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1 Introduction

We survey recent results on reflection in second-order arithmetic. The reflection principles we consider can
be roughly divided into two categories: semantic reflection and syntactic reflection.

We first sketch what we mean by semantic and syntactic reflection. A semantic reflection principle is of
the form

if ¢ is true then there is a model which satisfies .

We consider both variations in the form of ¢ and in the properties of the models. A syntactic reflection
principle is of the form

if ¢ is provable then ¢ is true.

Again, we consider variations in the form of ¢; but we also consider variations on the system ¢ is provable.

We use standard notations for second-order arithmetic. Definitions for the systems considered in this
survey can be found in Simpson [13]. We work in RCA( unless stated otherwise. We use N for the set of
natural numbers inside models and w for the “real” set of natural numbers.

There are many variations for reflection principles in reverse mathematics. Precise definitions are in the
main text but we explain the notation here. Ref is used for syntactic reflection; wRef and SRef are used for
w- and S-model reflection, respectively; wx Ref is used for syntactic reflection for w-logic, with X € {P, R, I}.
To restrict the principle to a class of formulas I', we use I' as a prefix: I'-Ref. We append (1') to restrict the
reflection to formulas provable in 7' or models satisfying T'. If there is no theory after a reflection principle
we may consider 7" empty. Append ~ and ~~ to consider only formulas without set parameters and formulas
without any parameters, respectively.

2 Lifting results from first-order logic

Frittaion [5] studied the relation between reflection and induction in second-order arithmetic. His results
transfer classical results in first-order arithmetic to second-order arithmetic. Yokoyama [14] studied the
relation between reflection and variations of the Paris-Harrington theorem in second-order arithmetic.

Kreisel and Lévy [6] studied the connection between reflection and induction in first-order arithmetic.
Formally let Ref(T") formalize the schema “if ¢ is provable in T then ¢ is true” and Tl(gg) is transfinite
induction up to £qg. Kreisel and Lévy showed that

EA + Ref(EA) = PA; and
PA + Ref(PA) = PA + Tl(eo),
where EA is Kalmér’s elementary arithmetic and PA is Peano arithmetic. A finer analysis of the equivalence
between reflection and induction was given by Leivant [7]:
EA + III,, = EA + X, 1-Ref(EA)
= EA + 11,1 2-Ref(EA),



where I'-Ref(EA) is the reflection schema Ref(EA) restricted to formulas in I" and III,, is the induction schema
for II,, formulas.

Frittaion [5] showed that the relation between reflection and induction still holds in second-order arith-
metic. He proved that if Tj is a finitely axiomatizable second-order arithmetic theory and 7T is obtained by
adding full induction to Ty, then

To + Ref(1p) = T'; and
TO + Ref(T) = To + Tl(&'o)

He also extended Leivant’s result to second-order arithmetic: if T} is a II},, , finitely axiomatizable extension
of RCA(, then

IT;, 1 -Ref(Tp) = 111}, D (IIL},)~ = %1, ;-Ref(Tp); and
IT, , -Ref(T) = II,-Tl(o) 2 II1-Tl(gg) ™ = 5, 1-Ref (1),

whenever n > k + 1.

The inclusions above do not reverse, as uniform reflection for II} formulas does not prove local reflection
for ¥} formulas and vice-versa. More precisely, if Ty is a II3 finitely axiomatizable extension of ACA, and
n > 1, then

To + 11} o-Ref(Ty) I/ 2 o-Ref (1) ™,

and, if Ty + X} 1-Ref(Tp) + X1 1-AC is consistent, then
To + 2} . 1-Ref(Tp) V11, -Ref(Tp) ™.

Frittaion asks if the consistency condition above is necessary. He also asks about the relation between local
reflection, induction, transfinite induction up to €9 and their parameter-free variants ~ and ~~.

We now turn back to first-order arithmetic. Paris and Harrington [9] proved the equivalence between the
Paris-Harrington theorem and ITo-Ref(PA). In [14], Yokoyama characterizes variations of the Paris-Harrington
theorem as reflection theorems for subsystems of second-order arithmetic. A restricted I13 formula is a formula
of the form VX.0 where 6 is X23. Denote the class of restricted I1} formulas by rII}. Yokoyama states that:

o P, ItPH,, rII}-Ref(IXY), 1II}-Ref (WKLo + RT2), and the well-foundedness of w* are pairwise equiv-
alent;

o PH’, ItPH, 1TI!-Ref(159), rII!-Ref (WKLo + RT?), and the well-foundedness of w®" are pairwise equiv-
alent;

. ﬁnﬂ, rITi-Ref(130), and the well-foundedness of w,, 1 are pairwise equivalent, for n > 1;

e PH, ItPH, (n > 3,2 < k < 00), 1113-Ref (ACAy), and the well-foundedness of £, are pairwise equivalent;
and

e ItPH is equivalent to rITi-Ref(ACA).

