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1. Introduction

This article is the research announcement of the paper [Ku] about the computation of the
torus equivariant cohomology of the complex quadrics by GKM theory.

1.1. Basic properties of the complex quadrics. The complex quadrics Q) is the follow-
ing space defined by the quadratic equations:

Qm = {[2’1 . "':Zm+2] ECPm+1

m—+2
Z 212 = 0} .
i=1

We first recall some properties of this space.

Since this space is the solutions of the equation 27;2 2?2 = 0 in CP™"! its dimension
satisfies that dim @,, = 2m. Moreover, the equation Z;’jﬂ 2?2 = 0 regards as the (standard
Euclidean) inner product (z,z) = 0 for z = (21, ..., 2m+2). So there is the transitive SO(m + 2)-
action on @, by the standard multiplication. By computing the isotropy subgroup of the point

[0:---:0:1:+/=1] € Qu, there is a diffeomorphism onto the following homogeneous space:
Qm =~ SO(m +2)/S0(m) x SO(2).

This structure shows that the maximal torus of SO(m + 2) acts on Q,,, i.e., T"*! acts on Qany1
and Qa, respectively. Note that the 7" !l-action on Q, defined by this way is non-effective
because the maximal torus 7" in SO(2n + 2) has the non-trivial center Zy = {£Is,42}.

1.2. The cohomology ring and the main theorem of this paper. The cohomology ring
of @y, over the integer coefficient has the following ring structure (see [La72, La74] for H*(Q2y,)
or [EKMO8, Excercise 68.3] for H*(Q,,) as the Chow ring?!):

Zle,x]/(c" Tt — 2z, 22) if m=2n+1, where degc=2, degz = 2n + 2
H*(Qm) =< Zlc,x]/ (Pt — 2cx, 2% — *"x) if m = 4n, where degc =2, degx =4n
Zle,x] /("2 — 2cz, 2?) if m =4n +2, where degc =2, degx = 4n + 2

Note that the ring structure of H*(Q2,) depends on whether n is even or odd.

The purpose of this paper is to understand the difference of ring structures of H*(Qa,,) from
GKM theory, i.e., we describe the difference between H*(Qu,) and H*(Qan42) by using the
combinatorics of graphs. In order to do that, we first compute the GKM graph Qs, of the
effective T -action on Qg, in Section 2. Note that by the ring structure of H*(Qa,) as above,
we have H°%(Qy,) = 0, i.e., Qq, is equivariantly formal. Therefore, by using GKM theroy (see
[GKM98, GZ01]), the equivariant cohomology H.,,;,(Q2x) is isomorphic to the graph equivariant
cohomology H*(Qa,,) of the GKM graph Qs,, (see Section 3). The main theorem of this paper is
to show the ring structure of H*(Qa,,) by generators and relations. As a consequence of the main

ISince Qm also can be regarded as the homogeneous space of the affine algebraic group SO(m+2,C), it follows
from [EH13, Appendix C.3.4] that its Chow ring is isomorphic to its cohomology ring, i.e., A*(Qm) ~ H**(Qm; 7).
1



theorem in Section 3 (see Lemma 3.1 and Theorem 3.12), we have the following ring structure of
the equivariant cohomology of @, with 7" -action (the notations will intrduce in Section 3)

THEOREM 1.1. There ezists the following isomorphism as a ring:
Hr:;w+1 (Q2n) =~ Z[QQn]

In particular, the generators of Z[Qa,] are given by (generalized) GKM subgraphs of Qa,.
This gives the unified formula of the ring structures of Hj., 41 (Qan) and Hiw,io (Qang2). We
finally describe that the difference between the ring structures of H*(Q4n) and H*(Qnt2) by
using the relations in Z[Qa,] (see Section 4).

2. The GKM graph of the effective T"t!-action on Qs,

In this section, we compute the GKM graph of the 77+ !-action on @Qs,. The basic facts of
the GKM graph (including the definition) refer to [GZ01, Ku09].

