Note on the space of algebraic loops on a toric variety

山口耕平 (Kohhei Yamaguchi)

電気通信大学 情報理工学研究科 (University of Electro-Communications)

Abstract

The homotopy type of the space of rational curves on a toric variety has been well studied by several authors since the work of Segal [27] appeared (cf. [9], [10], [12], [15], [18], [25]). In this note we shall consider the real analogue of these spaces. In particular, we report about the homotopy type of spaces of algebraic loops on a toric variety. This result is based on the joint works with A. Kozlowski given in [19].

1 Introduction

First we shall recall several basic definitions and facts about toric topology.

Fans and toric varieties. A convex rational polyhedral cone σ in \mathbb{R}^n is a subset of \mathbb{R}^n of the form

(1.1)
$$\sigma = \operatorname{Cone}(S) = \operatorname{Cone}(\boldsymbol{m}_1, \dots, \boldsymbol{m}_s) = \left\{ \sum_{k=1}^s \lambda_k \boldsymbol{m}_k : \lambda_k \ge 0 \text{ for any } k \right\}$$

for a finite set $S = \{ \boldsymbol{m}_k \}_{k=1}^s \subset \mathbb{Z}^n$. A convex rational polyhedral cone σ is called *strongly convex* if $\sigma \cap (-\sigma) = \{ \boldsymbol{0}_n \}$, and its dimension dim σ is the dimension of the smallest subspace in \mathbb{R}^n which contains σ . A face τ of σ is a subset $\tau \subset \sigma$ of the form

(1.2)
$$\tau = \sigma \cap \{ \boldsymbol{x} \in \mathbb{R}^n : L(\boldsymbol{x}) = 0 \}$$

for some linear form L on \mathbb{R}^n , such that $L(\boldsymbol{x}) \geq 0$ for any $\boldsymbol{x} \in \sigma$. If $\{k : L(\boldsymbol{m}_k) = 0, 1 \leq k \leq s\} = \{i_1, \dots, i_t\}$, we easily see that $\tau = \text{Cone}(\boldsymbol{m}_{i_1}, \dots, \boldsymbol{m}_{i_t})$. Thus, a face τ of σ is also a strongly convex rational polyhedral cone if σ is so.

A finite collection Σ of strongly convex rational polyhedral cones in \mathbb{R}^n is called a fan in \mathbb{R}^n if every face τ of $\sigma \in \Sigma$ belongs to Σ and the intersection of any two elements of Σ is a face of each.

¹When S is the emptyset \emptyset , we set $\operatorname{Cone}(\emptyset) = \{\mathbf{0}_n\}$ and we may also regard it as one of strongly convex rational polyhedral cones in \mathbb{R}^n , where we denote by $\mathbf{0}_n$ the zero vector in \mathbb{R}^n defined by $\mathbf{0}_n = (0, \dots, 0) \in \mathbb{R}^n$

An n dimensional irreducible normal variety X (over \mathbb{C}) is called a toric variety if it has a Zariski open subset $\mathbb{T}^n_{\mathbb{C}}=(\mathbb{C}^*)^n$ and the action of $\mathbb{T}^n_{\mathbb{C}}$ on itself extends to an action of $\mathbb{T}^n_{\mathbb{C}}$ on X. The most significant property of a toric variety is the fact that it is characterized up to isomorphism entirely by its associated fan Σ . We denote by X_{Σ} the toric variety associated to a fan Σ .

Since the fan of $\mathbb{T}^n_{\mathbb{C}}$ is $\{\mathbf{0}_n\}$ and this case is trivial, we always assume that any fan Σ in \mathbb{R}^n satisfies the condition $\{\mathbf{0}_n\} \subsetneq \Sigma$.

Definition 1.1. Let Σ be a fan in \mathbb{R}^n such that $\{\mathbf{0}_n\} \subsetneq \Sigma$ and let

$$\Sigma(1) = \{\rho_1, \cdots, \rho_r\}$$

denote the set of all one dimensional cones in Σ . For each integer $1 \leq k \leq r$, we denote by $\mathbf{n}_k \in \mathbb{Z}^n$ the primitive generator of ρ_k , such that

Note that $\rho_k = \operatorname{Cone}(\boldsymbol{n}_k) = \mathbb{R}_{\geq 0} \cdot \boldsymbol{n}_k$ for each $1 \leq k \leq r$.

Polyhedral products and homogenous coordinates. Next, recall the definition of polyhedral products and homogenous coordinates of toric varieties.

Definition 1.2. Let K be a simplicial complex on the vertex set $[r] = \{1, 2, \dots, r\}$, and let (X, A) be a pair of based spaces such that $A \subset X$.

