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Abstract

The theorem of Ajtai ([1], improved by [11] and [12]), which shows a superpolynomial
lower bound for AC°-Frege proofs of the pigeonhole principle, was a significant breakthrough
of proof complexity and has been inspiring many other important works considering the
strengths of modular counting principles and the pigeonhole principle. In terms of bounded
arithmetics, the theorem implies that the pigeonhole principle is independent from the
bounded arithmetic V0. Along the stream of researches, [7] gave the following conjectures
and showed some sufficient conditions to prove them:

o VO L UCPY i injPHPM.

e For any prime number p other than 2, V° + oddtowny, I Count?.

e For any integer p > 2, VO + FIE; I Count?.

Here, injPHP" ! is a formalization of the pigeonhole principle for injections, U CP,i’d is
the uniform counting principle defined in [7], Count®, is the modular counting principle
mod p, oddtowny, is a formalization of oddtown theorem, and FIFE}, is a formalization of
Fisher’s inequality.

In this article, we give a summary of the work of [7], supplement both technical parts
and motivations of it, and propose the future perspective.
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2 Introduction

Ajtai’s discovery ([1]) of VO I/ ontoPH P!, where ontoPH P! is a Y §-formalization of
the statement “there does not exist a bijection between (n + 1) pigeons and n holes,” was a
significant breakthrough in proof complexity. The techniques which were later formalized in
[11] as k-evaluation and switching lemma have been utilized to further works to compare the
relative strengths of various types of counting principles (e.g. [2] and [3]). Along the course



of the researches, [7]' gave the following conjectures and showed some sufficient conditions to
prove them:

o VO UCP: W/ injPHPI.
e For any integer p > 2 which is not a power of 2,V° + oddtowny, I/ Count?,.
e For any integer p > 2, VO + FIE), I/ Counth,

Here, injPHP?"*! is a formalization of the pigeonhole principle for injections, U C’P,i’d is the
uniform counting principle defined in [7], Count}, is the modular counting principle mod p,
oddtowny, is a formalization of oddtown theorem, and FIFE}j is a formalization of Fisher’s
inequality.

In this article, we give a summary of the work of [7], supplement both technical parts and
motivations of it, and propose the future perspective.

To be concrete, the article is organized as follows. In section 3, we prepare the basic notions
and notations which we need. In section 4, we summarize the main parts of [7] with some
supplements. In section 5, we discuss the outlook of the future research.

3 Preliminaries

Throughout this paper, p and ¢ denote natural numbers. The cardinality of a finite set S is
denoted by #S. We prioritize the readability and often use natural abbreviations to express
logical formulae. We assume that the reader is familiar with the basics of bounded arithmetics
and Frege systems (such as the concepts treated in [6]). Unless stated otherwise, we follow the
convention of [6].

As propositional connectives, we use only \/ and —. We assume \/ has unbounded arity.
When the arity is small, we also use V to denote \/. We define an abbreviation /A by

k k
/\ pi =7 \/ i
i=1 i=1

When the arity of A is small, we also use A to denote it. We give the operators \/ and A
precedence over V and A as for the order of application.

Example 1. A; ;v A; ¢ means (A; ¢;) V (A; ¥5)-
We also define an abbreviation — by
(p =) =0V

For a set S of propositional variables, an S-formula means a propositional formula whose
propositional variables are among S. For a set S = U?:l{sg}ielj of propositional variables

!For the latest revised version, see [8].



where each sg is distinct, an S-formula ¢, and a family {@g}ielj (j =1,...,k) of propositional
formulae,

Ylei /st ot/ 5]

denotes the formula obtained by substituting each g&{ for sg simultaneously.

It is well-known that a 263 ﬁ%—formula o(z1,...,2k, R1, ..., R;) can be translated into a
family {¢[n1,...,ng, m1, ..., oy, ngma,...,men of propositional formulae (see Theorem VII
2.3 in [6]).

Now, we define several formulae which express so-called “counting principle.”

Definition 2. For each p > 2, let Count?(n, X) be an L’QA—formula as follows (intuitively, it
says for n Z 0 (mod p), [n] cannot be p-partitioned):

Count?’(n, X) := —pln — =((Ve € X.(e < (n+ 1)’ — Code(e, n))
A (Vk € [n].3e € X.k €* e)
A (Ve, e € X.=(e L ¢€)))

Here, p|n is a $F formula expressing p divides n. [n] denotes the set {1,...,n}, and we code a
p-subset e = {e1 < -+ < ep} of [n] by the number >_Y_; ¢;(n+1)P~*, and Code(e,n) is a natural
Y ¥-predicate saying “e is a code of p-subset of n.” The elementship relation €* is expressed
by a natural $F-predicate. e 1 ¢/ means “e # €’ and eNe’ # (),” and it is also expressed by a
natural ©F-predicate.

