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1. INTRODUCTION

This note summarizes the content of the author’s talk at RIMS conference 2022 “Au-
tomorphic form, automorphic L-functions and related topics”. The goal of this note is
to illustrate the strategy to compute the local Rankin-Selberg integrals with unramified
data over p-adic fields, arising from the Bessel models for quasi-split special orthogonal
groups and unitary groups, which is a joint work with with Dihua Jiang (University of
Minnesota) and David Soudry (Tel Aviv University). The main results in our preprint
are a generalization of Soudry’s works for split special orthogonal groups in [6,7]. The
author is grateful to Kazuki Morimoto and Tadashi Miyazaki for inviting him to deliver
a talk at this conference.

Let F' be a number field and ¢ be a non-square element in F'*. Denote E to be either
F or the quadratic field extension F'[y/<] of F, to be tg/r the nontrivial Galois element
in Gal(F[\/s]/F) if E = F[,/s] and to be the identity if £ = F. Write A (resp. Ag) to
be the ring of adeles of F' (resp. E). Let (V, b) be a non-degenerate space of dimension m
over E, which is a quadratic space when E = I and a Hermitian space when E = F[/<].
Define G = Isom(V,)° to be the identity connected component of the isometry group of
the space V', which is a special orthogonal group or unitary group. More precisely, under
a suitable choice of a basis for V, let us take the symmetric matrix J, g, defining (V, b)

Josy = So where w, =
1 oxt

w
¢ mxXm

and Sy = diag{ag, a1, ...,aq,_1}. Then we may identify
Isom(V,b) = {g € Endr(V): §'Jo.509 = Jus }

where g is the Galois conjugate of g.
Denote by N, the unipotent subgroup of GG consisting of elements of form
C

z xX
ne(z,z,c) == ( Trm—2k x’) € G,

z

where z € 7., the unipotent subgroup of all upper triangular unipotent matrices of size k
and 2’ is the matrix determined by z. We may denote the k-dimensional totally isotropic
and polarized subspaces X ,;t such that Ny stabilized X'

Fix a nontrivial character ¢ of F'\ A, which can be extended to a character of F\A via
composing with %tr g/r in case I # F. Denote by 17, the standard Whittaker character
of Zk (AE),

Yz, (2) =(z12+ 203+ + Zk—1k)-
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For any anisotropic vector yo € (X;7 @ X, )*, define the character 9y, of Nj by

ko (2,2, 0)) = 1z (2)p (0, I g, 00)) = Y, (2) (ke p—rt1),

where zj, is the bottom row of x and xy k41 is the entry of x in the k-th row and
(¢ — k + 1)-th column. We may consider 3, as a column vector of size m — 2k. Denote by
Gr.yo the stablizer of Isom((X;" & X, )*,b)° acting on vy, via conjugation.

For an automorphic function ¢ on G(A), define its Bessel-Fourier coefficient along
Ny, with respect to 1y, by

g0¢k¢y0 (9) = / gp(ng)d)];;m (n)dn, (1.1)
N (F)\Ni(A)

which is Gy, (F)-left invariant.
Let m and o be irreducible automorphic representations of G(A) and Gy, (A), respec-
tively. The global 1y, -Bessel model of ™ with respect to o is defined by

PV (pr, €5 1= o (98, (g) dg, (1.2)

/(;ku,y() (I\Gl,yo (A)

where ¢, and &, are in 7 and o, respectively.

To guarantee the convergence of the above period integral, we assume that one of ¢,
and &, is rapidly decay such as cuspidal automorphic forms and the other is of moderate
growth such as Eisenstein series. Thus, we have the following two families of the the
global zeta integral as defined in [3]:

PV (E(pre0,5), pr) Case 1

1.
PV (r, B(¢req,5)) Case 2, (13)

Z<87 Pr, @T@O’? ¢£,yo> = {

where 7 is an isobaric sum of cuspidal automorphic representations of GL(A ), 7 and o
are cuspidal. Then Z(s, ¢rgq, ©r, Vey,) converges absolutely and hence is holomorphic at
s where the Eisenstein series F(h, ¢, s) has no poles.

