free cyclic proof of S in CLKIDBrOp' with open buds B. Let P = ((N,[,7),R)
be a cut-free preproof of S in CLKIDP™P with open buds B obtained by replacing each rule instance of
(Ldec) by a multiple application of (UL) as constructed in the proof of Lemma 3. Take an infinite path 7 of
P. Then define an infinite path 7’ of P’ obtained from 7 by replacing each subsequence (v1,...,v,) of © by
(v1,vm), where I(v1) is not a premise of a rule instance of (UL), r(v;) = (UL) for each ¢ € {1,...,m — 1},
and 7(vy,) # (UL). Then 7’ contains infinite number of rule instances of (Ldec) since P’ is a cyclic proof of
CLKIDBrOpI. Hence any trace following 7 has infinite number of progressing points as we mentioned before.
Therefore P is a cut-free CLKIDBIOp cyclic proof of S with open buds B.

The algorithm normProof given in Figure 2 constructs a CLKIDBIOp' cyclic proof of a normal sequent
with open buds of strongly normal sequents.

Lemma 5. normProof terminates for any input.

Proof. Assume that normProof(S) does not terminate for some S. We show a contradiction. Consider the
non-terminating run of normProof(S). Let Dy be the D after the k-th while-loop in the run, Ay be the A
after the k-th while-loop, and Sk be the sequent S taken in the k-th while-loop. We note that, in each loop,

either line (a), (b), or (c) is executed, and line (b) is executed infinitely many times in the run since otherwise,
from some ko, the numbers of elements in Ay, (k > ko) strictly decrease and the run eventually terminates.
If (b) is executed in the k-th loop, then Dy is strict extension of Dy_1, since Sy is not a strongly normal
and at least one (UL) is done in Ldec(Sy). Define Dog := Ji>o Pr- Then Dy has infinite nodes with finite
branches. Hence, by Konig’s lemma, there is an infinite path 7 = (root,wy,ws,...) in Ds. For each w;,
there is unique n; such that w; is added to A in the n;-th loop. In each n;-th loop, (c) is executed and the
sequent S, does not appear in {So, Sy, ,...,5,_, }, since (b) is skipped in the loop. Let M be [Seq(S)| and
X be {So,Sn,s---,Sn, }- Hence | X| = M +1, but it contradicts X C Seq(S) obtained from Proposition (2).

Lemma 6. Let S be a valid normal sequent, and (D, R,B) be the output of normProof(S). Then (D, R) is

a cut-free CLKIngp' cyclic proof of S with open buds B. Moreover, the sequents that appear at nodes in B
are strongly normal and valid.

Proof. By the previous lemma, the run of normProof(S) terminates in K-times loop. Let Dy, R, Ak, and
By be the D, the R, the A, and the B after the k-th loop in the run, respectively.

We show the claim that (Dg, Rg) is a cut-free cyclic proof of S with open buds Ax U By by induction
on k. The case of k = 0 is easily shown, since Dy = {S}, Ro = 0, and Ay U By = {root}. Suppose k > 0.
Let w be the node taken from Ag_1 in the k-th loop, and Sy, be Dy_1(w). The k-th loop executes either (a),
(b), or (c). In the cases (a) and (c), we have the expected result by the induction hypothesis. In the case
(b), there is an internal node v between root and w in Dy_q such that Dy_1(v) = Sk. We have Dy, = Dj_1,
Ri = {(w,v)} URg—1, and Ax U By, = (Ag—1 U Bi—1) \ {w}. Then the only new infinite path in Dy is
7w = (root,...,v,...,w,v,...,w,...). We note that all inductive predicates in the antecedent of Dy (v) are
unfolded before reaching Dy (w), since Ldec is applied at least once between v and w. The other infinite paths
in D also pass through Ldec by the induction hypothesis. Hence (Dy, Ry) is a CLKIDBrOpI cyclic proof of S
with Ak U Bk,

By the claim, (D,R) is a cut-free CLKIDBrOpI cyclic proof of S with open buds B, since (D,R) =
(DK,RK) and B = BK and AK = (Z)

We can easily check that, for any k, A, U By, is a set of nodes whose sequents are strongly normal. Hence
so is B. We claim that D is constructed by using only the (UL)-rule. Thus all sequents in D are valid because
all assumptions of the (UL)-rule are valid if its conclusion is valid.