2.1. The T"t'-action on @2, which preserves the complex structure. Recall that
the (even degree) complex quadrics @2y, is diffeomorphic to the following space of solutions of the
quadric equation (see [Se06, Chapter V.1, 1.1 Theorem.]).

n+1
Z Zizont3—i =0 p .

i=1

an = {[2’1 Dl Z2n+2] S CP2n+1

For this space, there exists the natural 7" !-action on @, defined by
(21) [2’1 Dl Z2n+2] — [thl : thg Dol Zn+1tn+1 : t;ilzn+2 R t2_12’2n+1 : tl_lzgn_;,_g],

where (t1,...,t,41) € T™TL. This is equivariantly diffeomorphic to Qo, with 77! C SO(2n + 2)
action in Section 1, and this action also has the finite kernel Zs which is the center of 77! in
SO(2n + 2). So if we divide T by Z,, then we obtain the effective T"tl-action on Qa,. It
is easy to check that this 7" !-action preserves the complex structure on CP?"*! because this
Tt action is induced from the representation of 7" — GL(2n+2,C) and GL(2n+2,C) action
on CP?"*1 preserves the complex structure on CP2n*1 .= (C27+2\ {0})/C*.

Henceforth, the notation (s, represents the space defined as above with the T"*!-action
defined in (2.1).

2.2. GKM graph of the T"*!-action on Q;,. By definition, the GKM graph consists of
the fixed points (vertices) and the invariant 2-spheres (edges), and the labels on edges (the azial
function of the GKM graph) which are defined by the tangential representations on fixed points.
In this section, we compute them for the T"+1-action (2.1) on Q2.

Because of (2.1), the fixed points of Q2 are

Qs ={lei] [i=1,....2n+2},

where [e;] =[0:-+-:0:1:0:---:0] € CP?"*! (only ith coordinate is 1). Moreover, the invariant
S2(~ CP')’s are
(2.2) [zitz]] = =10:-:0:%:0:---:0:2;:0---:0] € Qan2

where i + j # 2n + 3. Therefore, we can define the graph I's,, := (Va,,, Ea,) from the T"*!-action
on Qa2 as follows (also see Figure 1):

o the set of vertices Vo, = [2n+ 2] := {1,...,2n +2};

e the set of edges Fa, = {ij | 4,7 € [2n + 2] such that i # j, i + j # 2n + 3}.

_REMARK 2.1. For convenience, we often denote the vertex j € Vs, such that i +j = 2n + 3
by i. Namely,
Vo, =2n+2]={1,2,...,n+1,n+ 1L,m,...,1}.
By this notation, the set of edges can be written by

By, = {ij | i,j € Vo, such that j # 7,4}
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FIGURE 1. The graph induced from the T3-action on Q4 (left) and the T*-action
on Qg (right).

We next compute the tangential representations around fixed points and put the label on
edges, called an azial function on edges and denoted by « : Ea, — H?(BT™'). Recall that
the tangential representations around the fixed points decompose into the complex 1-dimensional
irreducible representations. Each complex 1-dimensional irreducible representation corresponds
to the tangential representation on the fixed point of the invariant 2-sphere. So it is enough to
compute the tangential representation on each invariant 2-sphere [z; : z;] € Qan (see (2.2)). By
the definition of 7" 1-action on [z; : z;], we may write the action t = (¢1,...,tn41) € Tt on
[ZZ' : Zj] by

[zi = zj] = [pi(t)zi = p;(t) 2],

where p; : T"T1 — S is the surjective homomorphism defined by

g [t dfient]
pit) = = ifie{n+2,...,2n+2}

Therefore, the axial function « : Es, — H?(BT™"!) is defined by the following equation (see
Figure 2):

(2.3) alij) = x; — x;,

where z; € H?(BT™*') ~ (™)* ~ Hom(T"*!,S') is the element corresponding to p; €
Hom(T™*1, S1) defined by

o z;=p; forie [n+1];
oz, =-—p,=—x;forie{n+2,...,2n+2}.

FI1GURE 2. The axial function around the vertex 1 of the GKM graph induced
from the T3-action on Q4. Notethat 6 =1,5=2,4 = 3.

