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Abstract

We study numerical semigroups H generated by four elements. If H is almost symmetric
and the minimum odd integer in H is sufficiently large, we show that it is Weierstrass. Oth-
erwise, applying Herzog-Watanabe’s result [2] we obtain that almost symmetric numerical
semigroups satisfying some property are Weierstrass.

1 Terminologies and introduction

Let Ny be the additive monoid of non-negative integers. A submonoid H of Ny is called a
numerical semigroup if its complement N\ H is finite. The cardinality of Ny\H is called the
genus of H, denoted by g(H). In this paper H always stands for a numerical semigroup.
We set

c(H) = min{c € Ny | ¢ + Ny € H},

which is called the conductor of H. It is well-known that c¢(H) £ 2g(H). H is said to be
symmetric it c((H) = 2g(H). H is said to be quasi-symmetric if c(H) = 2g(H) — 1. We
have (c(H) — 1) + h € H for any h € H with h > 0. The number ¢(H) — 1 is called the
Frobenius number of H. An element f € Ny\H is called a pseudo-Frobenius number of
Hif f+h e H forany h € H with h > 0. We denote by PF(H) the set of pseudo-Frobenius
numbers. The cardinality of the set PF(H) is denoted by #(H), which is called the type of
H. Itis knownthat c(H)+#(H) < 2g(H)+ 1. H is said to be almost symmetric if the equality
c(H) + t(H) = 2g(H) + 1 holds. A symmetric numerical semigroup and a quasi-symmeric
numerical semigroup are almost symmetric. There exists a numerical semigroup H with
c(H) = 2g(H) — 2 which is not almost symmetric.

A curve means a projective non-singular irreducible algebraic curve over an alge-
braically closed field k of characteristic 0. For a pointed curve (C, P) we set

H(P) = {a € Ny | Af € k(C) such that (f)e = aP},

where k(C) is the field of rational functions on C. Then H(P) is a numerical semigroup
of genus g(C) where g(C) is the genus of C. A numerical semigroup H is said to be
Weierstrass if there exists a pointed curve (C, P) with H(P) = H. It is well-known that
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every numerical semigroup generated by two elements is Weierstrass. Using [6] we can
show that a numerical semigroup generated by three elements is Weierstrass. Moreover,
Bresinsky [1] proved that any symmetric numerical semigroup generated by four elements
is Weierstrass. Every quasi-symmetric numerical semigroup generated by four elements
is also Weierstrass by [3].

A numerical semigroup H is said to be of double covering type , which is abbreviated
to DC, if there exists a double covering of curves with a ramification point P with H(P) = H.
Hence, if a numerical semigroup is DC, then it is Weierstrass. For a numerical semigroup
H we set

d,(H) = {h' e Ny | 2h" € H},

which is a numerical semigroup. Let 7 : C — C’ be a double covering of curves with a
ramification point P. Then we have d,(H(P)) = H(n(P)).

2 Almost symmetric numerical semigroups generated by
four elements

For a numerical semigroup H we denote by M(H) the minimal set of generators of H.
Moscariello [5] gave a characterization of an almost symmetric numerical semigroup H
with §M(H) = 4 using the conductor ¢(H) as follows.

Remark 2.1. Let H be an almost symmetric numerical semigroup which is neither sym-
metric nor quasi-symmetric. Then we have c¢(H) = 2g(H) - 2.

Let H be a numerical semigroup with M(H) = {a,,...,a,}. For f € PF(H) we define

an (n,n) matrix RF(f) = (8;;) where g; = —1 and Z,Bijaj = f, because f € PF(H)
j=1

implies that f + a; belongs to the monoid generated by ay,...,a;_1,a;:1,...,a,. We call

RF(f) an RF-matrix of f. We note that an RF-matrix of f is not uniquely determined by

f. Nevertheless, RF(f) will be the notation for one of the possible RF-matrices of f.

Herzog-Watanabe [2] showed the following:

Theorem 2.2. Let H be an almost symmetric numerical semigroup with M(H) =
{ai,ay,as,a4}. Assume that for some f € PF*(H) := PF(H)\{c(H)— 1} a matrix RF(f) has
only one positive entry in each row, which is called the RF condition. Forany i € {1,2, 3,4}
we set @; = minf{a > 0 | aq; € {ay,...,a;_1,ai1,...,as4y}. Then renumbering a;, a,, a; and
as, We have aa; = (a2 - 1)612 + a4, ra, = a; + ((YQ - 1)613, a3dz = dap + (0’4 - 1)614,
agay = (g — Day + az and

a; —(ax—1) 0
ay = -1 (0%) —(CY3 — 1) .
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Let H be a numerical semigroup with M(H) = {a,, a,, a3, a4}. Let @; be as in Theorem
4

2.3. We set a,a; = Z «;;a;. H is said to be 1-neat if the following three conditions are
j=1,j#i
satisfied by renumbering a;, a,, a; and ay:

(1) 0 < a;; < a;foranyiand j.

(2) a; = Z ay; for any i.

k#i

(3) as =| —ax y —a23 |.

—a3; —a3 as

a; —ap —013‘

Theorem 4.11 in [3] proved the following:

Theorem 2.3. Let H be a numerical semigroup with M (H) = 4. If H is 1-neat, then it is
Weierstrass.

Combining Theorem 2.2 with Theorem 2.3 we see the main result in this section as
follows.