The cut-free provability of valid normal sequents is obtained by combining the previous results.
Proposition 3. Any valid normal sequent has a cut-free cyclic proof in CLKIDP"P.

Proof. Let S be a valid normal sequent, and (D, R, B) be the output of normProof(.S). Then, by Lemma 6,
(D,R) is a cut-free CLKIDBIOP/ cyclic proof of S with open buds B and the sequents on B are strongly
normal and valid. By Lemma 4 there is a cut-free CLKIDP'P cyclic proof of S with open buds B. The

sequents on B have cut-free non-cyclic proofs by Proposition 1. Hence, by combining them, we can obtain a
cut-free cyclic proof of S in CLKIDP™P.

Next, we prove the cut-free provability of valid sequents. It is shown by the fact that a valid sequent has
a cut-free derivation with open buds of valid normal sequents. The cut-free derivation is constructed by the
algorithm normalization given in Figure 3.

Define |S| by the total number of the logical connectives in a sequent S. We note that normalization(S)
terminates for any S, since, if normalization(S) has an infinite run, then there is a constructed derivation
D with a path of length [S| + 1 (say (root,ws,...,w|g)), and then we have a contradiction from |S| =
|D(root)| > |D(wy)| > -+ > [D(w)g))| > 0. Hence, for any S, normalization(S) returns (D, B), where D is
a derivation of S with open buds B. Also we can easily see that all sequents on nodes in B are normal.

We now show the cut-free completeness theorem of CLKIDP'OP.

Proof (Proof of Theorem 2). Let S be a valid sequent and (D, B) be the result of normalization(S). Then
D is a derivation of S with open buds B of normal sequents. Let {w,...,w,} be B and S; be D(w;) for
1 < 7 < n. We claim that, in each case (a)—(f) of the while-loop, D is extended keeping validity of sequents,

Input So: sequent
Output (D, B), where D is a cut-free derivation of Sy with open buds B

So (single node (only root) derivation of Sy with bud Sp)
{root} (set of unfinished nodes)
[

TQY

while G # 0 do
Take w € G and let S be D(w).
G:=G\ {w}
if S is normal then
B :={w} U B; continue
if S=1,01 Ap2t Athen (a)

7

let S’ be I', p1, 2 F A; update D replacing S at w by % (AL);

G := {w'} UG, where w’ is the new node for S’; continue
if S=1,¢1V 2+ A then (b)
let S| and S5 be I, p1 = A and I, g2 = A, respectively;

/ /

2

update D replacing S at w by S]_ (VL)

G := {w},wy} UG, where w; and w) are the new nodes for S and S}; continue

if S=1,-p+ A then (c)
let S" be I'- A, ;

’
update D replacing S at w by % (=L);

G := {w'} UG, where w’ is the new node for S’; continue
if S=1IF A o1 Vs then (d)
let S" be I' = A, p1, p2;
!

update D replacing S at w by % (VR);

G := {w'} UG, where w’ is the new node for S’; continue
if S=TF A o1 A pz then (e)
let Sy and S be I' = A, 1 and I' = A, 2, respectively;
!’ ’

update D replacing S at w by % (AR);

G:= {u/l7 w;} U G, where “’/1 and w; are the new nodes for Si and Sé; continue
if S=TI'F A, —p then (f)
let S" be I',p - A;

’
update D replacing S at w by % (=R);

G := {w'} UG, where w’ is the new node for S’; continue

done
return (D, B)

Fig. 3. Algorithm: normalization

that is, if a bud node of D is valid, then the additional nodes are also valid. Hence Sy, ..., .S, are valid normal
sequents. By Proposition 3, S; has a cut-free cyclic proof for any j. Therefore S has a cut-free cyclic proof.

Theorem 3 (Cut-elimination property of CLKIDP™°P). Any provable sequent in CLKIDP™P has a
cut-free cyclic proof.

Proof. Let S be a provable sequent in CLKIDBrOp. Then it is valid by soundness. Hence S has a cut-free
cyclic proof by Theorem 2.