(i) Let $\mathcal{Z}_K(X,A)$ denote the polyhedral product of the pair (X,A) with respect to K given by the union

(1.5)
$$\mathcal{Z}_K(X,A) = \bigcup_{\sigma \in K} (X,A)^{\sigma},$$

where we set $(X, A)^{\sigma} = \{(x_1, \dots, x_r) \in X^r : x_k \in A \text{ if } k \notin \sigma\}.$ When $(X, A) = (D^2, S^1)$, we write $\mathcal{Z}_K = \mathcal{Z}_K(D^2, S^1)$ and it is called the moment-angle $complex ext{ of } K.$

(ii) For a fan Σ in \mathbb{R}^n , let \mathcal{K}_{Σ} denote the underlying simplicial complex of Σ defined by

(1.6)
$$\mathcal{K}_{\Sigma} = \Big\{ \{i_1, \cdots, i_s\} \subset [r] : \operatorname{Cone}(\boldsymbol{n}_{i_1}, \boldsymbol{n}_{i_2}, \cdots, \boldsymbol{n}_{i_s}) \in \Sigma \Big\}.$$

Note that \mathcal{K}_{Σ} is a simplicial complex on the vertex set [r].

(iii) Let $G_{\Sigma} \subset \mathbb{T}^r_{\mathbb{C}} = (\mathbb{C}^*)^r$ denote the multiplicative subgroup of $\mathbb{T}^r_{\mathbb{C}}$ defined by

(1.7)
$$G_{\Sigma} = \{(\mu_1, \cdots, \mu_r) \in \mathbb{T}_{\mathbb{C}}^r : \prod_{k=1}^r (\mu_k)^{\langle \boldsymbol{n}_k, \boldsymbol{m} \rangle} = 1 \text{ for all } \boldsymbol{m} \in \mathbb{Z}^n\},$$

²Let K be some set of subsets of [r]. Then the set K is called an abstract simplicial complex on the vertex set [r] if the following condition holds: if $\tau \subset \sigma$ and $\sigma \in K$, then $\tau \in K$. In this paper by a simplicial complex K we always mean an an abstract simplicial complex, and we always assume that a simplicial complex K contains the empty set \emptyset .

where \langle , \rangle denotes the standard inner product on \mathbb{R}^n given by $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \sum_{k=1}^n u_k v_k$ for $\boldsymbol{u} = (u_1, \dots, u_n)$ and $\boldsymbol{v} = (v_1, \dots, v_n) \in \mathbb{R}^n$.

(iv) Consider the natural G_{Σ} -action on $\mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}, \mathbb{C}^*)$ given by coordinate-wise multiplication, i.e. $\mu \cdot \boldsymbol{x} = (\mu_1 x_1, \dots, \mu_r x_r)$ for $(\mu, \boldsymbol{x}) = ((\mu_1, \dots, \mu_r), (x_1, \dots, x_r)) \in G_{\Sigma} \times \mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}, \mathbb{C}^*)$. We denote by $\mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}, \mathbb{C}^*)/G_{\Sigma}$ the corresponding orbit space and let

$$(1.8) q_{\Sigma}: \mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}, \mathbb{C}^*) \to \mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}, \mathbb{C}^*)/G_{\Sigma}$$

denote the canonical projection.

Lemma 1.3 ([6], [7], [19]). Suppose that the set $\{\boldsymbol{n}_k\}_{k=1}^r$ of all primitive generators spans \mathbb{R}^n (i.e. $\sum_{k=1}^r \mathbb{R} \cdot \boldsymbol{n}_k = \mathbb{R}^n$).

(i) There is a natural isomorphism

$$(1.9) X_{\Sigma} \cong \mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}, \mathbb{C}^*)/G_{\Sigma}.$$

(ii) If $f: \mathbb{C}\mathrm{P}^m \to X_{\Sigma}$ is a holomorphic map, there exists an r-tuple $D = (d_1, \dots, d_r) \in (\mathbb{Z}_{\geq 0})^r$ of non-negative integers satisfying the condition $\sum_{k=1}^r d_k \mathbf{n}_k = \mathbf{0}$ and homogenous polynomials $f_i \in \mathbb{C}[z_0, \dots, z_m]$ of degree d_i $(i = 1, 2, \dots, r)$ such that polynomials $\{f_i\}_{i \in \sigma}$ have no common root except $\mathbf{0} \in \mathbb{C}^{m+1}$ for each $\sigma \in I(\mathcal{K}_{\Sigma})$ and that the diagram

is commutative, where $\gamma_m: \mathbb{C}^{m+1} \setminus \{\mathbf{0}\} \to \mathbb{C}\mathrm{P}^m$ denotes the canonical Hopf fibering and the map q_{Σ} is a canonical projection induced from the identification (1.9). In this case, we call this holomorphic map f as a holomorphic map of degree $D = (d_1, \dots, d_r)$ and we represent it as

$$(1.11) f = [f_1, \cdots, f_r].$$

Moreover, if $g_i \in \mathbb{C}[z_0, \dots, z_m]$ is a homogenous polynomial of degree d_i $(1 \leq i \leq r)$ such that $f = [f_1, \dots, f_r] = [g_1, \dots, g_r]$, there exists some element $(\mu_1, \dots, \mu_r) \in G_{\Sigma}$ such that $f_i = \mu_i \cdot g_i$ for each $1 \leq i \leq r$. Thus, such r-tuple (f_1, \dots, f_r) of homogenous polynomials representing the holomorphic map f is uniquely determined up to G_{Σ} -action.