We also define the propositional formula Count, as in [9]:

_‘( /\ke[n] VE:kEEE[n]P Te/\
Count? := /\e,e’e[n]l’:ej_e/(_‘re V-re)) (ifnZ0 (mod p))
1 (otherwise)

Here, [n]? denotes the set of all p-subsets of [n], and {r¢}ce[,)» is a family of distinct propositional
variables.

Convention 3. It is easy to see that we may assume | X| = (n +1)? in Count?(n, X) over V°.
Furthermore, with suitable identification of propositional variables, Count?(z, X)[n, (n+1)P] is
equivalent to Count}, over AC?-Frege system modulo polynomial-sized proofs. Thus we often
abuse the notation and write Count}, for Count?(n, X).

Definition 4. The ©F £2-formula ontoPH P(m,n, R) is a natural expression of the statement
“If m > n, then R does not give a graph of a bijection between [m] and [n],” in a similar way
as Count?(n, X). Similarly, the XF £2%-formula injPHP(m,n, R) is a natural expression of
the statement “If m > n, then R does not give a graph of an injection from [m] to [n].”

We also define the propositional formulae ontoPH P and injPH P by

O Niepmy Ve Tid A Nigirepm) Njep) (Crig V —rirg)
A Njem) Viepm) Tii
A /\j;éj’e[n] /\ie[m](ﬁrij Vo)) (i m o> n)
1 (otherwise)

ontoPHP)"" :=



and

2 Niepm) Ve T A Nigiepm) Njep) (g V —rig)
injPHP)" := A Njzjremn] Niepm) (TTig V —rig)) - (i m > n)
1 (otherwise)

With reasons similar to the one stated in Convention 3, we abuse the notations and use
ontoPHP!™ to denote ontoPHP(m,n, R) and injPH P} to denote injPHP(m,n, R).

The following are well-known:
Theorem 5 ([1], improved by [11] and [12]).
VOt ontoPH P2,
Here, we follow the following convention.

Convention 6. For EOB—formulae 1, ...,¢; and @, we write
VOt g+t ib g

to express the fact that the theory VO U {¥V4; | i € [I]} implies VWy. Here, ¥V means the
universal closure.

We use different parameters to express concrete 1/7 and ¢ in order to avoid the confusion. We
also use letters p, ¢ for fixed parameters of formulae (which is not universally quantified in the
theory). For example,

V0 + Count? i Countl,
means

VO +Vk, X.Count? (k, X) I/ ¥n, X. Count?(n, X),

while VO i/ UCPL? means VO I/ VI, d,n, R. UCP(l,d,n, R) (for the definition of UCPL? and
UCP(l,d,n, R), see Definition 12).

In the former example, note that we have used the different variables k,n in order to avoid
confusions on the dependency of variables.

Theorem 7 ([2]). For p,q > 2, VO + Count F Count}, if and only if 3N € N. ¢ | p¥..
Theorem 8 ([3]). For any p > 2, V + Count? I/ injPHPI L.
Also, the following is a corollary of the arguments given in [9]:
Theorem 9 (essentially in [9]). For all p > 2, V0 + z"anHP,iH'1 t Counth.
Remark 10. Note that the exact statement Theorem 12.5.7 in [9] shows is

VOt omfoPHP,iH'1 t/ Count?.

However, with a slight change of the argument, it is easy to see that Theorem 9 actually holds.



In the proof of Theorem 7 and 8, Nullstellensatz proofs (which is written shortly as “N.S-
proofs”) play an essential role in the arguments. The notion is also utilized in [7], so we set up
our terminology on N.S-proofs and end this section.

Definition 11. Let R be a commutative ring, and F be a set of multivariate R-polynomials.
For multivariate R-polynomials g1, go and hy (f € F), {hs}rer is a NS-proof of g1 = g2 from
F if and only if

—g2=> hyf.

ferF

The degree of a NS-proof {hs}cF is defined by maxycr deg(hs). Here, we adopt the conven-
tion; deg 0 := —o0.

4 A summary of [7] with some supplements and remarks

In this section, we give a summary of the main works of [7] and supplement some technical
parts and intuitions.

4.1 UCP* v.s. injPHP!M!

The direct motivation of [7] is Theorem 8. It is tried to make the result uniform with respect
to p. In order to formalize the problem, the following “uniform” version of counting principles
is defined:

Definition 12. UCP(l,d,n, R) (which stands for Uniform Counting Principle) is an L% for-
mula defined as follows:

(d>1A=dn) —

=[Vi € [I].(Vj € [d].3e € [n].R(i,j,e) VVj € [d.—3e € [n].R(i, ], €))
AV(i. ) € [I] x [d].Ve # €' € [n](=R(i, j,e) V =R(i, j,€))
AV(i. ) # (7, 5') € [I] x [d].Ve € [n].(=R(i, j,e) V =R(i", j', e))
AVe € [n].3(i,j) € [I] x [d].R(i,j,e)]

The propositional formula U CPL? is defined as follows:

0 N (A Ve i) Y (Afes = Veep miae))
A /\(i,j)e[l]x[d] /\eie’e[n]<ﬂri7]’»€ V i)

A NGy i< Neep) (TTige V 2T jrie)
A Neein) Vi jyemxa Tigel  (ifn#0  (mod d), d > 1)

1 (otherwise)

UCPTIL’d =

As in the previous definitions, we abuse the notation and use U oP? to express UCP(l,d,n, R).