4 Failure of Cut-Elimination for CLBI‘I"DO

This section is a summary of the result in [8].
In this section, we show the cut-elimination fails for the cyclic proof system of the bunched logic CLBIfp,
which is a core subsystem of the logic in [1].

4.1 Core Bunched Logic Blipg

As with CLKIDBIOP, we fix a signature consisting of non-inductive and inductive propositional symbols.
In this section, we use metavariables A, B,... for non-inductive propositions and P, @,... for inductive
propositions.

Definition 14 (Formulas of Bling). Let I and T be propositional constants. The formulas of Blipo,
denoted by ¢, ,. .., are defined as

pu=I[TIA|P[¢xg[dNG.

In this paper, * and A are treated as left-associative operators, that is, we write ¢ % o % @3 for (P1%P2)*ps.
The notation A™ denotes A % --- * A where the number of A’s is n. We also use the notation P * A™ for
PxAsx--- %A namely (---(PxA)*A)---)x A).

Definition 15 (Bunch). The bunches, denoted by I', A, ..., are defined as
NAw=¢ || I;T.

We write I'(A) to mean that I of which A is a subtree. For a bunch I'(A), I'(4’) is a bunch obtained
by replacing the subtree A of I" by A'.

The labels "," and ";" intuitively mean % and A, respectively. For a bunch I', we define the bunch formula
¢r as the formula defined as:

or=1T, (I is a formula);
éry,r, = ¢, * Ory;
¢F1;F2 :¢F1 /\Qb[“z.

Definition 16 (Equivalence of bunches). Define the bunch equivalence = as the least equivalence relation
satisfying:

— commutative monoid equations for ’,” and I;

— commutative monoid equations for ;" and T ;

— congruence: if A= A’ then I'(A) = T'(4").

We use the notation |¢| and |I'| for the sizes of the formulas and the bunches, which are defined as usual.

In the case of the bunched logic, the inductive propositions are defined by not only the ordinary con-
junctions but also multiplicative conjunctions, so the rules of inductive definitions are slightly generalized as
follows.

Definition 17 (Inductive definition). An inductive definition clause of P is of the form P := ¢. For a
set @ of inductive definition clauses of inductive propositions, we define &p = {¢ | P := ¢ € &}. We say that
P is defined by P:=¢1 | -+ | ¢r in @ if and only if Pp = {¢1,- -+ , ¢}

Definition 18 (BlIipg sequent). Let I' be a bunch and ¢ be a formula. I' + ¢ is called a Blipg sequent.
I is called the antecedent of I' b ¢ and ¢ is called the succedent of I' b ¢. We define L(I' + ¢) = I' and
R(T'+) = 6.

The standard models of Blipg are defined in [1]. However, in the following we need only a particular
class of the standard models, called the multiset models. For the set of atomic propositions {A4, ..., A,}, the
multiset model My for X is the tuple (R, W, 0) such that

— Rl is the set of multisets consisting of ay,...,a,;
— W is the merging operation of two multisets;

10

— the satisfaction relation r = ¢ for r € Ryt iS given as:

rET always holds
rElI<r=>0
r = A; <= r = {a;} (for an atomic proposition A;)
r = P <= r = P™ for some m
r = PO never holds
r= P s = gP™ L PPy, Py
for some ¢ € @p containing inductive propositions P, ..., Py

rE¢INds <= 1= ¢ and r = ¢
rE¢xds <= r=ryoryand r; = ¢ and r9 = ¢

for some 11,79 € R .

For example, {a1} E A1, {a1,a2} F A1 x Ay, and {a1,a1} E A1 % Ay = I are true, and {a;} = Az and
{a1} E A1 x A; are false.

The cyclic proof system CLBIfp, for the core bunched logic is defined as with CLKIDBrOp by the following
inference rules.

Definition 19. The inference rules of CLBLp,, are the following.
'to Alp)Foy

gF g A0 AT Fo O,
% F}?;A—W (@) % (B) (A=T)
Hogre o SO0 gy Lh9% wmy a<ism
where the inductive predicate P is defined by P:= ¢y | ... | ¢n. (UL) and (UR) are called unfolding rules.