Next, we unfold the Eisenstein series E(¢,5.,s) in the global zeta integrals. Due to
the cuspidality of 7, by the uniqueness of Bessel models for (7, o) and the uniqueness of
Whittaker models of 7, we obtain the Eulerian product

Z(S, ¢r@<>m Py l/)é,yo) - H Z@(S, ngv(erv s Ty wé,yo)- (14)

vE|F|
The main goal of our work is to compute the above local zeta integral Z,(s,-) with
unramified data. Thus we make the following assumptions on the local places:

e F), is the unramified quadratic extension of F, or E, = F,,.
o G(F,) and Gy, (F),) are quasi-split over Fy;

e m,, 0,, and 7, are spherical representations;

e the conductor of v, is the ring of integers O,.

Then we obtain the following identity

Theorem 1.1. For the unramified data, one has

L(my X Ty, 8)

L(oy X Ty, 8 + 5)L(7y, p, 25)
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where p is the representation of "Resg,rGL, defined by

Asai if o 1s on an even unitary,
) Asai®@wgyp  if o is on an odd unitary,
P= A? if 0 is on an even orthogonal,
Sym? if o is on an odd orthogonal.

Following the unramified assumptions, we have following cases for G' X Gy, ,:

o G X Gy, is split:
(1) G x Gk,yo = (SOm, Som_zr_l)
(2) G x Gk#JO = (GLm GLm_Qr_1>;

e (G x Gy, is quasi-split and non-split:
(3) G X Gryo = (SO, SOp—2,—1) and m is even;
(4) G x Gryo = (SO, SOp—2r—1) and m is odd;
(5) G X Gryo = (U, Upp—or—1).

Remark 1.2. In [6,7], Soudry computed the unramified local zeta integrals for Case (1)
and obtain Theorem 1.1. In our joint preprint, we extend Soudry’s results to all the
remaining cases. In addition, although the tensor product L-factors of general linear
groups are also given by Rankin-Selberg integrals, Case (2) provides its different integral
representation, which still needs to be justified.

Remark 1.3. In Theorem 1.1, @ and o are arbitrary cuspidal automorphic representations,
which are not necessary of global tempered Arthur parameters.

Remark 1.4. When o defines on the trivial groups, the global zeta integral Z(s, ) is the
Rankin-Selberg integrals extensively studied in the theory of automorphic descent. See [2]
for instance. To emphasize the integral in this special case, we will denote it by Zqrs(s, -).

2. ANALYTIC PROPERTIES OF LOCAL ZETA INTEGRALS OVER FINITE PLACES

For convenience, denote by H = G if Z,(s,-) is arisen from Case 1 in (1.3) and
H = Gy, if Z,(s,) is arisen from Case 2 in (1.3). We free the notation G to denote
the group on which 7 defines. In other words, the Eisenstein series E(s,-) in (1.3) always
defines on H(Ag) and 7 is always a cuspidal automorphic representation of G(Ag). Write
H' to be the group on which o defines.

We sometime use U, to denote the special orthogonal group or unitary group, which
preserves an m-dimensional Hermitian (or quadratic) space. To present the local integrals
clearly, according to the matrices size of involved groups, we separate into three cases:
Case 1a and Case 1b, arisen from Case 1 in (1.3), and Case 2 in (1.3). Let us tabulate
the classical groups of Hermitian type on which groups 7, ¢ and 7 define in each case.