Yokoyama proves the equivalence between variants of PH and well-foundedness by measuring the largeness
of finite sets using ordinals; and the equivalence between variants of PH and reflection principles using the
method of indicators. For definitions of the systems above see [14].

3 [-model Reflection and Sequences of S-models

In this section we consider the characterization of 8-model reflection found in Simpson [13], and the author
and Yokoyama’s characterization of the existence of sequences of S-models by reflection principles [8].

Any subset of N can be viewed as a countable coded model. Let M C N, the sets in the coded model M
are (M), = {i| (i,n) € M}, for n € N. M is a countable coded 3-model iff for all e,,m» € N and X,Y € M,



ei(e,m, X,Y) holds iff M = pl(e,m,X,Y) holds. Here (! is a fixed universal lightface IT1 formula (see
[13, Section VIL.2]). Br-model reflection for I" formulas is the axiom schema stating that, for all X C Nand I’
formula ¢(X), if ¢(X) holds then there is a countable coded Sr-model M such that X € M and M = ¢(X).

For n > 1, let II1-CAg denote axiom system obtained by adding II} comprehension and ¢ induction
to RCAg; and Strong Y1-DCq denote the axiom system obtained by adding strong Y. dependent choice to
ACAy. It is known that Strong 31-DCq and Strong ¥3-DCy are respectively equivalent to I1}-CAg and IT3-CA
[13, Theorem VIL.7.6]. If V = L, then Strong X1-DCy is equivalent to I1%-CA.

Strong X1-DCy also is equivalent to the existence of coded S,-models. Furthermore, the Strong ¥1-DCg
are equivalent to versions of S-model reflection: Strong 3} +1-DCo is equivalent to Sy1-model reflection for
i 3 formulas; and i 42-DCo is equivalent to Bg1-model reflection for I 4 formulas.

In [8], the author and Yokoyama studied sequences coded models of the form:

XeYye -+ € Y,
Yo Cp, -+ Cp, Yo S N,

where e € w, ,n € N and N is the ground model. The existence of such sequences of arbitrary length n € N
can be characterized by reflection principles. Let t).(i,n) formalize the statement “there is a sequence of
coded models Yy, ..., Y, such that X € Y, € Yiy1, Vi Cp, Y1 and Yiqg Cp, N for all k < n. If ¢ <4, then
Vn.1e(i,n) is equivalent to I} ,-Ref(2}-DCy).

The author and Yokoyama also proved that particular instances of this equivalence can be characterized
as determinacy axioms:

o 11}-Ref(ACAy) is equivalent to Vn.(%Y),-Detg;
o II3-Ref(IT}-CAp) is equivalent to Vn.(X9),,-Det; and
o II}-Ref(I13-CAp) is equivalent to Vn.(%9),-Det.

Note that T13-Ref(ACA), TT3-Ref(I1}-CAp) and TTi-Ref(I13-CAg) do not satisfy the hypothesis for Frittaion’s
theorems described in Section 2.

During the RIMS 2021 Proof Theory Workshop, Toshiyasu Arai asked about the characterization of
sequences of coded models with ordinal length.

4 TIterated Reflection and w-reflection

Pakhomov and Walsh [11] studied the relation between iterated reflection principles and w-model reflection
principles. In [10], Pakhomov and Walsh use iterated reflection principles to study the II1 proof-theoretic
ordinal of theories extending ACAy.

We now define the iterated reflection principles ITL-Ref®(T’) and ITL-RefON(T'). Fix a theory T finitely
axiomatizable by a I13 formula. Define:

ITL-Ref®(T') := T + {II}-Ref(IT}-Ref®(T)) | 3 < a},

and

ITL-RefON(T') := Ya(WO(a) — II}-Ref(II}-Ref? (T))).

Any set of N can be viewed as a countable coded w-model. Let M C N, the sets in the coded w-model
M are (M), = {n | (i,n) € M}, for n € N. Let IIl-wRef(T) formalize “for a I} formula ¢(X) and a set
X C N, there is a coded w-model M such that X € M, M = ¢(X) and M ET.

IT1-RefON(T') is equivalent to every set being contained in an w-model of T. This can be generalized for
more complex theories: if 1" is a II}, | ; axiomatizable theory, ITL-RefON(T') is equivalent to II}-wRefON(T).