Intuitively, UCPL? states “if n 2 0 (mod d), then there does not exist a family {Sitiep
which consists of d-sets and emptysets which give a partition of [n].” Each variable r; ;. reads
“the j-th element of S; is e.”

We observe the following:

Proposition 13. 1. For any p > 2, V0 + UC'P,i’d F Counth,.

2. VO 4+ UCPM + ontoPHP™.

Hence, U CPé’d is indeed a generalization of counting principles. Seeing theorem 8, [7]
conjectured the following:

Conjecture 1. For any integer ¢ > 1,
Fo+ UCPY Ypoty(ny ingPHPIHL

Here, for a family {O‘E}EGN of propositional formulae, F. + aj is the fragment of Frege
system allowing the formulae with depth < ¢ only and admitting {a;}; as an axiom scheme.
Furthermore, P 1 (n) ¢on means each ¢, has a poly(n)-sized P-proof.

If this conjecture is true, then it follows that V0 + UCP,i’d I/ inj PH P! by the witnessing
theorem and the translation theorem. By Proposition 13, we can regard the statement as a
“uniform” version of Theorem 8.

In [7], the notions injPH P-tree and k-evaluations using inj P H P-trees are defined, and a
sufficient condition to prove Conjecture 1 is shown.

Definition 14. Let D and R be disjoint sets. A partial injection from D to R is a set p which
satisfies the following;:

1. Each x € p is either a 2-set having one element from D and one element from R, or a
singleton contained in R (in the former case, if x = {i,j} where i € D and j € R, then
we use a tuple (i,7) to denote z, In the latter case, if x = {j} where j € R, then we use
1-tuple (j) to denote z).

2. Each pair x # 2’ € p are disjoint.

The 2-sets in a partial injection p gives a partial bijection from D to R. We denote it by pp;;.
Also, we set pging 1= p \ Pbij-

We define v(p) := U,¢, ¢, dom(p) := v(p) N D, and ran(p) := v(p) N R.

For two partial injections p and 7 from D to R,

1. p||7 if and only if p U T is again a partial injection.

2. p L 7 if and only if p||7 does not hold. In other words, there exist z € p and y € 7 such
that o # y and x Ny # 0.

3. oT:=0UT.



In the following, if there is no problem, we identify domains having the same size n, and
denote them D,,. Similarly, we identify ranges R having the same size n, and denote them R,,.
We also assume that for every pair m and n, D,, and R,, are mutually disjoint.

Definition 15. For each m > n, M denotes the set of all partial injections from D,, to R,.

Definition 16. Let D and R be disjoint finite sets. injPH P-tree over (D, R) is a vertex-
labelled and edge-labelled rooted tree defined inductively as follows:

1. The tree whose only vertex is its root and has no labels is an inj P H P-tree over (D, R).

2. If the root is labelled by “i —?7” having |R| children and each of its edges corresponding
to each label “(i,7)” (j € R), and the subtree which the child under the edge labelled by
“(i,7)” induces is an inj P H P-tree over (D \ {i}, R\ {j}), then the whole labelled tree is
again an inj P H P-tree over (D, R).

3. If the root is labelled by “? — j” having (|D| 4 1) children and each of its edges corre-
sponding to each label “(i,j)” (i € D) and “(j),” and the subtree which the child under
the edge indexed by (i, j) induces is an injPH P-tree over (D \ {i}, R\ {j}) while the
subtree which the the child under the edge labelled by “(j)” induces is an inj P H P-tree
over (D, R\ {j}), then the whole tree is again an inj P H P-tree over (D, R).

For an injPH P-tree T, we denote the height (the maximum number of edges in its branches)
of T' by height(T') and the set of its branches by br(T').

The pair (T, L: br(T) — S) is called a labelled inj P H P-tree with label set S. For each label
s €S, we set brg(T) := L™(s).

Convention 17. When T is an injPH P-tree over (D, R), each branch b € br(T") naturally
gives a partial injection, which is the collection of labels of edges contained in b. We often
abuse the notation and use b to denote the partial injection given by b.

Definition 18. Let I' be a subformula closed set of {ri;}iep,. jer,-formulae (m > n). A
k-evaluation (using injPH P-trees) of I' is a map T.: ¢ € I — T, satisfying the following:

1. Each T, is a labelled injPH P-tree over (D,,, R,) with label set {0,1}.
2. Tp is the inj PH P-tree with height 0, whose only branch is labeled by 0.
3. 11 is the inj P H P-tree with height 0, whose only branch is labeled by 1.