H H' for o | GL, for 7 | G for = l
Case la | Uyior41 | Up—on—1 | GLyjppa U, r
Case 1b Upaor U,, GL, U,on—1 | T+ k
Case 2 | Uprymok—1 | Un_or—1 GL, U, k—r

By default, 0 < £ < mT_l for all cases and r < k for Case 2. Remark that there are
a pair of Bessel modes in each case as below, corresponding to the characters 1y ,, and

Yy, for certain anisotropic vectors wy and wy,, respectively.
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(E(S7'>77T) <7T70>

Casela| U241 xU, | U, xUyop
Case 1b Um+2r X Um—Zk—l Um—Zk—l X Um
Case 2 | Uy ym—or—1 X Uy | Uy X Upy_op—1

More precisely, the two corresponding Bessel linear functionals lie in the following
isomorphic Hom-spaces, due to Moeglin and Waldspurger in [5] and Gan and Ichino [1]
when 7 is generic,

Z,(s,-) € Homy((Ind 7| - |* ® 0,) & 7y, Vry,) = Homy(m, ® o), Vi) D Yt (2.1)

where o), is a twist of o, by the outer automorphism of the even orthogonal group. Note
that we omit the unipotent subgroups in the above Hom-spaces. The relation between
this two linear functionals will be given in Part (2) of Proposition 2.1.

From now on, we drop the subscript v for simplicity. Let F' be a non-archimedean field
of characteristic 0. Denote w to be a uniformizer, val(-) to be the normalized valuation
of I, and | -| = ¢7¥%0) to be the absolute value of F, where ¢ = |O/=O].

Following the similar arguments in Sections 3 and 4 in [6], we may establish the analytic
properties of local zeta integrals over finite places for all cases.

Proposition 2.1. Assume that 7, o and 7 are irreducible smooth representations and T
1S generic.
Then we have
(1) The local integrals Z,(s, fw(r),o: U, Yry,) converge absolutely in a right half plane,
which depends only on the representations w, o and T.
(2) For each v, € m, there exists fy (), such that

ZU(S, fVV(T),m Ur, /(/}K,yo) = ka,wé (/Um /UU)WT(6)7

where cy, , is a local Bessel model associated to (w,0) and W-(e) is the evaluation

0
of a Whittaker function of T at identity.
(3) Zu(8, fw(r).or U, Yuy,) continue to meromorphic functions in the whole complex
plan and are rational functions of ¢~*.

Here W(r) is the Whittaker module of T and fw) o is a holomorphic section in the
H(F)

induced representation Indp -y W(r)|det |* ® 0.
Remark that the above analytic properties guarantee our local integrals well-defined
and not identically vanishing.

3. LOCAL ZETA INTEGRALS WITH UNRAMIFIED DATA

From now on, we assume that all data are unramified in sense of Section 1. Then U,, is
a quasi-split group SO,, if £ = F', a quasi-split unitary group U,, if F is the unramified
quadratic extension of F', or a general linear group GL,, if E = F x F. As in Remark
1.2, we only consider the quasi-split and non-split special orthogonal group U,, = SO,,
in our work when F = F' and m is even. The split even orthogonal group case has been
studied in Case (1). See Remark 1.2.

Denote 7, o, 7 to be the unramified constituents of

e} H' GL,
7 < Indj_ X, o< IndBH,XU, 7 < Indp  xr,
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where By is a Borel subgroup of the quasi-split reductive group X and yy is the un-

ramified characters of the torus, corresponding to the Satake parameter of unramified

representation 6. Note that if 6 is generic, then 6 = Indgx Xy is irreducible.
Furthermore, we can rewrite

Indj7|det |*® 0 = Ind} x-| - |*® x» = Ind}7,
where 7 = Ind§ls# Xr| * | ® Xo, and rkH is the rank of H.

Bar,
Over a general position, one has 7 and Ind%7|det|* ® o are generic and the local
zeta integrals are absolutely convergent for all vectors. Then we have two Bessel linear
functionals arisen corresponding to Bessel models in the tables of Section 2 and the theory

of automorphic descent. That is,
Z(s,-) € Homy((Ind2 7| - |* ® 0) ® 7,90,,) = Homy((IndE7) & 7, ¥rcrrye) 2 Zers(s, ),
where Zqgg is discussed in Remark 1.4. Furthermore, we have
Zars(s, ) € Homy((Ind27) @ 7, iy, ) = Homy (W, (1), C),

and Zgps(s, ) has been explicitly calculated in the theory of automorphic descent, due
to a series of works by Ginzburg, Soudry, Kaplan, etc.