2.3. GKM graph of the effective T""!-action. Since the 7" -action (2.1) on Q2 is
not effective, the axial function defined by (2.3) does not satisfy the effectiveness conditions. For
example, around the vertex 1 € V5, the axial functions are
(24) Lo — T1y...yTpt1 — L1, —Tpt+1 — L1,..., T2 —T1] € (fg+l)*7
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and it is easy to check that these vectors are not primitive because any n + 1 vectors do not span
(t’ZLH)*, €.8., Ty —T1,...,Tn+1— 21 and —Tpi1 — 1, i.e., the effectiveness condition does not hold.
Therefore, we can not use the usual GKM theory directly?.

However, if we replace the labels with primitive vectors, then we can get the axial function
defined from the effective T (~ T""!/Zy)-action on Qay,, where Zy = {+1} is the kernel of
the non-effective 7" !-action in (2.1). For example, we replace vectors (2.4) with the following
vectors (respectively)

Tly «vvy Tptl, —Tp—1+Tp + Tnt1, ooy, =21+ Tp + Tpta.

Then, these vectors are primitive. Moreover, by using the connection on the GKM graph, other
axial functions are automatically determined. Therefore, we may define the axial function as
follows (also see Remark 2.3 and Figure 3):

DEFINITION 2.2. Set f: Va, — H?*(BT""!) as
N Tj—1 — Tpt1 ]:157n+2
1) = { Ty — Tonta—j J=n+3,...,2n+2
where 29 = 0 and (1, ...,2,41) = H?(BT"*1)3. Then the axial function a : Es, — H?(BT"™t?!)
is defined by
a(ij) = f(j) — f(i)

for j #1,1i.

We denote the GKM graph (I's,,, ) (or equivalently (s, f), called a 0-cochain presentation)
for T = (Vay,, Ea,) defined in Definition 2.2 by Qa,,.

—T3 1
Ty I3

6

FiGURE 3. The GKM graph Qs,, when n = 2. The right figure shows that the
axial function o : By — H?*(BT?®) of Q4 around the vertex 1. The left figure
shows its 0-cochain presentation f : Vy — H?(BT?3).

2.4. Remarks from the sheaves on graphs. Due to [BMO01], we can define the structure
sheaf (or the sheaf of rings) over the graph I' (with an appropriate topology) from the GKM graph
(T, ), say M (also see [Kul6]), whose global sections are isomorphic to the graph equivariant
cohomology, i.e., H*(I'; M) ~ H*(T',a) (see Section 3). On the other hand, by using [Ha21], we
may also regard the axial function a : E, — H?(BT™"!) as the element of the 1-cochain of the
structure sheaf (in the sense of [BMO1]), i.e.,

Cl(F27L;M) = @ H*(BTHJA)'

ecEs,

2More precisely, this means that the graph equivariant cohomology (see Section 3) is not isomorphic to the
equivariant cohomology over integer coefficient (also see [KKLS20, Remark 4.5]). To apply the GKM theory for the
non-effective torus action, we need to modify the definition of the graph equivariant cohomology (see Appendix A).
SMore precisely, H2(BT™+1) in Definition 2.2 is H2(B(T"+1/Zs)) by identifying them as T"+1/Zg ~ T +1,
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On the other hand, the map f : Vs, — H?(BT™*1!) in Definition 2.2 is the element of the 0-cochain
of the structure sheaf, i.e.,

C'(Tons M) := @ H*(BT"H).
pEVan,

The axial function defined in Definition 2.2 is nothing but the image of the connection homomor-
phism

5t C%(Tgp; M) — CH(Tgp; M)

which is defined by 6*(f)(e) := f(q) — f(p) for f € C°(T2,; M) and the oriented edge e = pq.
Namely, there is the following relation between the axial function a and the 0-cochain presentation

f:
5(f) =a.

This is the reason why we call f in Definition 2.2 a 0-cochain presentation of the axial function «
(also see [KM]).

REMARK 2.3. There are several choices of 0-cochain presentations because every elements in
(6Y)7!(a) can be a 0-cochain presentation. However, using a 0-cochain presentation f is much
simpler to draw figures (see Figure 3) than using the axial function «. So in this paper, we fix one
of the 0-cochain presentations as in Definition 2.2 instead of using the axial function.