4. T, is the inj P H P-tree over (D, Ry,) with height 1, whose label of the root is i ++? and
bri(Tr,;) = {{i,5)}-
5. T, =T, that is, T', is obtained from 7}, by flipping the labels 0 and 1.

6. Ty, o (where each ¢; does not begin from V) represents | J;c; br1(T,,). Here, we say a
{0, 1}-labelled injPH P-tree T represents a set F of partial injections if and only if the
following hold:

(a) For each b € bri(T), there exists a o € F such that o C b.



(b) For each b € bro(T), every o € F satisfies o L b.

Theorem 19. Let f: N — N be a function satisfying n < f(n) < n°0). Suppose (m,)n>1 be a

sequence of Frege-proofs such that m, proves injPH PJ (n) using UC’P,i’d as an axiom scheme.

Then there cannot be a sequence (1™),>1 satisfying the following: each 1™ is an o(n)-
evaluation using inj P H P-trees over (D f(n),Rn) of I'y,, where I, is the set of all subformulae
appearing in 7,.

Roughly saying, an injPH P-tree is a kind of decision tree, and a k-evaluation using
injPH P-trees is a kind of model of propositional logic, where k is a complexity measure
of the model. The theorem can be read that any Frege-proof of injPH P/: () using U CP,i’d
cannot have a simple model.

Hence, we obtain the following;

Corollary 20. Assume F. + UC’P,i’d Fpoly(n) injPHP ! is witnessed by AC’-Frege proofs
(Tn)n>1. Suppose there are partial injections (py,)n>1 satisfying

e For each n, p, € M"TL.
e n— #ran(p,) — 0o (n — 00).

e There exist o(n — # ran(p,))-evaluations (T"),>1 of I'h, where I',, is the all subformulae
appearing in m,.

Then we obtain a contradiction.

The condition above is an analogue of the switching lemma used in a standard proof of
Ajtai’s theorem (see Lemma 15.2.2 and the section 15.7 in [10] for reference and the historical
remarks). It seems the proof of that this condition holds is beyond the current proof techniques.
The difficulty is relevant to that of the famous open problem; does VOt inj PH Pg” hold? For
future perspectives, see section 5.

On the other hand, there is a natural generalization of counting principles which also implies
injPHPY .

Definition 21. GCP(P,Q1,Q2, R1, R2, My, M1, M) (which stands for Generalized Counting
Principle) is a E(])B £?4—f0rmula expressing the following statement: bounded sets

P,Q1,Q2, R1, Ro, Moy, My, Ms
cannot satisfy the conjunction of following properties:
1. My codes a bijection between (P x Q1) LU Ry and (P x Q2) U Rs.
2. M is an injection from R; to Ro such that some element a € Rs is out of its range.
3. My is an injection from Rs to P such that some element b € P is out of its range.

Remark 22. We can consider the propositional translation of GCP as well as the previous
examples U C’Pf;d, Counth, etc. However, we do not write it down here because we do not use
it this time.



It is easy to see that:
Proposition 23. 1. V04 GCP+ UCPY.
2. VO 4+ GCPF injPHPI .
It is natural to ask:
Question 1. 1. Does the following hold?: VO + UCPH - GCP.

2. Is there any other combinatorial principle than GC'P which also implies inj PH P[L‘H and
some of Counth?

If the conjecture 1 is true, then the answer to the question 1 is no (since GCP implies
injPHP ).
As for question 2, [7] considered oddtown theorem.

4.2 On the strength of oddtown theorem

Oddtown theorem is a combinatorial principle stating that there cannot be (n+1)-orthogonal
normal vectors in 4. In other words, (regarding each v € F% as the characteristic vector of a
subset S C [n]) there cannot be a family (S;);c[n+1) satisfying the following:

e Each S; has an odd cardinality.
e Each S; N Sy (i < i') has an even cardinality.

Historically, oddtown theorem and Fisher’s inequality (introduced in Section 4.3) have been
candidates for statements which are easy to prove in extended Frege system but not in Frege
system ([4]). However, we still do not know the exact strengths of the principles.

[7] first showed that a natural formalization of oddtown theorem over V? is stronger than
several combinatorial principles related to counting.

Definition 24. Define the ¥F £2-formula oddtown(n, P,Q, R, S) as follows:

—[Vi € [n+1].Yj € [n].(S(i,)) « Q(i,§) V e € [n]?.(j €* e A P(i,€))
AYi € [n+1].35 € [n].Q(4, 5)
AVi€ [n+ 11V # 5 € [n].(=Q(, j) V =Q(i, j))
AYi € [n+1).¥] € [n].Ve € [n]*(j € e = —Q(i,7) V = P(i,€))
AYi € [n+1)Ve#¢€ € [n]*(ene #0 — =P(i,e) vV -P(i,¢))
AV < i €[n+1)Vj € [n].(S(,5) AS(,j) « 3e € [n]*(j € e A R(i,7,¢€)))
AVi<i €n+1lVe#e e[n?.(ene #0 — —R(i,i',e) VvV -R(i,i,¢e))]

Intuitively, S above gives S; := {j € [n] | S(i,7)}, P gives a 2-partition of each S; leaving
one element, which is specified by @, and R gives a 2-partition of each S; NSy (i < 7').