The soundness is proved in [1].

Theorem 4 (Soundness CLBI}). If I' - ¢ is provable in CLBIy, then I' b ¢ is valid.

4.2 Proof Unrolling

Our proof of the failure of the cut-elimination relies on a new technique, called proof unrolling: for a given
cyclic proof of I' - ¢ and a bunch I that is obtained by completely unfolding the inductive predicates in I,
we can construct a non-cyclic proof of I'” F ¢ by unrolling the cycles in the given cyclic proof.

For example, consider two inductive propositions P4 and P 4 4, whose inductive definitions are:

PA;:I|PA*A PAA:=I|PAA*A*A.

For these inductive propositions, the sequent P44 F P4 is provable in CLBIp, as Figure 4. The sequents
marked (}) are corresponding bud and companion. The numbers (1), (2), ... are identifiers of sequents.

From this cyclic proof, we can construct a non-cyclic proof of I« Ax Ax Ax AF Py for I« Ax AxAx A €
Unf(Paa) by the proof unrolling as Figure 5. The identifiers of sequents indicate the corresponding nodes in
the cyclic proof, where we unroll the cycle at () twice, and for (UL) in the cyclic proof, we choose the right
premise twice at (3) and the left premise at (2).

11

PaaFPa(8)(f) AF A(9) (Az)

(xR)
Paa,AEPy4x A(T)
PanArPa0) VB aramg AY
(Paa,A),AFPaxA(5)
(Az) (Paa,A),AF-Pa(4) (*(L(gR)
I+1(2) UR) Paa*x A, AFPA(3) (+L)
I+-Py PaaxAx APy (L)
Paa b Pa(1)(1)
Fig. 4. Cyclic proof of Pga - Pa
(Az")
I+1(2) UR)
TFPA8)
T, AF PaxA(T) EZL];) (42
I,AF PA(6) A+ A(10) (*Lm)
(I,A),AF P4 * A(5) UR)
(I,A),AF PA(4) (D)
T+A AFP4(3) D) ()
IxAxAFPa(8) AF A9) (+R)
T+ A% A AF Pax A7) R Az
ITxAxA AFPa(6) A+ A(10) (+R)
(I+AxA,A),AFPaxA®5) R
(A AN AFPA))
IxAxAxAJAFPa(3) (+I)

ITxAxAxAx AFPa(1)

Fig. 5. Non-cyclic proof of I * A Ax Ax A+ P4 constructed by proof unrolling

12

4.3 Failure of Cut-Elimination

We give a counterexample of the cut-elimination property in CLBIj,,. We fix the language X consisting of
the atomic propositions A and B, and the inductive propositions P4g, Pga, P4, and Pg. We also fix the set
@ of inductive definitions for Pyp, Ppa, P4, and Pp defined by:

Pap:=Pp|PapxA4; Py:=1|Pax4;
PBAZZPA|PBA*B; PB::I|PB*B.

Intuitively, P4 and P mean I« A™ and I« B™ with arbitrary n,m > 0, respectively. P45 and P4 mean
(I+B™)xA™ and (I+A™)*B™ with arbitrary n,m > 0, respectively. We note that P4 and Pp4 are logically
equivalent in the standard models since the separating conjunction * and the formula I are interpreted as a
commutative monoid operator and the unit of it, respectively.

The intention of the name P 45 is that, during the unfolding of P 45, A’s appear first, and then B’s appear
in the unfolding of Pp. P4 is also named with a similar intention.

Then, we show that the entailment P4p - P4 is a counterexample for the cut-elimination.

First, a cyclic proof of Pap F Ppa in CLBIjp,, with (Cut) is given in Figure 6.