REMARK 2.4. Let (I', @) be a GKM graph and M be its structure sheaf in [BMO1]. Then we
may define the following sheaf cohomologies (see [Ha21]):

H(T; M) :=Ker(6') ~ H*(T, a);
HY(T; M) := CY(T; M) /Tm(8").

By Remark 2.3, it is easy to check that there exists a 0-cochain presentation f if and only if
a € Im(dY), ie.,

[a] =0 € HY(T; M).
Therefore, if H'(I'; M) = 0, then the axial function which defines M has a 0-cochain presentation.

REMARK 2.5. There is an example that does not have any 0-cochain presentations of the
axial function «. By easy computations, we can not take any 0-cochain presentation of the axial
function of the torus graph defined from the standard T2-action on S* (see e.g. [MMPO07]). This
implies that the axial function [a] € H!(T'; M) is a non-zero class for the structure sheaf of the
torus graph of the T2-action on S*. More generally, if there is a multi-edge in the GKM graph,
then we cannot take a 0-cochain presentation of the axial function a.

3. Graph equivariant cohomology H*(Qs,) and equivariant cohomology H7...:(Q2n)
The graph equivariant cohomology of the GKM graph Qs,, is defined by
(3.1) H*(Q2,) := {h: Va,, = H*(BT™") | h(i) — h(j) =0 mod a(ij) for ij € Ea,}.
Because H%(Q,,,) = 0, it follows from [GKM98, FP07] that we have the following lemma:
LEMMA 3.1. For the effective Tt -action on Qay,, the following isomorphism holds:
Hini1(Q2n) ~ H*(Qan).

So to compute the equivariant cohomology of )5, it is enough to compute the graph equivari-
ant cohomology H*(Qa,). In this section, we introduce the generators and relations of H*(Qay,).
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3.1. Degree 2 generators. We first define the degree 2 generators, i.e., we will define the
generators in H2(Qay,).

DEFINITION 3.2 (degree 2 generators). Let I C Vi, be the set I = Vo, \ {i} for some i €
‘/271 = [277, + 2] Deﬁne MI : V2n — H2(BTn+1) by

o ali) = £6) - 1) J#
i) ={ o T IO e UT

where k can be taken any k € Vo, \ {i,1}.
Notice that the following proposition holds for the axial function on Qs,,:
PROPOSITION 3.3. For every j,k € Vo, \ {i,i}, the following equation holds:
a(ij) + a(ij) = a(ik) + a(ik)
It follows from Proposition 3.3 that Definition 3.2 is well-defined.
By checking M;(j) — M;(k) =0 mod a(jk) for every jk € Ea,, we have the following lemma.

LEMMA 3.4. For every i € Va,,, My € H*(L,a), where I = Vs, \ {i}.
EXAMPLE 3.5. For I =V, \ {6} =V, \ {1}, Figure 4 shows the class M; € H?(Qy).

My(1) = f(2) + f(2) = 2f(6) = z2 + 23

M](Z) = T2 — T1 +$3

<N /o

M;(6) = M;(1) =0

FIGURE 4. My for I =V, \ {1}.

Note that My(j) for j # 7 is the normal axial function a(ji) of j of the full-subgraph I C Vo,

3.2. Higher degree generators. We next define the degree 2k generators, i.e., we will
define the generators in H2*(Q,,,) for k > n.

DEFINITION 3.6 (degree (>)2n generators). Let K C Va, = [2n + 2] be a subset that sat-
isfies if i € K, then i ¢ K (or equivalently {i,i} ¢ K for all i € Va,). Define Ax : Vo, —
H4n—2(\K|—1) (BTn+1) by

I aGh= [ Uk -rG) jek
Ar(j) =9 kgru() keKU{7}
0 J¢K

The following lemma is straightforward.

LEMMA 3.7. Let |K| be the cardinality of the finite set K. Then Ax € H*"~2UKI=(T q).
41t is easy to check that such class in H2(Qsay,) is unique, that is, M (7) is automatically determined (also see

Section 5).
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REMARK 3.8. By the definition of edges Es,,, every pair {i,j} of vertices in K are connected
by an edge ij € FEa,. Therefore, the full subgraph of K consists of a complete subgraph in Qa,,.
Note that the generator A is nothing but the Thom class of the GKM subgraph whose vertices
consist of K (see [MMPO7]).

