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Abstract

K. Kishimoto gave conditions for a polynomial of the form X™ — a (resp.
XP — X —a) in skew polynomial rings of automorphism type (resp. derivation
type) to be a Galois polynomial. In this paper, we shall give conditions for
quadratic polynomials of the form X2 —a and X? — X —a in the general skew
polynomial ring to be a Galois polynomial, respectively.

1 Introduction and Preliminaries

Let A/B be a ring extension with common identity, Aut(A) a ring automorphism
group of A, and G a finite subgroup of Aut(A). We call then A/B a G-Galois
extension if B = AY (the fix ring of G in A) and, for some positive integer n, there
exists a finite set {u;; v;}y = {w, ug, -+, Up; V1, Vo, -+, U} (wy, v; € A) such
that > wip(v;) = 01, (the Kronecker’s delta) for any ¢ € G. In this case, we say
that G is a Galois group of A/B, and {u;;v;}, is a G-Galois coordinate system of
A/B.

Throughout this paper, let B be an associative ring with identity element 1, p an
automorphism of B, and D a p-derivation (that is, D is an additive endomorphism
of B such that D(af) = D(a)B + p(a)D(B) for any o, 8 € B). By B[X;p, D]
we denote the skew polynomial ring in which the multiplication is given by aX =
Xp(a) + D(o) for any a € B. Moreover, by B[X;p, D]y, we denote the set of
all monic polynomials f in B[X;p, D] such that fB[X;p, D] = B[X;p, D]f. We
say that f € B[X;p, D] is a Galois polynomial in B[X;p, D] if the residue ring
B[X;p, D]/ fB[X; p, D] is a G-Galois extension of B for some finite subgroup G of
Aut(B[X; p. D]/ fB[X; p. D).

We set B[X;p] = B[X;p.0], BIX; D] = B[X;1, D], B[X;plo) = B[X;p,0]0),
and B[X; D] = B[X;1,D]q. In [3] and [4], K. Kishimoto studied Galois poly-
nomials in B[X; p|] and B[X; D], respectively. In particular, Kishimoto showed the
following propositions concerning Galois polynomials.

Proposition 1.1. Let m > 2 be a positive integer, f = X™ —a (a € B) in
B[X;ploy, A= B[X;p]/fB[X;p|, v = X + fB[X;p], and assume that B contains
a m-th root w of unity such that p(w) = w, aw = wa (Yo € B). Then there ezists
a B-ring automorphism o of A defined by o(x) = zw. In addition, if m and a are
invertible in B and 1 — w' (1 < i < m — 1) is non-zero divisor in B, then f is a
Galois polynomial in B[X; p| with a cyclic Galois group of order m. More precisely,
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if we let G =< o >, then A/B is a G-Galois extension whose G-Galois coordinate
system 1s given by

{m™ ot 2™ (1.1)

Proposition 1.2. Let p be a prime number, B of characteristicp, f = XP—X —a
(a € B) in B[X; D], A= B[X;D]/fB[X; D], and x = X + fB[X; D|. Then there
exists a B-ring automorphism o of A defined by o(x) = v+ 1, and f is a Galois
polynomial in B[X; D] with a cyclic Galois group of order p. More precisely, if we
let G =< o >, then A/B is a G-Galois extension whose G-Galois coordinate system
15 given by

{a"; 2}, (1.2)
where zp =1 —a?~! and z; = (=1)" 1 (" ar 1 (1<i<p—1).

In this paper, we shall extend Proposition 1.1 (resp. Proposition 1.2) to the case
of general skew polynomial rings B[X; p, D] when m = 2 (resp. p = 2). In section
2, we shall give conditions for f = X? —a (a € B) in B[X;p, D] to be a Galois
polynomial with a (cyclic) Galois group of order 2. In section 3, assume that B is
of characteristic 2, and we shall give conditions for f = X?* — X —a (a € B) in
B[X; p, D] to be a Galois polynomial with a (cyclic) Galois group of order 2.