(iii) Let $h_k \in \mathbb{C}[z_0, \dots, z_m]$ be a homogenous polynomial of the degree d_k for each $1 \leq k \leq r$ such that the polynomials $\{h_k\}_{k \in \sigma}$ have no common real root except $\mathbf{0}_{m+1} \in \mathbb{R}^{m+1}$ for each $\sigma \in I(\mathcal{K}_{\Sigma})$. Then there is a unique map $h : \mathbb{R}P^m \to X_{\Sigma}$ such that the following diagram

is commutative if and only if $\sum_{k=1}^r d_k \mathbf{n}_k = \mathbf{0}_n$, where $\gamma_{m,\mathbb{R}} : \mathbb{R}^{m+1} \setminus \{\mathbf{0}\} \to \mathbb{R}P^m$ denotes the canonical double covering.

Remark 1.4. We call the map h determined by an r-tuple (h_1, \dots, h_r) of homogenous polynomials given in (iii) of Lemma 1.3 as an algebraic map and we write $h = [h_1, \dots, h_r]$.

Note that two different such r-tuples of polynomials can determine the same maps. In fact, if we multiply all polynomials in such an r-tuple by the same polynomial which does not have any real roots except $\mathbf{0}_m$, we obtain the same algebraic map. For example, suppose that (h_1, \cdots, h_r) is the r-tuple of homogenous polynomials in $\mathbb{C}[z_0, \cdots, z_m]$ of degree d_1, \cdots, d_r satisfying the same condition as before. If $(a_1, \cdots, a_r) \in \mathbb{N}^r$ is the r-tuple of positive integers and it satisfies the condition $\sum_{k=1}^r a_k \mathbf{n}_k = \mathbf{0}_n$, we can easily see that $h = [h_1, \cdots, h_r] = [(g_1)^{a_1}h_1, \cdots, (g_1)^{a_r}h_r] = [(g_2)^{a_1}h_1, \cdots, (g_2)^{a_r}h_r]$ for $g_1 = \sum_{k=0}^m z_k^2$ and $g_2 = (z_0 + z_1)^2 + \sum_{k=2}^m z_k^2$.

Assumptions. Let Σ be a fan in \mathbb{R}^n satisfying the condition (1.3) as in Definition 1.1. From now on, we assume that the following two conditions hold.

- (1.9.1) There is an r-tuple $D_* = (d_1^*, \dots, d_r^*) \in \mathbb{N}^r$ of positive integers such that $\sum_{k=1}^r d_k^* \boldsymbol{n}_k = \boldsymbol{0}_n$.
- (1.9.2) The set $\{n_k\}_{k=1}^r$ of primitive generators spans \mathbb{Z}^n over \mathbb{Z} .

Remark 1.5. Note that X_{Σ} is a compact iff $\bigcup_{\sigma \in \Sigma} \sigma = \mathbb{R}^n$. Note also that X_{Σ} is simply connected if and only if $\sum_{k=1}^r \mathbb{Z} \cdot \mathbf{n}_k = \mathbb{Z}^n$. Hence, the condition (1.9.2) always holds if X_{Σ} is compact or simply connected. On the other hand, if the condition (1.9.2) holds, one can easily see that the set $\{\mathbf{n}_k\}_{k=1}^r$ spans \mathbb{R}^n over \mathbb{R} , and there is an isomorphism (1.9) for the space X_{Σ} . Moreover, we know that the condition (1.9.1) holds if X_{Σ} is compact and non-singular [7, Theorem 3.1].

Remark 1.6. Let Σ denote the fan in \mathbb{R}^2 given by $\Sigma = \{\{\mathbf{0}_2\}, \operatorname{Cone}(e_1), \operatorname{Cone}(e_2)\}$ for the standard basis $e_1 = (1,0), e_2 = (0,1)$. Then the toric variety X_{Σ} of Σ is \mathbb{C}^2 which has trivial homogenous coordinates. It is clearly a (simply connected) smooth toric variety, and the condition (1.9.1) also holds. However, in this case, $\sum_{k=1}^2 d_k \mathbf{n}_k = \mathbf{0}_2$ iff $(d_1, d_2) = (0,0)$. Hence, it follows from Lemma 1.3 that there are no algebraic maps $\mathbb{R}P^m \to X_{\Sigma} = \mathbb{C}^2$ other than the constant maps. Assuming the condition (1.9.1) guarantees the existence of non-trivial algebraic maps $\mathbb{R}P^m \to X_{\Sigma}$. Of course, it would be sufficient to assume that $D = (d_1, \ldots, d_r) \neq (0, \ldots 0)$ but if $d_i = 0$ for some i, then the number $d(D, \Sigma)$ (defined in (2.2)) is not a positive integer and our assertion (Theorem 2.2 below) is vacuous. For this reason, we will assume the condition $d_k^* \geq 1$ for each $1 \leq k \leq r$ in (1.9.1).