Geometrically, Ak is the equivariant Thom class of the projective space in @2, whose fixed
points consist of K. For example, there exists the following subspace in Qay,:

{[;aiz2: i 2n41:0:--:0] €Qap | 2 € C} ~CP".

Then, for K = [n + 1], the generator A is the equivariant Thom class of this CP™ (Figure 5
shows this class when n = 2).

EXAMPLE 3.9. For the GKM graph Q4, the set of vertices K = {1, 2, 3} satisfies the condition
which defines A . Figure 5 shows the generator Ax € H*(Qy).

AK(l) = I3($2 — I +I3)

Ak (2)

Ak (3) =xo(z3 — 1)

FIGURE 5. Ak for K = {1,2,3}, where Ag(2) = (z3 — z1)(x2 — 1 + 3).

ExaMPLE 3.10. For the GKM graph Qy, the set of vertices L = {1,2} also satisfies the
condition which defines Ay. Figure 6 shows the generator A, € H(Qy).

AL(l) = 1‘2$3(1‘2 — I +333)

FIGURE 6. Ay for L = {1,2}, where AL(2) = (x2 — 21)(x3 — 1) (22 — 21 + 23)

3.3. Relations among generators. We next introduce five relations among M;’s and Ag’s.

RELATION 1. We define the following elements for J C Va,,:

G My if J= Vo, \ {i} for some i € Vo,
771 Ay if J satisfies that {i,i} ¢ J for every i € Vay,

e



Then, the following relation holds:

(3.2) II ¢, =o.
NnJ=0
Ay (1) 0 0
ﬂ M2 " xMi(4) ¢ 0
O#=-grm--=c-"» - <
L) R =
0&/:'\'\\'--7/-/--\40
M ( (5) 0 0
v
0 M (6) 0

FIGURE 7. Figure of Relation 1. This represents the relation Ay - My = 0 for
I=Vy\{1}.

RELATION 2. We define the element X € H?(Qy,) as the map X : Va,, — H2(BT"™*!) defined
by
X (k) :=a(kj) + Oz(kj),

for all k € Va, \ {4,7}, where j € Vs, can be taken any element if j # k, k (by Proposition 3.3).
Let i € Van, I = Vo, \ {i} and T = Vi, \ {i}. Then, the following relation holds:

(3.3) M+ M7 = X.
Mj(l):O $2+x3
/*\
N To — 20+, — I3
\ / + =
AN //’,/l( T3 — = X9 — T3
g
M;(6) =0 —Z — 3

FIGURE 8. Figure of Relation 2. This represents the relation M7 + M7 = X
where I =V, \ {6} and T =V, \ {1}.

RELATION 3. Assume that the subset I C Va, satisfies that |I| = n and there exists the unique
pair {a,a} C I°. By using the pigeonhole principle, in this case K = (IU{a})¢ and L = (IU{a})°
satisfy the condition which can define the generators Agx, A € H?"(Qa,). Then, the following
relation holds:

(3.4) HMvzn\{i} = A(Iu{a})c + A(Iu{a})c.
icl
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FIGURE 9. Figure of Relation 3. This represents the following relation:
Myiqay - Myi1y = D26y + Agssep
where I = {1,4} C V4 (for n = 2). Note that in this case I¢ = {2,3,5,6} and
a=2,a=>5. Moreover, (I U{5})¢={2,3,6} and (I U{2})¢={3,5,6}.
RELATION 4. Let I = Vi, \ {i} for some i € V3, and K C Vi, be a subset which can define
the generator Ag. Assume that K ¢ I and KNI # () (equivalently {i} C K). Then, the following

relation holds:
(3.5) Ag - M; = Agnr.

FIGURE 10. Figure of Relation 4. This represents the relation Ay 36y - My,\ (33 = Af2,6}-

RELATION 5. Let K, H C Vb, be subsets with |K| = |H| = n + 1 which define Ag, Ay €
H?"(Q3,). Then, the following relation holds:
|KNH|-1

(3.6) Ar A = Agnm - Z (-1)'X" o\grm—1-«(M; | KUH C I) |,

i=0
where X € H?(Qz,) is the element defined in Relation 2 and o is the symmetric polynomial with

degree j.