Finally, due to the Multiplicity One Theorem of Bessel models, one expects that the
two linear functionals Z(s,-) and Zgrs(s, ) are proportional to each other over a general
position, i.e.,

Z(S’ f;\/(r),m U;, we,yo) = CS,W,T,UZG'RS(Sv f{jv(%): U:r)’ (3'1)
where lf;V(T),O' and f%(f) are a spherical sections in Indg 7|+ ]*® o and Indg T, respectively,
and v is a spherical vector in 7.

After we normalize fﬁ\/(r),w fﬁ\/(f) and vy, then the factor ¢, , ,, is unique. Following
Proposition 2.1, ¢, » -, is defined for Re(s) sufficiently large and continues to meromorphic
function in the whole complex plan, which is a rational function of ¢7°. Our proof of
Theorem 1.1 is reduced to compute ¢, -, over a general position.

4. REDUCTION TO THE WHITTAKER MODELS

In this section, we will explicate the local zeta integral Z(s, -) and establish the identity
between Z(s,-) and Zgrs(s, ).
First, let us introduce the local integral informally for each case.

Z(5, fw(r).or Vs Ve yo)
Juvoe I, Con, (T(D)0n, fvir) o s(2017 (9))) 0y 4y (u) dudg  Casela
=0 S oy (P05 (B01), € YL () s Caselb (A1)
S Jevn, €y (Trg—ch)ve, fvr) o5 (h)) dB Case2,

where Chp g belongs to the Hom-space in (2.1). One of the key normalization to fix Z(s, )
is to normalize

c¢k}w6(v;, vy) = 1. (4.2)
After normalizing the spherical vectors, one may obtain the unique local zeta integral
Z(s,-).

To reduce the length of this note, we will leave the notation without explanation,
where all unexplained notations are certain unipotent subgroups occurring in the unfolding
process. The main goal of (4.1) is to demonstrate how Cupy ,y OCCUTS the local zeta integral.
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The key ingredient for the proof of Theorem is to introduce a specific Bessel linear
functional

c;bk ., € Homy(W(m) ® W(0"), Vi)

factoring through the Whittaker models W(7) and W(o') of m and o, respectively.
Similar to Proposition 2.1, one can prove that

Lemma 4.1. Assume that m and o are generic.

(1) Then cgpk . 15 not identically zero, converges absolutely on a right half plane, and
YW(
continues to meromorphic functions of xr and Xy,
(2) If m and o are unramified, then c&,k . 18 a rational function in X, and Xo;
»Wq
(3) If m and o are unramified, then cipk 15 a Whittaker-Shintani function for the

relevant pair (G, H') in sense of [4].

Due to the uniqueness of Whittaker-Shintani functions, cgpk , is proportional to WSy, , 7 -
W Wq '
defined in [4], that is,

/

cy, ., (m(g)vy,v;)  Case la and Case 2
»W(

WS , / =a N 1) X e
¢k,w0;ﬂ',0' (g) (Xﬂ' XU ) C{lz)k’w(’) (/070” W(g)vg.) Case 1]:)7

where a(xx, Xo’) is a rational function in x, and x,, and v2 and v are spherical vectors
of m and o.

In general, the functional ¢ we introduced has poles of variables x, and x,. How-

/
whwé
ever, WSy, , ro is a polynomial of . and x,. Then we may use the rational function
7'“107 ’
a(Xx, Xor) to normalize C:,z)k. , and give an explicit construction of the abstract Bessel linear
W)

functional ¢y, ,
»Wq
Cpup = a(Xnr, XU')CZ%,%' (4.3)
Finally, we obtain a holomorphic linear functional ¢y, .
»Wq

Proposition 4.2. If m and o are unramified, then the linear functional cy,_ , defined in
»W(

(4.3) is a polynomial of xr and X, .