Definition 25. Define the propositional formula oddtown,, as follows:

1 (n=0)
al /\ie[n+1] /\je[n]<ﬂ3ij Vogij vV ve;jeee[nP PDie)
A Nienr1) Niep) (55 V —4i5)
A Nieint] Njem) Nesjeeempz (5i V —pie)
A N+ Vel i
A Nienry Nj<jrem) (05 V —aij0)
A Niein1] Nje) Nesjeeeinpz (45 V Die)
A Niepnt] Neerepnizie e (TPie V —Dier)
A Nicirepr) Nem) (78i5 V 25105V Vejeeepn) Tiite)
A Nicirenr1) Njep) Nesjeeem? (8i5 V TTie)
A /\i<i’e[n+1] /\je[n] /\e;jeee[n]2(5i/j V e
A Nicirepna1) Neerepmize e (TTive V Tiver)] (02 1)

oddtown,, :=

By a reason similar to that of Convention 3, we abuse the notation and write oddtown,, to
express oddtown(n, P,Q, R, S), too. It quickly turns out that:

Proposition 26. 1. V + oddtowny, \ injPHPI L.
2. VY + oddtowny, = Count?.
By theorem 8 and 9, we obtain

Corollary 27.

VO +injPHPF™ I oddtown,,
VO Count? V oddtown,,.

This rases the following natural problems:

Question 2. 1. V0 + z'anHP,i€+1 + Countz F oddtown,? How about V? + GCP F
oddtouwn,?

2. VO + oddtowny, - Count?, for which p?

[7] tackled the item 2.
From Proposition 26 and Theorem 7, it is easy to see:

Corollary 28. If p is a power of 2, VY + oddtowny, - Count?,.

[7] conjectured that the converse of this corollary holds. Furthermore, [7] conjectured the
following;:

Conjecture 2. For each d € N and a prime p # 2, Fy + oddtowny tpopy(ny Counts,.

10



Using Theorem 7, it is easy to see that Conjecture 2 implies the converse of Corollary 28.
[7] gave a sufficient condition to prove Conjecture 2:

Theorem 29. Let p € N be a prime other than 2. Suppose Fy + oddtowny, Fpoly(n) Counth,.
Then there exists a constant € > 0 such that for large enough n # 0 (mod p), there exists
m € N and a family (fi;)ic{m+1],je[m] of F2-polynomials such that:

1. m< nOM).

2. For each i € [m+1], there exists a N .S-proof over Fy of Zje[m] fij+1 =0 from ~Countl.
with degree < O(log(n)) (here, we round n¢ to the nearest integer which is not a multiple

of p).

3. For each i # i’ € [m + 1], there exists a NS-proof over Fy of Zje[m] fijfirj = 0 from
=Count?. with degree < O(log(n)).

Here, ~Counth, (where M # 0 (mod p)) means the following system of polynomials:

> 1o — 1, Tewer, T2 — Te
e:;jcec[M]pP

(j € [M],e, e € [M]P,e L ¢)

Hence, if we can prove that such e does not exist, then the Conjecture 2 is true.

Roughly saying, the theorem states the following; if VO + oddtown;, - Counth,, then there
exists a constant € > 0 such that for each n, we can construct a vector of n®® many [Fo-
polynomials whose violating oddtown condition can be verified by a N S-proof from —=Count?.
over Fy with degree < O(log(n)).

4.3 On the strength of Fisher’s inequality

When we discuss whether the condition given in Theorem 29 actually holds or not, it is
natural to also consider the K-analogue of the condition, where K is an arbitrary field other
than . The next combinatoial principle (see Remark 31 for the informal meaning) relates to
a condition which has a similar form to the analogue.

Definition 30 (slightly modified from the version given in [7] 2). We define the =¥ £% formula

2see Remark 31
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FIE(n,S.R) as follows:

FIE(n,S,R) :=
Vi € [n+1)35 € [n)S(, §)
AViy <z € [n+1]3j € [n]((S(i1, ) A =S(i, 4)) V (=S (i1, j) A S(iz, j)))
AViy < i2 € [n+ 1]Vi} < i € [n+ 1]Vj € [n]
(=S (i1, 5) V =S(i2, §) V 35" € [n]R(i1. d2,71, 15, "))
AViy < ig € [n+ 1Vi] < ib € [n+ 1]Vj' € [n]
(=S(i1.5) V =S(i5, §) V 3j € [n]R(in, i2, 11,15, 4, "))
AViy < ig € [n+ 1Vi) < ib € [n+ 1]Vj, 5" € [n]
(= R(i1,i2,i7,45,5,5") V S(i1, 7))
AViy < ig € [n+ 1]Vi) < ib € [n+ 1]Vj, 5 € [n]
(=R (i, d2, 11,19, 7.5) V S(i2, 1))
AViy <ig € [n+ 1]Vi} <5 € [n+ 1]Vj, j € [n]
(= R(in, 42,11, 19, 7,5) V S(i1, 7))
AViy < ig € [n+ 1]Vi} < i € [n+ 1]Vj, 5’ € [n]
(=R(i1, 42,11, 19, 7, 5) V (i3, 5"))
AViy < ig € [n+ 1]Vi} < ih € [n+ 1)Vj € [n]Vj' # 3" € [n]
(mR(i1, i2,11, 15, 4,5) V ~R(i1, 2,41, i3, 5, "))
AViy < iy € [n4 1)Vi) < iy € [n+1]Vj' € [n)Vj # ] € [n]
(—R(i1, iz, 14,1, ,5') V =R, 244,15, . 1))

12



Furthermore, we define the propositional formula FIF, as follows:
FIE, =—( N\ '\ s
i€[n+1] j€[n]

ANV (g A sig) V(550 A siag)

11<ig€[n+1] j€[n]

ll7l27l17l2
AN N NGy Vo

i1 <ig€[n+1] i} <iz€[n+1] j€[n] J'€[n]
A /\ /\ /\ —|S / —|81 ] V \/ 117Z27217Z2
11<i2€[n+1] 7} <i,€[n+1] j'€[n] jE€n]

A

=

11712711712 vV
S’ilj)

i1 <ig€[n+1] 4} <ip€[n+1] j,j €[n]

11 712711 712€[n+1]
A A V Sigj)

i1<iz€[n+1] ¥} <ih €[n+1] 4,5 €[n]

A A G

11<i2€[n+1] ¢} <ih €[n+1] 4,5’ €[n]

’L 7 ’L ’L
A A )

11<i2€[n+1] 7} <i, €[n+1] 4,5’ €[n]

.y
11712711 712 v = l17l27Z17Z2
] ]// )

i1<iz€[n+1] 4} <ip€[n+1] jE€[n] j #y”e[n]

SN N A G s

i1 <iz€[n+1] 4} <is€[n+1] 5’ €[n] j£jen)

A

=

A

=

A

=

A

=

Remark 31. The above formulae are formalizations of Fisher’s inequality: there does not exist
a family {S;}ic[n41) satisfying the following:

e For each i, ) # S; C [n].
e For each 71 < ig, Sil 75 Siz-
e For each i1 <2 and i} < iy, #(Si, N Siy) = #(Sy N Syy).

In the definition of FIE(n, S, R), S intuitively gives a family {Si}ie[n+1]7 and R gives a family
of bijections

{R“ﬂz’ll’lz S ﬁS %S ﬁS }11<12&11<z2

Note that the condition ) # S; is added to the version given in [7] to make the statement
valid in the standard model (if we did not impose the condition, {0, {1},...,{n}} would give
a counterexample).

It is easy to see that FIFE, is a generalization of the pigeonhole principle.

13



Proposition 32. VO + FIE}, - injPHP*!. Hence, for each p > 2, V9 + Count} tf FIE,.

It is natural to ask; which p satisfies VO + FIE), - Counth?
As for the question, [7] gave the following conjecture:

Conjecture 3. For any p > 2, Fo+ FIEg t,01(n) Counth. In particular, VO + FIE}, t/ Counth,.

We give a slightly modified version of a sufficient condition to prove Conjecture 3 in [7],
whose change is along that of the formalization of Fisher’s inequality given in Definition 30.
We may interpret the following theorem in a similar way as Theorem 29; roughly saying, the
theorem states the following; if VO 4+ FIE), - Counth, then there exists a constant € > 0 such
that for each n, we can construct a vector of n®) many K-polynomials whose violating Fisher’s
inequality can be verified by a N S-proof from —Count?. over K with degree < O(log(n)) (a;;
and b;,4,; work as witnesses of S; # () and S;, # S;, in Remark 31).

Theorem 33. Let K be a field. Suppose Fy + FIEj Fpomn) Counth. Then there exists a
constant € > 0 such that for large enough n Z 0 (mod p), there exists m € N and fami-

lies (fij)iepm+1),jem]> (@ij)icim+1]jeim] and (biirj)i<ircim+1],jeim] Of K-polynomials satisfying the
following;:
1. m< noM).

2. For each iy < iy € [m + 1] and i} < i € [m + 1], there exists a N.S-proof of

m m
Z firifisj = Z firjfij
i=1 i=1

from —Countl. over K with degree < O(log(n)) (note that we round n° to the nearest
integer which is not a multiple of p).

3. For i € [m + 1], there exists a N'S-proof of a;;(1 — f;;) = 0 from ~Countl. over K with
degree < O(log(n)).

4. For i € [m + 1], there exists a NS-proof of > ", a;; = 1 from =Count?. over K with
degree < O(log(n)).

5. For i < i’ € [m+ 1] and j € [m], there exist NS-proofs of bj;r; fij firj = 0 and bjj(1 —
fij)(L = fir;) = 0 from =Count?. over K with degree < O(log(n)).