Let X_{Σ} be a non-singular toric variety and make the identification

(1.13)
$$X_{\Sigma} = \mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}, \mathbb{C}^*)/G_{\Sigma}.$$

Let z_0, \dots, z_m be variables. Now we consider the space of all tuples of polynomials which define based algebraic maps.

Definition 1.7. (i) For each $d, m \in \mathbb{N}$, let $\mathcal{H}_m^d(\mathbb{C})$ denote the space of all homogenous polynomials $f(z_0, \dots, z_m) \in \mathbb{C}[z_0, \dots, z_m]$ of degree d.

(ii) For each r-tuple $D=(d_1,\dots,d_r)\in\mathbb{N}^r$, let $\operatorname{Pol}_D^*(\mathbb{R}\mathrm{P}^m,X_\Sigma)$ denote the space of r-tuples $f=(f_1(z_0,\dots,z_m),\dots,f_r(z_0,\dots,z_m))\in\mathcal{H}_m^{d_1}(\mathbb{C})\times\dots\times\mathcal{H}_m^{d_r}(\mathbb{C})$ of homogenous polynomials satisfying the following two conditions:

$$(1.14.1) f(\boldsymbol{x}) = (f_1(\boldsymbol{x}), \dots, f_r(\boldsymbol{x})) \in U(\mathcal{K}_{\Sigma}) \text{ for any point } \boldsymbol{x} = (x_0, \dots, x_m) \in \mathbb{R}^{m+1} \setminus \{\boldsymbol{0}_{m+1}\}.$$

$$(1.14.2)$$
 $f(\mathbf{e}_1) = (f_1(\mathbf{e}_1), \dots, f_r(\mathbf{e}_1)) = (1, 1, \dots, 1)$, where $\mathbf{e}_1 = (1, 0, \dots, 0) \in \mathbb{R}^{m+1}$.

Definition 1.8. We always assume the identification $X_{\Sigma} = U(\mathcal{K}_{\Sigma})/G_{\Sigma}$, and denote by $[y_1, \dots, y_r]$ the point in X_{Σ} represented by $(y_1, \dots, y_r) \in U(\mathcal{K}_{\Sigma})$. Moreover, we choose the two points $[1:0:\dots:0] \in \mathbb{R}P^m$ and $*=[1,\dots,1] \in X_{\Sigma}$ as the base-points of $\mathbb{R}P^m$ and X_{Σ} respectively.

Let $D = (d_1, \dots, d_r) \in \mathbb{N}^r$ be an r-tuple of positive integers such that $\sum_{k=1}^r d_k \mathbf{n}_k = \mathbf{0}_n$. Then by using Lemma 1.3, for each r-tuple

$$f = (f_1(z_0, \dots, z_m), \dots, f_r(z_0, \dots, z_m)) \in \operatorname{Pol}_D^*(\mathbb{R}P^m, X_{\Sigma})$$

one can define based algebraic map

$$[f] = [f_1, \dots, f_r] : (\mathbb{R}P^m, [e_1]) \to (X_{\Sigma}, *)$$
 by

$$[f]([\boldsymbol{x}]) = [f_1(\boldsymbol{x}), \cdots, f_r(\boldsymbol{x})]$$

for $[\boldsymbol{x}] = [x_0 : \cdots : x_m] \in \mathbb{R}P^m$, where $\boldsymbol{x} = (x_0, \cdots, x_m) \in \mathbb{R}^{m+1} \setminus \{\boldsymbol{0}_{m+1}\}$. Hence, we denote by $\operatorname{Map}_D^*(\mathbb{R}P^m, X_{\Sigma})$ the path-component of $\operatorname{Map}^*(\mathbb{R}P^m, X_{\Sigma})$ which contains all algebraic maps of degree D, and we obtain the natural map

$$(1.16) i_{D,m}: \operatorname{Pol}_{D}^{*}(\mathbb{R}P^{m}, X_{\Sigma}) \to \operatorname{Map}_{D}^{*}(\mathbb{R}P^{m}, X_{\Sigma})$$

given by

(1.17)
$$i_{D,m}(f) = [f] = [f_1, \cdots, f_r]$$

for
$$f = (f_1(z_0, \dots, z_m), \dots, f_r(z_0, \dots, z_m)) \in \operatorname{Pol}_D^*(\mathbb{R}P^m, X_{\Sigma}),.$$

When m=1, we make the identification $\mathbb{R}P^1=S^1=\mathbb{R}\cup\infty$ and choose the points ∞ as the base-point of $\mathbb{R}P^1$. Then, by setting $z=\frac{z_0}{z_1}$, we can view a homogenous polynomial $f(z_0,z_1)\in\mathbb{C}[z_0,z_1]$ of degree d as a monic polynomial $f_k(z)\in\mathbb{C}[z]$ of degree d. Thus, when m=1, one can redefine the space $\mathrm{Pol}_D^*(S^1,X_\Sigma)$ as follows.