FIGURE 11. Figure of Relation 5 (also see Figure 12), where K = {2,3,6}, H =
{83,5,6}. This represents the following relation:
Agaz6y - Asey =Ase) - (01(My 1y, My qay) — X)
=A6) - (My,\ (a3 + My,\ (13 — X),
because KNH = {3,6} and KUH ={2,3,5,6} C I (soI=Vy\{1}or V4\{4}).
9



X(1) A1)
Ao X(2 (4) A(Q)/’:'*\:\\{l(él)

Tk

—x2 — I3 —ZT2 — T3

FIGURE 12. Figure about the element A = My, \ (4} + My,\ {1y — X in Figure 11.
Note that A(3) = A(6) = —x2 by Figure 3. Moreover, A(1), A(2), A(4), A(5)
might not be 0 € H?*(BT?): however, Az a1(1) = A6(2) = Ape(d) =
A{3,6}(5) - 0

3.4. Main theorem. Now we may state the main theorem of this paper. To do that, we
first define the following notations.

DEFINITION 3.11. Set
M= {M; | I =Vo, \{i} foricVa,}, D:={Ak | K C Va, such that if i € K then i ¢ K}.
Put the polynomial ring generated by M, D by
Z|M, D).
Let Z be the ideal in Z[M, D] generated by the 5 relations defined in Section 3.3. Then, we define
Z2|Qap] :=Z|M,D]/T.
The following theorem is the main theorem of this paper.
THEOREM 3.12. There is the following isomorphism:
Z[Qan] ~ H*(Qay).
We prove this theorem in [Kul].
Together with Lemma 3.1, we have Theorem 1.1.
4. Combinatorial interpretation of the difference between H*(Qy4,) and H*(Qnt2)

In this section, we first compute the ordinary cohomology from Theorem 1.1 and consider the
meaning of the difference between H*(Q4y,) and H*(Q4n+2) from a combinatorial point of view.

4.1. Ordinary cohomology H*(Q2,). Let H*(BT"') = Z[x1,...,2,+1]. The elements
Z1,...,ZTp+1 can be interpreted as the elements in graph equivariant cohomology.

LEMMA 4.1. Forj=1,...,n+1,
2 = My, \(j+1) = Mys,\ 1) € H*(Qan)-
Because H°%(Qy,) = 0, as a module we have
S (Qan) = H*(Q2n) @z H*(BT™).
Therefore, as a ring

H*(Q2n) = Hpnia (Q2n) /(@15 - Tng)-

Consequently, together with Theorem 1.1 and Lemma 4.1, we obtain the following unified formula
of two rings H*(Qun) and H*(Q4ny2):

THEOREM 4.2 (ordinary cohomology). There is the following isomorphism:

H*(Q2n) ~ Z[Qan]/(My, \j413 — My np1y | J=1,...,n+1).
10



4.2. H*(Q2,) from a combinatorial point of view. Using the relation My, \(j11y —

MVzn\{l} = 0 and the Relation 2, in Z[an]/<MV\{j+1} — MV\{l} | j=1,...,n+1), there is the
following relation:

RELATION 6. M; = My for all I,I' C Vo, with |I| = |I'| =2n+1

Moreover, for K C Va, such that |[K| = n + 1 and {i,i} ¢ K for every i € Va,, i.e.,
A € H?"(Qs,) can be defined, by using Relation 3, we have the following relations:

RELATION 7. There are the following two relations:

(1) Age =Mp — Ak if n=0 mod 2;
(2) Age =Ag if n=1 mod 2.

Relation 7 shows the difference between H*(Qu4n) and H*(Qant2). We shall explain these
differences by H*(Qs) and H*(Qs).

4.2.1. H*(Q4) from a combinatorial point of view. By using Relation 7 (2), in H*(Q4), we
know that the three subgraphs in Figure 13 define the same class in H*(Q,).

FIGURE 13. Three (same) classes in H*(Qy).

Note that any pair of subgraphs in Figure 13 has always an intersection. This shows that
A% (= 2?%) #0in H*(Q4) =~ Zlc, z]/{(c® — 2cx, 2% — 2x).
On the other hand, M? — Ak can be illustrated as in Figure 14.