6. For each i < i’ € [m + 1], there exists a N.S-proof of 377", bjirj = 1 from ~Countj. over
K with degree < O(log(n)).

Since the conditions 3 and 4 are newly added to the ones given in [7], we give a full proof
of the theorem just for sure.

Proof. We adopt the notations in [7]. For readability, we assume p = 3. Let proofs (7, )nen
witness

Fy+ FIEg Fpopy(ny Counts.

14



Let '), be the set of subformulae of m,. Apply the switching lemma for 3-tree (cf. Lemma
15.2.2 in [10]), and obtain a constant e > 0 and a restriction p, leaving n¢ elements of the
universe [n] such that there exists an O(logn)-evaluation T™ of T'},. We fix a large enough
n # 0 (mod p), and suppress scripts n of T™, p,, etc. (Count3)? (which can be identified with
Count3.) satisfies T £ (Count3)? (here, T |= ¢ means br(T,) = bri(1,)). Soundness with
respect to = (cf. Lemma 15.1.7 in [10]) gives that some instance

L 11,19 ’Ll 22 i1 22 ’Ll 22
L= FlEn[oij/sij, 0552 r; 77

satisfies T = I. With an additional restriction, we may assume that bro(77) = br(T7).
We obtain the following :

1. Let T; —TV i Since

TE \/ Oijs

JE€[M]

each b € br(T;) has at least one j, € [m] and V' € bry( 15,,,) such that b C b. We relabel
each branch b € br(T}) with (j,) and obtain a labelled injPH P-tree T;.

2. Let Ty iy =T, (01, A01,5)V(-0iy sA01,)) - SIBCE

TE \ (00 A =0i5) V (2045 N i),
jem]

each b € br(T;, ;,) has at least one jj satisfying one of the following :

(a) For all ¥’ € bro(Ty, ;) Ubri(Ty,,, ), b LY.
(b) For all ¥’ € bri(1y, ;) Ubro(Ts,,,, ), b LY.

127b

We relabel each branch b € br(1}, 4,) with (jp) and obtain a labelled inj P H P-tree Tiw‘z‘

11,%2,15 i) 11 99,45 05 . .
3. Let T} ;7772 =T s. BEach b € br(T)77""?) is an extension
%

741 742 7/ 7/2
ﬁ(hl]\/ﬁdlzj\/\/]/E [m] go] J

of some element of bro(7y, ]) bro (T, Tins U bry (T iz i ). If b is an extension of an

]J

element of brq (T such j' is unique.

11121 12)
Jg’

i1,49,1" 4! 11121 i . .
4. Let T, BEMCIEEN A ivigit i Bach b € br(T, ,"7'"?) is an extension of
’ oyt \/“U{z AV P

an element of bro(75, ,) bro(Tg, ,) U; br1(T 4, iyi0 41 )- 1E b is an extension of an element
iJ ro
253
of b’l”l (T i1, il ),
755!

such 7 is unique.
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Now, we set

fij == Z Ta,

aebry (Tgij)

Qi5 = E Lo

O(ebT<j> (Tl)

bi1i2j = E Lo

OéGbT(j) (T'Ll ’7;2)
(i € [m+1],7 € [m])

Clearly, m < n°MW.

We show that each of the following has a NS-proof from —~Count;. over K with O(log(n))-

degree -

m

E ai; =1,
j=1

m

E bilizj = 17
=1

m m

> fuifig =Y fiifug

J=1 j=1

aij(1 = fij) = 0,

bivisj firjfinj = 0

bilizj(l - filj)(l - fizj) = 0.

(i,il,ig,ill,ié € [m + 1]&21 < 22&2/1 < 2/2&] € [m])

(1): Since the left-hand side is the sum of all brances of the 3-pratition tree 7j.
(2): Since the left-hand side is the sum of all brances of the 3-pratition tree Tj, ;,.
x T,

O',L'2j

(3): We first define A;, 4, j := T

Jilj
set of all branches b € A;, ;, ; having the form

b=cd® (ce€bri(ly,;) debri(ly,,))

It is easy to construct a NS-proof of

finjfinj = Z T

bEBiLi2 J

from —~Count3. over K with degree < O(log(n)).