Definition 1.9. (i) Let P^d denote the space of all monic polynomials $f(z) = z^d + a_1 z^{d-1} + \cdots + a_{d-1}z + a_d \in \mathbb{C}[z]$ of degree d, and let

(1.18)
$$P^{D} = P^{d_1} \times P^{d_2} \times \cdots \times P^{d_r}.$$

Note that there is a homeomorphism $\phi: \mathbf{P}^d \cong \mathbb{C}^d$ given by $\phi(z^d + \sum_{k=1}^d a_k z^{d-k}) = (a_1, \dots, a_d) \in \mathbb{C}^d$.

- (ii) For any r-tuple $D = (d_1, \dots, d_r) \in \mathbb{N}^r$, let $\operatorname{Pol}_D^*(S^1, X_{\Sigma})$ denote the space of all r-tuples $(f_1(z), \dots, f_r(z)) \in \mathbb{P}^D$ of monic polynomials satisfying the following condition (\dagger) :
 - (†) The polynomials $f_{i_1}(z), \dots, f_{i_s}(z)$ have no common real root for any $\sigma = \{i_1, \dots, i_s\} \in I(\mathcal{K}_{\Sigma})$, i.e. $(f_{i_1}(\alpha), \dots, f_{i_s}(\alpha)) \neq \mathbf{0}_s$ for any $\alpha \in \mathbb{R}$.

When the condition $\sum_{k=1}^r d_k \mathbf{n}_k = \mathbf{0}_n$ holds, by identifying $X_{\Sigma} = \mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}, \mathbb{C}^*)/G_{\Sigma}$ and $\mathbb{R}\mathrm{P}^1 = S^1 = \mathbb{R} \cup \infty$, one can define a natural map

$$(1.19) i_D = i_{D,1} : \operatorname{Pol}_D^*(S^1, X_{\Sigma}) \to \operatorname{Map}^*(S^1, X_{\Sigma}) = \Omega X_{\Sigma} by$$

(1.20)
$$i_D(f_1(z), \dots, f_r(z))(\alpha) = \begin{cases} [f_1(\alpha), \dots, f_r(\alpha)] & \text{if } \alpha \in \mathbb{R} \\ [1, 1, \dots, 1] & \text{if } \alpha = \infty \end{cases}$$

for $(f_1(z), \dots, f_r(z)) \in \operatorname{Pol}_D^*(S^1, X_{\Sigma})$ and $\alpha \in S^1 = \mathbb{R} \cup \infty$, where we choose the points ∞ and $[1, 1, \dots, 1]$ as the base-points of S^1 and X_{Σ} .

Note that $\operatorname{Pol}_D^*(S^1, X_{\Sigma})$ is simply connected and that the map $\Omega q_{\Sigma}: \Omega \mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}, \mathbb{C}^*) \to \Omega X_{\Sigma}$ is a universal covering. Thus, when $\sum_{k=1}^r d_k \mathbf{n}_k = \mathbf{0}_n$, the map i_D lifts to the space $\Omega \mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}, \mathbb{C}^*) \simeq \Omega \mathcal{Z}_{\mathcal{K}_{\Sigma}}$ and there is a map

$$(1.21) j_D: \operatorname{Pol}_D^*(S^1, X_{\Sigma}) \to \Omega \mathcal{Z}_{\mathcal{K}_{\Sigma}}$$

such that

$$\Omega q_{\Sigma} \circ j_D = i_D.$$

Remark 1.10. Even if $\sum_{k=1}^{r} d_k n_k \neq 0_n$ we can define the two maps

$$i_D: \operatorname{Pol}_D^*(S^1, X_{\Sigma}) \to \Omega X_{\Sigma}, \quad j_D: \operatorname{Pol}_D^*(S^1, X_{\Sigma}) \to \Omega \mathcal{Z}_{\mathcal{K}_{\Sigma}}$$

by using stabilization maps. The detail is given in [19].

Now we need to define the numbers $r_{\min}(\Sigma)$ and $d(D, \Sigma)$.

Definition 1.11. Let Σ be a fan in \mathbb{R}^n as in Definition 1.1.

- (i) We say that a set $S = \{ \boldsymbol{n}_{i_1}, \cdots, \boldsymbol{n}_{i_s} \}$ is primitive in Σ if $\operatorname{Cone}(S) \notin \Sigma$ but $\operatorname{Cone}(T) \in \Sigma$ for any proper subset $T \subsetneq S$.
 - (ii) For $D=(d_1,\cdots,d_r)\in\mathbb{N}^r$ define integers $r_{\min}(\Sigma)$ and $d(D,\Sigma;m)$ by

$$(1.23) \quad \begin{cases} r_{\min}(\Sigma) &= \min\{s \in \mathbb{N} : \{\boldsymbol{n}_{i_1}, \cdots, \boldsymbol{n}_{i_s}\} \text{ is primitive in } \Sigma\}, \\ d(D, \Sigma; m) &= (2r_{\min}(\Sigma) - m - 1)d_{\min} - 2, \text{ where } d_{\min} = \min\{d_1, \cdots, d_r\}. \end{cases}$$

Definition 1.12. Recall that a map $g: V \to W$ is called a homology (resp. homotopy) equivalence through dimension N if the induced homomorphism $g_*: H_k(V; \mathbb{Z}) \to H_k(W; \mathbb{Z})$ (resp. $g_*: \pi_k(V) \to \pi_k(W)$) is an isomorphism for all $k \leq N$.