2
Ag AKC:M[_AK
’ A
PROAENN
SN
T\ ,/ \\ /)T [ ,/ \\ 71
[ N Ny O
| >\ //\ | X I ,< | :0
1 1 1 1

FIGURE 14. Ag(M; — Ag) =0.

Note that the subgraphs in Figure 14 have no intersections. Therefore, by using Relation 1,
there exists the relation Ag(M? — Ag)(= 22 — ®z) = 0 in H*(Q4) =~ Z[c, 7]/ (c® — 2cx, 2 — c*x).

4.2.2. H*(Qg) from a combinatorial point of view. By using Relation 7 (1), in H*(Qg), for
example, the two subgraphs in Figure 15 have an intersection, i.e., the multiplication of these
classes are non-zero.
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TSNS ITANN

sl <IN
s~ "1 3 N \\\},
A O N At
\\/ 4 N \//
IV NN
1y < AN
TASE [ SN
N ¢, N

FIGURE 15. Two classes Ax and M7 — Ak in H(Qg).

Note that any pair of subgraphs obtained by A and M§ — Ak (see Figure 15) has always an
intersection. This shows that Ax (M} — Ag)(= 2% — 3z) # 0 in H*(Qg) ~ Z[c, z]/(c* — 2cz, 2?).
On the other hand, Ak can be also obtained by the subgraph as in Figure 16.

AK AK(: = AK

AN YUANN
sl <IN 'ﬁ.
/’_i_l.{__\ 1 \:\
N SO0 Prd N ¥ Iy 7
N NN N, NN
1Yo<, RN X 1Yo< L =0
TAS 7R TASE 7R

S [V & I\___‘(_ ,_\:b

FIGURE 16. Figure shows the realtion A% = 22 =0 in H*(Qs).

Figure 16 shows that the class Ak is also identified with the class Age in H*(Qg). Therefore,
by Relation 1, there is the relation A% (= 2?) = 0 in H*(Qg) ~ Zlc, z]/(c* — 2cz,2?).

5. The problem inspired by algebraic geometry

We end this paper by asking about the related problem of the main theorem in this paper.

PrROBLEM 5.1. Let (T, ) be a GKM graph. Can every element x € H*(I', ) be written by the
linear combinations of classes defined by generalized GKM subgraphs?

Here, a class defined by a generalized GKM subgraph® seems to be a Thom class of the
ordinary GKM subgraphs. This problem reminds us of the following question (this sentence is
quoted from [EH13, Appendix C.2.4 “The Hodge conjecture”]):

e “the question of which cohomology classes on a smooth projective variety X can be
represented as linear combinations of the fundamental classes of algebraic varieties; that
is, what is the image of n: A(X) — H*(X)?”
For a GKM graph (T, ), the counterpart of the Chow ring A(X) is a ring defined by some GKM
subgraphs in GKM graph (I, &), and the counterpart of the cohomology ring H*(X) is the graph
equivariant cohomology H* (T, ).

Problem 5.1 is affirmatively solved for the case when (', «) is a torus graph by Maeda-Masuda-
Panov [MMPO7] or more general orbifold torus graph by Darby-Kuroki-Song [DKS22]. They
introduce the face ring Z[T', o] of a(n) (orbifold) torus graph which is defined by all (orbifold)
GKM subgraphs in a(n) (orbifold) torus graph, and they prove that Z[T',a] ~ H*(T',«). This
result shows that all elements in H*(T", ) can be represented as the linear combinations of Thom
classes of (orbifold) GKM subgraphs.