2 Conditions for X? —a to be a Galois polynomial
Thoroughout this section, let R = B[X;p, D], Ry = B[X;p, D), [ = X* —a €
Rgy (a € B), A= R/fR, and = X + fR € A. Note that, by [2, Lemma 1.3],

f=X?*—aisin R if and only if

pla) =a, D(a) =0, pD+ Dp =0,
D*(a) = aa — ap*(a) (Ya € B).

Let w be in B such that

(2.1)

p(w) =w, D(w)=0, aw=wa (Va € B),
w is a square root of unity in B.

Moreover, assume that there exists b € B such that

p(b) = =b, D(b) = —b*w(w —1), (2.2)
D(a)w + ab(w — 1) = b(w — 1)p(a) + D(a) (Vo € B). ‘

For any o € B, it follows from (2.2) that

a(Xw+blw-—1)) =aXw+ ablw—1)
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= Xp(o)w + D(a)w + ablw — 1)

= Xwp(a) + b(w — 1)p(a) + D(a)

= (Xw+bw—1)) pla) + D(cv).
Hence, by [1, Lemma 2.1], there exists an B-ring endomorphism o* of R defined by
o*(X) = Xw+b(w —1). It is easy to see that 0*?(X) = X. This implies that o* is
a B-ring automorphism of R such that ¢** = 1. Moreover, since (2.1) and (2.2), we
have

o (f) =" (X* — a)
=(Xw+bw-1)( Xw+bw—-1))—a
= XwXw+ Xwb(w—1)+bw—-1)Xw+b*(w-1)>—a
= X?w? + Xwb(w — 1) + (Xp(b)(w —1) + D(b)(w — 1)) w + b*(w —1)* —a
=X’ + Xww—=1) b+ pb) + (w—=1) (DO)w + b (w—1)) —a
=X+ Xww—-1)(b=0) 4 (w—1) (-’ (w—-1)+ b’ (w—-1)) —a
=X’ —q
= f.
This implies that o*(fR) C fR, and hence there exists an automorphism of A
defined by o(x) = zw+ b(w — 1) which is naturally induced by o*. It is obvious that
o?=1.
So we shall state the following theorem which is the first main results in this
paper.

Theorem 2.1. Assume that there exist w and b in B such which satisfy (2.1)
and (2.2), respectively. Then there exists an automorphism o of A defined by o(z) =
rw + b(w — 1) such taht 0% = 1.

In addition, if 2 and a are invertible in B, 1 — w is a non-zero divisor in B,
and b* = 0, then A is a G-Galois extension of B (namely, f = X* — a is a Galois

polynomial in R), where G =< o >. In fact, a G-Galois coordinate system of A/B
s given by

1 1
{5 3t @rora @rna (2.3
Proof. Assume that there exist w and b in B which satisfy (2.1) and (2.2). We
have already proved that there exists a B-ring automorphism o of A defined by
o(x) = 2w + b(w — 1) such that *> = 1. Let G =< 0 >= {1,0}.

Assume that 2 and a are invertible in B, 1 — w is a non-zero divisor in B, and
b*> = 0. Then we see that w is a primitive square root of unity, and D(b) = 0 since
(2.2).

First, we shall show AY = B. It is clear that B C A%. Let z = xc; + ¢
(c1, co € B) be in A®. Since z = o(z), we obtain

xep + ¢ = o(xer + ¢p)
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= (2w + b)e1 + ¢

= zwcy + bey + ¢p.

Comparing coefficients of both sides, we have (1 — w)c; = 0. So, since 1 — w is a
non-zero divisor in B, we obtain ¢; = 0. Therefore we see that z = ¢y € B, namely,
A% C B.