Now recall the following result.

Theorem 1.13 ([13]). Let $m \geq 2$ be a positive integer, X_{Σ} be a compact smooth toric variety and $D = (d_1, \dots, d_r) \in \mathbb{N}^r$ be an r-tuple of positive integers such that $\sum_{k=1}^r d_k \mathbf{n}_k = \mathbf{0}_n$. Then the natural map $i_{D,m} : \operatorname{Pol}_D^*(\mathbb{R}P^m, X_{\Sigma}) \to \operatorname{Map}_D^*(\mathbb{R}P^m, X_{\Sigma})$ is a homology equivalence through dimension $d(D, \Sigma; m)$.

Note that the above result does not hold for the case m=1. For example, this can be seen in [11] for the case $X_{\Sigma} = \mathbb{C}\mathrm{P}^n$. In fact, the main purpose of this paper is to investigate the result corresponding to this theorem for the case m=1.

2 Main results

Previous results. First, recall the following result concerning to the homotopy type of space of rational curves one a toric variety.

Theorem 2.1 ([18]). Let X_{Σ} be a simply connected non-singular toric variety associated to the fan Σ such that the condition (1.9.1) is satisfied. Then if $D = (d_1, \dots, d_r) \in \mathbb{N}^r$ and $\sum_{k=1}^r d_k \mathbf{n}_k = \mathbf{0}_n$, the inclusion map

$$i_{D,hol}: \operatorname{Hol}_D^*(S^2, X_{\Sigma}) \xrightarrow{\subset} \Omega_D^2 X_{\Sigma}$$

is a homotopy equivalence through dimension $d_*(D,\Sigma)$ if $r_{\min}(\Sigma) \geq 3$ and a homology equivalence through dimension $d_*(D,\Sigma) = d_{\min} - 2$ if $r_{\min}(\Sigma) = 2$.

Here, $\Omega_D^2 X_{\Sigma}$ (resp. $\operatorname{Hol}_D^*(S^2, X_{\Sigma})$) denotes the space of based continuous (resp. based holomorphic) maps from S^2 to X_{Σ} of degree D, and $d_*(D, \Sigma)$ is the number given by

(2.1)
$$d_*(D, \Sigma) = (2r_{\min}(\Sigma) - 3)d_{\min} - 2$$
, where $d_{\min} = \min\{d_1, \dots, d_r\}$.

The main results of this note. The main result of this paper is to consider the real analogue of the above result and this is stated as follows.

Theorem 2.2 ([19]). Let $D = (d_1, \dots, d_r) \in \mathbb{N}^r$ be an r-tuple of positive integers and let X_{Σ} be a simply connected non-singular toric variety such that the condition (1.9.1) holds. Then there is map

$$j_D: \operatorname{Pol}_D^*(S^1, X_{\Sigma}) \to \Omega \mathcal{Z}_{\mathcal{K}_{\Sigma}}$$

which is a homotopy equivalence through dimension $d(D, \Sigma)$, where the number $d(D, \Sigma)$ is given by

(2.2)
$$d(D, \Sigma) = d(D, \Sigma; 1) = (2r_{\min}(\Sigma) - 2)d_{\min} - 2.$$

Corollary 2.3 ([19]). Under the same assumption as in Theorem 2.2, there is the map $i_D : \operatorname{Pol}_D^*(S^1, X_{\Sigma}) \to \Omega X_{\Sigma}$ induces an isomorphism

$$(i_D)_*: \pi_k(\operatorname{Pol}_D^*(S^1, X_\Sigma)) \xrightarrow{\cong} \pi_k(\Omega X_\Sigma) \cong \pi_{k+1}(X_\Sigma)$$

for any $2 \le k \le d(D, \Sigma)$.

Corollary 2.4 ([19]). Let $D = (d_1, \dots, d_r) \in \mathbb{N}^r$ be an r-tuple of positive integers satisfying the condition $\sum_{k=1}^r d_k \mathbf{n}_k = \mathbf{0}_n$, and let X_{Σ} be a simply connected compact non-singular toric variety. Let $\Sigma(1)$ denote the set of all one dimensional cones in Σ , and Σ_1 any fan in \mathbb{R}^n such that $\Sigma(1) \subset \Sigma_1 \subsetneq \Sigma$.

(i) Then X_{Σ_1} is a non-singular open toric subvariety of X_{Σ} and there is the map

$$j_D: \operatorname{Pol}_D^*(S^1, X_{\Sigma_1}) \to \Omega \mathcal{Z}_{\Sigma_1}$$

which is a homotopy equivalence through dimension $d(D, \Sigma_1)$.

(ii) Moreover, there is the map $i_D : \operatorname{Pol}_D^*(S^1, X_{\Sigma_1}) \to \Omega X_{\Sigma_1}$ which induces the isomorphism

$$(i_D)_*: \pi_k(\operatorname{Pol}_D^*(S^1, X_{\Sigma_1})) \xrightarrow{\cong} \pi_k(\Omega X_{\Sigma_1}) \cong \pi_{k+1}(X_{\Sigma_1})$$

for any $2 \le k \le d(D, \Sigma_1)$.