Pakhomov and Walsh use this result to uniformly prove that |[ACAS lm = ¢2(0), |31-AColyy1 = [T13-Ref (X1-ACo)

¢eo(0), [ATRo| i1 = Lo, and |ATR[yy; = T',. Here, |T|y1 is the ITj proof theoretic ordinal of T



The connection between iterated II}-reflection and II} proof-theoretic ordinals was studied by Pakhomov
and Walsh in [10,12]. Let T, U be theories in the language of second-order arithmetic, then T <m U ifft U
proves IT1}-Ref(T), the syntactic reflection principle for II} formulas provable in T. The restriction of <m to

11 sound extensions of ACAg is well-founded.
Let T be a IIj sound extension of ACAg. Denote by |T|aca, the rank of T in <m and by [T'|i the o}

proof theoretic ordinal of T'. Let ACAS’ denote the axiom system consisting of ACAy and the assertion that,
for any X C N, the w'" Turing jump of X exists. If T is a TT}-sound extension of ACA{, then

T'laca, = T -

In [10], this is proved using iterated reflection principles; in [12] a proof using cut elimination is given. They
also prove that, for a given ordinal notation system a, [I1;-Ref®(ACAg)|aca, = o and [I1j-Ref*(ACA)|1 = €.
Furthermore, I1{-Ref®(ACAy) is I}-conservative over I (I13)-Ref*> (RCA), where I3 (I13) denotes the class
of formulas of the form VX.¢ with ¢ € I19.

In [11], Pakhomov and Walsh also study the ITi-proof theoretic ordinal of theories. The proof theoretic
dilator of a theory T is the function from w; U {00} to wy U {co} defined by:

la| = |T +WO(a)|p:.

Write | |3 to denote the proof theoretic dilator of T'. Tf T'is a I} axiomatizable theory such that [Ty = |pF]
for some ordinal «, then for any (3, we have

whP
IL3-Ref? (T) |y = @™ |-

They also proved |H%—wRef°‘(ACAO)|H5 = |¢p{ ol Here ¢, is the o' Veblen function; ¢ (5) is the least
ordinal strictly above 3 that is value of ¢,; and o7 () is the 4" ordinal strictly above 3 that is value of
Pa-

As a last note, w-model reflection is also related to transfinite induction. Let 0 < n < w and fix a finite
axiomatization of ACAq. Jéger and Strahm proved that ACAg + ¥, ,-wRef(ACAg) = II}-Tly. This is a
refinement of Friedman [4], who proved .. -wRef is equivalent to IIL_-TI. A proof of this result can be found
in [13, Theorem VIIL.5.4]. A particular case characterizes ¥{ dependent choices: ¥{-DC is equivalent to
Y1 wRef and to I3-TI [13, VIIL5.12].

5 w-logic Reflection, ATR,, [13-CAy and Transfinite Induction

In this section we consider reflection for w-logic. w-logic is obtained by adding the w-rule to second-order

arithmetic:
©(0),T (1), ¢(2),T
Va.p(z),T

Fernandez-Duque [3] mentions three ways to model the statement “g is a theorem of w-logic”:

o there is a well-founded derivation tree formalizing an w-proof of ;

e there is a well-ordering A such that ¢ belongs to the set of theorems of w-logic obtained by recursion
along A;

e ¢ is in the least set closed under axioms and rules of w-logic.

Denote “g is a theorem of w-logic” in these ways by [Ply, [R]e, and [I]p, respectively. Therefore we have
three varieties of reflection for w-logic, one for each way. If X is one of P, R or I, let [X|A]¢ mean “there
is an w-logic proof of ¢ using A as an oracle”. wxRef(T") formalizes the sentence “for all A C N, if [X|A]¢
holds then so does ¢”. We write wxRef when 7" is empty.



Two of the big five subsystems of second-order arithmetic have been characterized by w-logic reflection:
Cordén-Franco et al. [2] proved that IT3-wrRef is equivalent to ATRy; and Ferndndez-Duque [3] proves that
II3-wsRef is equivalent to I1-CAy.

Arai [1] has proved the equivalence between w-logic reflection and a transfinite induction: RCAg 4+ wpRef
is equivalent to RCAq + I11-Tly.

Cordoén-Franco also proved that

Y1 1-wrRef(ACAg) = ATR, + ITL-TI,

where 21 +1-wrRef(ACAy) is obtained by adding the axioms of ACAg to the w-logic. Fernandez-Duque proved
an analogous result for II{-CAg: X, -w;Ref(ACAy) is equivalent to II{-CAg + II.-Tl.
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