The main theorem of the present paper also answers to Problem 5.1 affirmatively for the case
when (I', o) = Qa,, by introducing a ring Z[Qs,,] in Definition 3.11 which is generated by different

5The definition is still vague but we do not want to use the global classes defined by the element x € H*(T', o)
such that z(p) # 0 for all vertices p € V(I'). For example, the Chern classes of tautological line bundle defined in
[KS] are such global classes. Also, see the generator z in Figure 18 in Appendix A.
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types of generators and relations from Maeda-Masuda-Panov’s and Darby-Kuroki-Song’s. Note
that the generators in this paper are defined from the subgraphs in Q,,. Moreover, they are
genuine GKM subgraphs, called Ay, or non-GKM subgraphs in the usual sense, called M; (see
Section 3). Geometrically, Ak is nothing but the (equivariant) Thom class of some smooth
subvariety (see Remark 3.8), and M; corresponds to some non-smooth subvarieties (isomorphic
to the Schubert varieties (also see [La72])). The definition of M; is purely combinatorics but
this class is uniquely determined (as the “minimal” class which is only non-zero on the vertices
I = V5, \ {i}). So there should be a nice geometric (or cohomological) interpretation.

Appendix A. GKM description for non-effective T'-actions on CP!

Let T'(= T) be the 1-dimensional torus. For every T!-action on CP!, there exists a non-
negative integer n such that the action is weak (i.e., up to the automorphism on T*) equivariantly
diffeomorphic to the following action:

t- [ZQ : 2’1] = [ZQ : tn21]7

where t € T! and [z : z1] € CP'. We denote this action as ¢,, and the equivariant cohomology
H3(CP') with respect to this action as H} (CP'). In [KKLS20, Remark 4.5, we show that

H} (CP') ~ Z[r, 7] /(m172) % H},(CPY) ~ Z[u,v]/(u® — v?).

In this Appendix A, we show the GKM description of H, (CP?Y) for all n > 1.
The Mayer-Vietoris exact sequence of the equivariant cohomology satisfies that

e — H;n (CPY — H&TL(UO) ® HZ,"(Ul) — HZ,H(UO NnU) — Hg,jgl(CPl) —

where Uy >~ {[z0 : 1] | z0 € C} is the invariant open neighborhood of the fixed points [0 : 1],
U ~ {[1: z1] | z1 € C} is that of the fixed points [1 : 0], and UgNU; ~ {[z0 : z1] | 2021 # 0} ~ C*.
Since Uj; is equivariantly contractible to the point and Uy N U; is equivariant deformation retract
to the great circle S', this sequence is isomorphic to the following sequence:

0 — HY'(S') — HY(CPY) — H*(BT)® H¥(BT) — H(S') — 0

Note that H;(S') is the equivariant cohomology of the n times rotated action of 7" on S*.
Therefore, the T -action ¢, on S* has the kernel Z,, for n > 2, {e} for n = 1. By the spectral
sequence argument, we have that for n > 2

Z x=0
H;(SY) = H*(ET xr S*) ~ H*(ET/Z,) ~ H*(BZy) = Z, *=2j,j>0
0 x*x=27—1

Because H*(BT') ~ Z[z], we have the following short exact sequence
0— HY(CP') - Z®Z — Z, — 0
for j > 0 and n > 2. Hence, by the definition of the Mayer-Vietoris exact sequence, for all n > 2
H; (CPY) ~{f®geZz]®Zz] | fo=go, f; —9; =0 mod n}
~{f@geZx]DZz]| f—9g=0 mod nz}.
Note that for n = 1 this is nothing but the GKM description in the usual sense, i.e.,
H;l((CPI) ~{f@dgeZx]®Zz]| f—9g=0 mod z}.

Figure 17 shows the labeled graph which corresponds to ¢,. Note that ¢y represents the
trivial T-action on CP!.
13



nxT
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q

FIGURE 17. The GKM graph of ¢,,, where p = [1 : 0] and ¢ = [0 : 1]. The
element z € t* ~ R is a generator of t;, ~ Z.

In summary, we have the following GKM description for ¢,, and its ring structure.

THEOREM A.1 (GKM description for non-effective torus action on CP'). For every non-trivial
Tt -action on CP?, there is the following ring isomorphism:

H;n ((CPl) ~{h:{p,q} = Z|z] | h(p) — h(q) =0 mod nx},

where {p,q} is the fized points for n > 1.
Furthermore, there is the following ring isomorphism:

H;n((cpl) =~ Ly, 7q, @) [{TpTgs nT — T + Tg)

for m >0, where 7,7, are the equivariant Thom classes of fized points.

FIGURE 18. Figure of generators 7,, 7,4, z (from left).
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