Examples. Finally consider the example of the main results. Since the case $X_{\Sigma} = \mathbb{C}P^n$ was already well known, we consider the case that X_{Σ} is the Hirzerbruch surface H(k).

Definition 2.5. For an integer $k \in \mathbb{Z}$, let H(k) be the Hirzerbruch surface defined by

$$H(k) = \left\{ ([x_0 : x_1 : x_2], [y_1 : y_2]) \in \mathbb{C}P^2 \times \mathbb{C}P^1 : x_1 y_1^k = x_2 y_2^k \right\} \subset \mathbb{C}P^2 \times \mathbb{C}P^1.$$

Since there are isomorphisms $H(-k) \cong H(k)$ for $k \neq 0$ and $H(0) \cong \mathbb{C}\mathrm{P}^1 \times \mathbb{C}\mathrm{P}^1$, without loss of generality we can assume that $k \geq 1$. Let Σ_k denote the fan in \mathbb{R}^2 given by

$$\Sigma_k = \{ \operatorname{Cone}(\mathbf{n}_i, \mathbf{n}_{i+1}) \ (1 \le i \le 3), \operatorname{Cone}(\mathbf{n}_4, \mathbf{n}_1), \operatorname{Cone}(\mathbf{n}_i) \ (1 \le j \le 4), \ \{\mathbf{0}\} \},$$

where we set $\mathbf{n}_1 = (1,0), \ \mathbf{n}_2 = (0,1), \ \mathbf{n}_3 = (-1,k), \ \mathbf{n}_4 = (0,-1).$

It is easy to see that Σ_k is the fan of H(k) and that H(k) is a compact non-singular toric variety. Note that $\Sigma_k(1) = \{ \operatorname{Cone}(\mathbf{n}_i) : 1 \leq i \leq 4 \}$. Since $\{ \mathbf{n}_1, \mathbf{n}_3 \}$ and $\{ \mathbf{n}_2, \mathbf{n}_4 \}$ are only primitive in Σ_k , $r_{\min}(\Sigma_k) = 2$.

Moreover, for $D = (d_1, d_2, d_3, d_4) \in \mathbb{N}^4$ the equality $\sum_{k=1}^4 d_k \mathbf{n}_k = \mathbf{0}_2$ holds iff $(d_3, d_4) = (d_1, kd_1 + d_2)$. Thus, if $\sum_{k=1}^4 d_k \mathbf{n}_k = \mathbf{0}_2$, we have $d_{\min} = \min\{d_1, d_2, d_3, d_4\} = \min\{d_1, d_2\}$.

Example 2.6. Let $D = (d_1, d_2, d_3, d_4) \in \mathbb{N}^4$, $k \in \mathbb{N}$, and Σ be a fan in \mathbb{R}^2 such that $\Sigma_k(1) = \{ \operatorname{Cone}(\mathbf{n}_i) : 1 \leq i \leq 4 \} \subset \Sigma \subset \Sigma_k$ as in Definition 2.5.

(i) X_{Σ} is a non-singular open toric subvariety of H(k) if $\Sigma \subsetneq \Sigma_k$.

(ii) If $\sum_{k=1}^4 d_k \mathbf{n}_k = \mathbf{0}_2$, the equality $(d_3, d_4) = (d_1, kd_1 + d_2)$ holds and the map $j_D : \operatorname{Pol}_D^*(S^1, X_{\Sigma}) \to \Omega \mathcal{Z}_{\mathcal{K}_{\Sigma}}$ is a homotopy equivalence through dimension $2 \min\{d_1, d_2\} - 2$. Moreover, the map $i_D: \operatorname{Pol}_D^*(S^1, X_{\Sigma}) \to \Omega X_{\Sigma}$ induces an isomorphism

$$(i_D)_*: \pi_k(\operatorname{Pol}_D^*(S^1, X_\Sigma)) \xrightarrow{\cong} \pi_k(\Omega X_\Sigma) \cong \pi_{k+1}(X_\Sigma)$$

for any $2 \le k \le 2 \min\{d_1, d_2\} - 2$. (iii) If $\sum_{k=1}^4 d_k \mathbf{n}_k \ne \mathbf{0}_2$, there is a map $j_D : \operatorname{Pol}_D^*(S^1, X_{\Sigma}) \to \Omega \mathcal{Z}_{\mathcal{K}_{\Sigma}}$ which is a homotopy equivalence through dimension $2\min\{d_1,d_2,d_3,d_4\}-2$, and there is a map i_D : $\operatorname{Pol}_D^*(S^1, X_{\Sigma}) \to \Omega X_{\Sigma}$ which induces an isomorphism

$$(i_D)_*: \pi_k(\operatorname{Pol}_D^*(S^1, X_\Sigma)) \xrightarrow{\cong} \pi_k(\Omega X_\Sigma) \cong \pi_{k+1}(X_\Sigma)$$

for any
$$2 \le k \le 2 \min\{d_1, d_2, d_3, d_4\} - 2$$
.