Ppa,AFPpa(#) BFB EA;))
*
PA l_PA (A:E) AF A (A;) (PBA7A)7B|_PBA*B (E)
Ps,AFP xA UR(*) (Ppa,B),AFPpa*xB (UR)
Pa,AFP ([(]R)) (Ppa,B),AFPga (+L)
Pa,AFPpy Ppa*B,AFPpy (L)
Pap F Ppa(Q@) Ppa, At Ppa(#)
(Cut)
Pap,AFPpa (+L)
Pap* A Ppa(l)
is the subproof of the following proof figure:
PsFPpa(t) BFB (A;)
77 42 Py BrPoar B P
——— (UR) ——Fa 5 — (UR)
IFPa (UR) Py, BFPpa (L) .
I+Ppa Pp*xBFPpga (L) the above proof figure
Pp FPpa(t) Papx At Ppa(l) R

Pap FPpa(@) L)

Each bud marked (t), (@), or (#) has its companion with the same mark.

Fig. 6. CLBIp, proof of Pap - Pga

Proposition 4. Pap t Ppa is not cut-free provable in CLBLp,.

Here we give a proof sketch. We assume the existence of a cut-free cyclic proof of P4 - Pga. By the
proof unrolling, we can construct non-cyclic proofs of ¢ = P4 for any unfolded formula ¢ of P 45. Hence we
have proofs of I+« A™ = P4 for arbitrary n. We consider parts of the proofs of I+ A™ - P g4 which contain the
conclusion and do not contain the rule (UR). We call such parts the proof segments. In such a proof segment,
{a"} € My satisfies every antecedent. Then, {a™} also satisfies every antecedent in the corresponding part
of the cyclic proof. Since the cyclic proof is finite, for a sufficiently large n, the antecedents cannot contain
A™, but they must contain either P4p or T, and then both {a"} and {a™, b} satisfy the antecedents. On the
other hand, since the proof segment does not contain (UR), every succedent is Pg4. When we unfold Pp4,
we have to decide either P4 or Pp4 * B. However, neither of them can be satisfied by both {a"} and {a", b}.

13

Theorem 5 (Failure of cut-elimination in CLBI([8]). CLBI,, does not enjoy the cut-elimination
property.

This result is easily extended to the original cyclic proof system C LBI%}, in [1], which contains full logical
connectives of the bunched logic and inductive predicates with arbitrary arity.

Corollary 1 (Failure of cut-elimination in CLBIY,[8]). CLBIY), does not enjoy cut-elimination prop-
erty.

5 Conclusion

We have considered two cyclic proofs with inductively defined propositions: CLKIDP™P for the ordinary
propositional logic and CLBIj, for the bunched logic. We have proved the cut-elimination holds for
CLKIDP™P | while fails for CLBIp,. In [8], it was also discussed that the proof of the failure of the cut-
elimination can be applied to the (multiplicative) linear logic and the separation logic with nullary inductive
predicates.

It is interesting for future work to investigate the reason for success or failure of the cut-elimination of
the cyclic proof systems.

References

1. Brotherston, J.: Formalised inductive reasoning in the logic of bunched implications. In: Proceedings of SAS ’07.
LNCS, vol. 4634, pp. 87-103 (2007)

2. Brotherston, J., Distefano, D., Petersen, R.L.: Automated cyclic entailment proofs in separation logic. In: Proceed-
ings of CADE-23. LNAI, vol. 6803, pp. 131-146 (2011)

3. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover. In: Proceedings of APLAS 2012.
LNCS, vol. 7705, pp. 350-367 (2012)

4. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. Journal of Logic and Computation
21(6), 1177-1216 (2011)

5. Doumane, A.: On the infinitary proof theory of logics with fixed points. Ph.D. thesis, Paris 7 (2017)

6. Kimura, D., Nakazawa, K., Terauchi, T., Unno, H.: Failure of cut-elimination in cyclic proofs of separation logic.
Comupter Software 37(1), 39-52 (2020)

7. Masuoka, Y., Tatsuta, M.: Counterexample to cut-elimination in cyclic proof system for first-order logic with
inductive definitions. Available at https://arxiv.org/abs/2106.11798 (2021)

8. Saotome, K., Nakazawa, K., Kimura, D.: Failure of cut-elimination in cyclic proofs of bunched logic with inductive
propositions. In: 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2021),
Buenos Aires, Argentina (online). Leibniz International Proceedings in Informatics (LIPIcs), vol. 195, pp. 11:1-
11:14 (July 2021). https://doi.org/10.4230/LIPIcs.FSCD.2021.11

14