Corollary 2.4. Let H be an almost symmetric numerical semigroup with #M(H) = 4.
Assume that H satisfies the RF condition. Then it is Weierstrss.

3 Weierstrss numerical semigroups generated by four
elements

To describe a numerical semigroup we use the following notations: For any non-negative
integers aj,a, - ,a, we denote by (a;,a,,---,a,) the additive monoid generated by
a,ap,- - ,a,. For a numerical semigroup H the minimum positive integer in H is denoted
by m(H), which is called the multiplicity of H. We set s; = min{h € H | h = i mod m(H)} for
i=1,...,mH) - 1. The set S(H) = {m(H), s1,. .., smu-1} is called the standard basis for
H. We set

n(H) = min{h € H | h is odd}.

From now on we always assume that §M(H) = 4. In a forthcoming article [4] we are going
to give the proofs of the results in this section.

Lemma 3.1. Assume that n(H) = c(d,(H)) + m(d,(H)). Then we obtain §M(d,(H)) = 2 or
3.

Theorem 3.2. Assume that §M(d-(H)) = 3 and n(H) = c(d>(H)) + m(d»(H)) — 1. We have
the following:



(1) H =2d,(H) + n(H)Nj.

(2) g(H) = 2g(dy(H)) + ”(H;_ L

(3) We set c(d,(H)) = 2g(d,(H)) — r with r 2 0. Then ¢(H) = 2g(H) — 2r.
(4) If c(H) =2g(H) — 2, then H is not almost symmetric.

(5) H is DC, hence it is Weierstrass.

Theorem 3.3. Let a and b be positive integers with 2 < a < b satisfying (a,b) = 1. Letn
be an odd integer withn =2 (a— 1)(b—1)+a - 1. We set H = 2{a, b) + (n,n + 2(b — ar)).
where r is a positive integer with b — ar > 0. Then we have the following:

(1) do(H) = (a. D).
-1
(2) g(H) = 2g((a. b)) + ”T —(a-Dr

(3) c(H) = 2g(H) - 2r.

4) fnz@-1)b-1)+2r(a—1)+ 1, then H is DC, hence it is Weierstrass.

Theorem 3.4. Assume that M (d,(H)) = 2, n(H) = c(d>(H)) + m(d»(H)) and c(H) =
2g(H) — 2. Then we have

(1) H =2{a,b) + {(n(H),n(H) + 2(b — a)), where we set d,(H) = {a,b) with2 £ a < b.

@) 2(H) = 20t + "0

—(a-1).
(3) H is almost symmetric.
(4) fn(H) =2 (a-1)(b-1)+2a-1,then H is DC, hence it is Weierstrass.

(5) Ifn(H) 2 (a— 1)(b — 1) + 2a, then for any f € PF*(H) a matrix RF(f) has at least
two positive entries in some row, i.e., the RF condition is not satisfied.

(6) If n(H) = (a—1)(b—1) + 2a — 1, then the matrix RF(n — 2a) has only one positive
entry in each row, i.e., the RF condition is satisfied.
Main Theorem 3.5. Le H be an almost symmetric numerical semigroup with §M(H) = 4
which is neither symmetric nor quasi-symmetric. Then we have the following:
(1) Ifn(H) = c(d>(H)) + 2m(d,(H)) — 1, then it is DC, hence Weierstrass.

(2) If H satisfies the RF condition, then it is Weierstrass.



Example 3.6. Let H be a numerical semigroup with M(H) = {10, 14,35,39}. Hence,
d,(H) = (5,7), m(d,(H)) = 5, g(d,(H)) = 12 and ¢(d>(H)) = 24. Then we obtain

S(H) ={10, 14,28, 35,39,42, 53,56, 67, 81}.
We have g(H) = 37 and ¢(H) = 81 — 10+ 1 = 72 = 2g(H) — 2. Moreover, we obtain

PF(H) = {35-10,56 — 10, 81 — 10} = {25,46,71}. Hence, we get #(H) = 3, which implies
that H is almost symmetric. An RF-matrix of 25 is

-1 1 0
-1 0 1
RFQ25) = 6 0 -1 0
5 1 0 -1
An RF-matrix of 46 is
-1 4 0 O
6 -1 0 O
RF(46) = 0 3 -1 1
5 0 1 -1

Thus, H does not satisfy the RF condition. But we have
n(H) = 35 > c(dr(H)) + 2m(dr(H)) = 24 + 10 = 34.

Hence, H is DC, which implies that it is Weierstrass.

Example 3.7. Let H be a numerical semigroup with M(H) = {7,8,17,26}. Then S(H) =
{7,8,17,26,16,25,34}. We have g(H) = 15and ¢(H) =34 -7+ 1 = 28 = 2g(H) — 2.
Moreover, we obtain PF(H) = {16—-7,25-7,34-7} = {9, 18,27}. Hence, we get 1(H) = 3,
which implies that H is almost symmetric. On the other hand, we have d,(H) = (4,7, 13),
g(dr(H)) =7 and c¢(dr(H)) = 14 -4 + 1 = 11. Hence, we obtain

n(H) = 7 < c(d>(H)) + 2m(ds(H)) =2 = 11 +8 =2 = 17.

But an RF-matrix of 9 is

1 2 0 0
0 -1 1 0
REOY= o o -1 1
5 0 0 -1

Hence, H satisfies the RF condition, which implies that it is Weierstrass.
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