(1)

(2)

3)

(i17i2 € [m—|— 1]7j € [m]7i1 < ig). Let Bi17i27j be the

(7)

Now, fix i1, 42,4}, € [m + 1] such that i1 < iz and ¢} < 4. For each j € [m], consider
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the trees

R o i17i27i/17i/2 b
RJ T All,lzﬂ * E : (Tl,j )
beBil,igyj

;o 11,92,07 85\ b
Rj=Ay g%y (Ty; )"

bEBy1 iy

For each r = bd® (b € By, 4,4, d € br(TfljfiZ’il’i2)), since d||b, there exists a unique j. such
that d is an extension of some ¢ € bri(T ; ). Let B; C br(R;) be the set of all
3.7

branches having the above form.
Similarly, for each 7' = bd® (b € By i, d € br(Télij“Zz)), since d||b, there exists a

unique j,» such that d is an extension of some ¢ € bri (T . Let B} C br(R}) be

i1,i,4],ih )

;Thj
the set of all branches having the above form.
Now, we define
Ty = (((TﬁTH@vll 2y, _*Tﬁrilyizyiﬁyiévs_ )*
4.5 i 4.3’ P27
Tﬁrilyizyi/piévs ) * Tﬂil,ig,i;@ Ve, "
4.3 i’ 4rd! i3
for each j # j' € [m]. Using these trees, we define
A . .. AN AYA
Sj = Rj * E (T} 1 * E (Rj;) )",
reB; tebr (T, j;)
!
SI:R/* T~ % R~ t'r.
=R ) (T g > ()
/ / L.
r'€B; tebr(TjW ’j)

Label each branch b € br(S;) as follows:

e If b extends some r € Bj, then label b with (4, ;).
e Otherwise, label b with the symbol L.

Similarly, we label each branch V' € br(S7) as follows:

o If b extends some 7’ € By, then label b with <3T/7‘j>.
e Otherwise, label b with the symbol L.

It is easy to see that for each j, j', br; 1 (S;) = br(; jn (S%). Hence,

D ) m= ) ),

4.4'€lm] agbr; 1 (S;) Gog€lm] BEbr(; 1, (S!,)
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Furthermore, it is easy to see that the following have N S-proofs from —~Count3. over K
with < O(log(n))-degree:

S Y w= Y o (el

j'€lm] aEb’r‘<]~7j/>(Sj) beBil,iz,j
> 2 m= ), w (el
JE€M] /BebT‘(j,j/)(SJ,-/) beBi’lqi’gyj/

Hence, combined with (7), they give a N.S-proof of 3, fi,; firj = >_; fiy fiy, satisfying the
required conditions.

(4): Tt follows similarly as (5) and (6) below.

(5): biyinjfirjfinj = O follows easily from ~Count;. since each o € br; (T3, 4,) satisfies v L b
for all b € Bil,iz,j‘

(6): Note that we have N.S-proofs of the following:

firj + Z rp =1,

Bebro(Ts,, )
fizj + Z rg = 1.
Bebro(Ts,, )
(J €[ml)

Hence, b ipi(1 — fi,;)(1 — fiyj) = 0 follows easily from —~Count3. by a similar reason as
the previous item.

5 Future perspectives

In this section, we discuss future perspectives of the three conjectures above.

First, we note that the proof of Theorem 19 uses the uniform (with respect to the coefficient
field) linear degree lower bound for N.S-proofs of injPH P,{ ™) shown in [13], which seems to
be a natural approach.

Next, Conjecture 1 is interesting on its own right; it casts the question on the difference
between identifying the set size by division (using partitions) and doing it by ordering (using
injections).

It also should be noted that if Conjecture 1 is true, then in particular,

VO + ontoPHPF t/ injPHPI . (8)

The situation is interesting since the models of V0 in which injPH P;Z“ is violated given so far
(such as in [1] and [3]) actually violates ontoP H PF. Therefore, the proof technique utilized to
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solve the problem (8) above may lead another breakthrough in proof complexity. The merit of
approaching the problem (8) is that it seems to be easier than other important open problems
of this field such as

e VO injPHP?"? and
o VO(2)FinjPHPI?

The pigeonhole principle to be violated in (8) is more similar to the known violated ones than
injgPH PE”, that is, the number of pigeons and that of holes are closer. Furthermore, over V0,
the problem (8) compares simple =F statements while “V°(2) - inj PHP?*'? » compares a
> one and a 2 one.

As for Conjecture 2, a natural approach to prove the sufficient condition given in Theorem
29 is to utilize an appropriate version of “design” given in [5] and [3]. In order to achieve
it, the bottleneck is the condition 3 of Theorem 29. We would like to construct a mapping
from the set of low-degree monomials to Fy (which can be naturally extended to Fe-module
homomorphisms from the set of low-degree polynomials to Fg) which is compatible with the
polynomially many equations

Z fisfi; +1=0 (i#4 € [m+1]).

JE[M]

(If it succeeds, then we can derive the contradiction from the usual oddtown theorem). It
seems that the treatment of multiplication is difficult. The difficulty may be related to that of
constructing a model of a given extended N.S-proof (see [5] and section 15.6 of [10] for reference).
In other words, the solution to Conjecture 2 may include the tips to give a superpolynomial
lower bound of Fy(2)-proofs.

As for Conjecture 3, it is important to note that the condition given in Theorem 33 admits
arbitrary field K. Hence, although the difficulty is similar as Conjecture 2, it may be more
approachable to tackle Conjecture 3.
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