Next, we shall show that (2.3) is a G-Galois coordinate system of A/B. Since
1 —w is a non-zero dibisor in B, we see that 1 +w = 0. Let k be a integer such taht
0 < k < 1. It is easy to see that o"(x + b) = xw"” + bw” = WF(x 4+ b). Noting that
z? = a, we obtain

(z +b)* = (2* + 2b+ bz + b*)

= (a+xb+ zp(b))
= (a + xb — xb)

We have then

%ak ((z+b)%a™") + %(x +b)o* ((z+b)a™") = % (c"(aa™") + (z + b)w"(z + b)a™")
= % (1+wf(z+b)%a™)
= % (1+waa™)
_ % (1+wh)
= 0ok
Thus, (2.3) is a G-Galois coordinate system of A/B. O

Remark 1. In Theorem 2.1, assumet that b = 0. So, it follows from (2.2) that
D = 0, and hence B[X;p, D] = B[X;p|. Moreover, a G-Galois coordinate system
(2.3) is equal to (1.1) in the case m = 2 in Proposition 1.1.

3 Conditions for X?—X —a to a Galois polynomial
Thoroughout this section, let B be of characteristic 2, R = B[X;p, D], Rq) =

BIX:p. Doy, f =X~ X —a€ R (a€B), A= R/fR, and v = X + fR € A.
Note that, by [2, Corollary 1.7], f = X? — X — a is in R(g) if and only if

pD(a) + Dp(a) = p(a) — p*(a), (Vo€ B)



Let w be in B such that
aw =wp(a) (Va € B), p(w) = —w, D(w) =w — w?’. (3.1)
So, for any a € B, we see that

a(X +w)=aX+aw
= Xp(a) + D(a) + wp(a)
= (X +w)p(a) + D(a).

Hence, by [1, Lemma 2.1], there exists a B-ring endomorphism ¢* of R defined by
o*(X) = X +w. Tt is easy to see that 0**(X) = X. This implies that ¢* is a B-ring
automorphism of R such that ¢*? = 1. Moreover, since (3.1), we obtain

o(f) =o"(X* = X —a)
= (X+w?—-(X+w) —a
=X+ Xw+ Xpw)+Dw)+w> - X —w—a
=X+ Xw—-Xwtw—-w+*—-X-w-—a
=X*-X-a
~f

This implies that o*(fR) C fR, and hence there exists a B-ring automorphism of
A defined by o(x) = x + w which is naturally induced by o*. Obviously, o2 = 1.

Now we shall state the following theorem which is the second main results in
this paper.

Theorem 3.1. Assume that there exists w in B which satisfies (3.1). Then there
exists an automorphism o of A defined by o(z) = x + w such that o = 1.

In addition, if w is invertible in B, then A is a G-Galois extension of B (namely,
f=X?-X —ais a Galois polynomial in R), where G =< o >. In fact, a G-Galois
coordinate system of A/B is given by the following :

{1, r; 1—aw, w‘l} (3.2)

Proof. Assume that there exists w in B which satisfies (3.1). We have already
showed that there exists a B-ring automorphism o of A defined by o(z) = = + w
such that 0? = 1. Let G =< o >={1,0}.

Assume that w is invertible in B. First, we shall show A® = B. It is obvious
that B C A%, Let z = x¢; + ¢y (c1, ¢ € B) be in A®. Since z = o(z), we obtain

xep + co = o(xer + ¢p)
=(r+w)ey + ¢

= xC1 + wey + ¢y



Comparing coefficients of both sides, we have wec; = 0, and hence ¢; = 0 because w
is invertible in B. Therefore, we see that z = ¢y € B, namely, A C B.

Next, we shall show that (3.2) is a G-Galois coordinate system of A/B. Let k
be a integer such taht 0 < k < 1. It is easy to see that O'k(l’) =z + kw. We have
then

" (1l —zw ™ +ao® (W) =1- (v +kw)w ' 4+ zw™
=1 — 2" 4 kww™ + 2w
=1+k

— So

1

Therefore, (3.2) is a G-Galois coordinate system of A/B. O

Remark 2. In Theorem 3.1, assumet that w = 1. So, it follows from (3.1) that
p = 1, and hence B[X;p, D| = B[X; D]. Moreover, a G-Galois coordinate system
(3.2) is equal to (1.2) in the case of p = 2 in Proposition 1.2.
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