5. THE IDENTITY

In the last section, we will plug ¢y, , in (4.3) into Z(s,-) and establish the identity
»Wo

between Z(s,-) and Zgrs(s,-) to obtain the main identity in Theorem 1.1.
First, replacing c,, , by C:,z)k , in (4.1) when x, and x, over a general position, we
) W

obtain a new local zeta integral Z/(s,-) lying in Homy((Indp7| - |° ® o) @ 7, 1, ), equal
to Z(s,-) up to a rational function of v, xr and x,. Then by combing integrations and
changing variables, one can obtain

Z,(S» fW(T),U? Ur, Q/JZ,yo) = ZGRS(S7 fW(f')7 Uﬂ')'
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For instance, in Case 1la, over a general position, we have

fW 0'7/U7T777Z}€y())
/ [l 010 o653, 10 dudg
H'Ng\G J Ny,

= / / / / W, (Y1’ hg) fvmyewen (Yheoug)i, , (u) dn dh du dg
H'N\G J N,y J H \H' /

:ZGRS(‘S7 U, fW(T’))

The key idea is to combine all the integrations since the integrals are absolutely convergent
and transform the integral Z'(s,-) to the integral Zggrs(s,-), which is known due to the
theory of automorphic descent.

Therefore, if we take the Bessel linear functional Chp 2 in (4.3), for all cases we have

Zeﬁf(87 f;V(T),vg,a’ ¢€,y0)
:a(XﬂWXU’)Zl/;(Svf)C/)\} 0-7 7777/}5340)
_ L(s+ 3,7 xm)

Lis+1,7x0)L(2s+1,7,p)

Remark that Z.,(s,-) is the zeta integral dependent of the choice of ¢, up which is
defined explicitly. And we have not verify that the choice ¢, , in (4.3) satlsfymg (4.2).
YWq

Finally, Z..(s,-) has the same analytic properties as Lemma 4.1. That is, if 7, o and 7
are unramified and lying in a general position,

(1) Zex(s,-) is not identically zero, converges absolutely on a right half plane , and
continues to meromorphic functions;

(2) Zex(s,-) is a rational function in s, x;, X; and Xo;

(3) Zex(s, -) is a Whittaker-Shintani functlon for the relevant pair (H, G).

Similarly,

Zex(57 p( ) fW T),a7 T W yo> (S X7y Xt X Xo' )Wswg R TXO'(h>
By evaluating at the identity on the both sides separately, we obtain

623(87 f;V(T o 7r7¢€y0) = Z(Sv f;V(T o2 Urs ¢€yo)

That is, ¢y, , in (4.3) also satisfies (4.2), exactly which we normalize. Hence we conclude
"w()

L(s+ 3,7 X)
Lis+1,7x0)L(2s+1,7,p)

2(87 flc/)V(T) o U W yo)

REFERENCES

[1] W. T. Gan and A. Ichino. The Gross-Prasad conjecture and local theta correspondence. Invent. Math.,
206(3):705-799, 2016.

[2] D. Ginzburg, S. Rallis, and D. Soudry. The descent map from automorphic representations of GL(n)
to classical groups. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011.

[3] D. Jiang and L. Zhang. Arthur parameters and cuspidal automorphic modules of classical groups.
Ann. of Math. (2), 191(3):739-827, 2020.

[4] S. Kato, A. Murase, and T. Sugano. Whittaker-Shintani functions for orthogonal groups. Tohoku
Math. J. (2), 55(1):1-64, 2003.

7



[5] C. Meeglin and J.-L. Waldspurger. La conjecture locale de Gross-Prasad pour les groupes spéciaux
orthogonaux: le cas général. Number 347, pages 167-216. 2012. Sur les conjectures de Gross et Prasad.
II.

[6] D. Soudry. The unramified computation of Rankin-Selberg integrals expressed in terms of Bessel
models for split orthogonal groups: Part I. Israel J. Math., 222(2):711-786, 2017.

[7] D. Soudry. The unramified computation of Rankin-Selberg integrals expressed in terms of Bessel
models for split orthogonal groups: Part II. J. Number Theory, 186:62-102, 2018.

DEPARTMENT OF MATHEMATICS, NATIONAL UNIVERSITY OF SINGAPORE, SINGAPORE 119076
Email address: matzhlei@nus.edu.sg