Remark 2.7. As we considered as above, the space $\operatorname{Pol}_D^*(S^1, X_{\Sigma})$ can be regarded as one of real analogues of the space $\operatorname{Hol}_D^*(S^2, X_{\Sigma})$. In our previous paper [17], we investigate the homotopy type of the space $\operatorname{Poly}_n^{\widetilde{d,m}}(\mathbb{C})$ of resultants of bounded multiplicity. We can also consider the real analogues of it, and we shall investigate the homotopy types of them in the subsequent papers ([20], [21]).

The author was supported by JSPS KAKENHI Grant Number Acknowledgements. JP22K03283. This work was also supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.

References

- [1] M. Adamaszek, A. Kozlowski and K. Yamaguchi, Spaces of algebraic and continuous maps between real algebraic varieties, Quart. J. Math. 62 (2011), 771–790.
- [2] M. F. Atiyah and J. D. S. Jones, Topological aspects of Yang-Mills theory, Commun. Math. Phys. **59** (1978), 97–118.
- [3] V. M. Buchstaber and T. E. Panov, Torus actions and their applications in topology and combinatorics, Univ. Lecture Note Series 24, Amer. Math. Soc. Providence, 2002.
- [4] F. R. Cohen, R. L. Cohen, B. M. Mann and R. J. Milgram, The homotopy type of rational functions, Math. Z. **207** (1993), 37–47.
- [5] R. L. Cohen, J. D. S. Jones and G. Segal, Stability for holomorphic spheres and Morse theory, Contemporary Math., 258 (2000), 87-106.
- [6] D. A. Cox, The homogenous coordinate ring of a toric variety, J. Algebraic Geometry **4** (1995), 17-50.

- [7] D. A. Cox, The functor of a smooth toric variety, Tohoku Math. J. 47 (1995), 251-262.
- [8] B. Farb and J. Wolfson, Topology and arithmetic of resultants, I: Spaces of rational maps, New York J. Math., **22**, (2016), 801-826.
- [9] M. A. Guest, The topology of the space of rational curves on a toric variety, Acta Math. 174 (1995), 119–145.
- [10] M. A. Guest, A. Kozlowski and K. Yamaguchi, The topology of spaces of coprime polynomials, Math. Z. **217** (1994), 435–446.
- [11] M. A. Guest, A. Kozlowski and K. Yamaguchi, Spaces of polynomials with roots of bounded multiplicity, Fund. Math. **116** (1999), 93–117.
- [12] S. Kallel, Divisor spaces on punctured Riemann surfaces, Trans. Amer. Math. Soc. **350** (1998), 135–164.
- [13] A. Kozlowski, M. Ohno and K. Yamaguchi, Spaces of algebraic maps from real projective spaces to toric varieties, J. Math. Soc. Japan 68 (2016), 745-771.
- [14] A. Kozlowski and K. Yamaguchi, Topology of complements of discriminants and resultants, J. Math. Soc. Japan **52** (2000), 949-959.
- [15] A. Kozlowski and K. Yamaguchi, The homotopy type of spaces of coprime polynomials revisited, Topology Appl. **206** (2016), 284-304.
- [16] A. Kozlowski and K. Yamaguchi, The homotopy type of spaces of polynomials with bounded multiplicity, Publ. RIMS. Kyoto Univ., **52** (2016), 297-308.
- [17] A. Kozlowski and K. Yamaguchi, The homotopy type of spaces of resultants of bounded multiplicity, Topology Appl. **232** (2017), 112-139.
- [18] A. Kozlowski and K. Yamaguchi, The homotopy type of spaces of rational curves on a toric variety, Topology Appl. **249** (2018), 19-42.
- [19] A. Kozlowski and K. Yamaguchi, The homotopy type of the space of algebraic loops on a toric variety, Topology Appl. **300** (2021), Paper ID: 107705 (35 pages)
- [20] A. Kozlowski and K. Yamaguchi, The homotopy type of spaces of real resultants with bounded multiplicity, preprint (arXiv:1803.02154).
- [21] A. Kozlowski and K. Yamaguchi, The homotopy type of spaces of resultants of bounded multiplicity with real coefficients, in preparation.
- [22] J. Mostovoy, Spaces of rational loops on a real projective space, Trans. Amer. Math. Soc., **353**, (2001), 1959–1970.

- [23] J. Mostovoy, Spaces of rational maps and the Stone-Weierstrass Theorem, Topology 45 (2006), 281–293.
- [24] J. Mostovoy, Truncated simplicial resolutions and spaces of rational maps, Quart. J. Math. **63** (2012), 181–187.
- [25] J. Mostovoy and E. Munguia-Villanueva, Spaces of morphisms from a projective space to a toric variety, Rev. Colombiana Mat. 48 (2014), 41-53.
- [26] T. E. Panov, Geometric structures on moment-angle manifolds, Russian Math. Surveys **68** (2013), 503–568.
- [27] G. B. Segal, The topology of spaces of rational functions, Acta Math. **143** (1979), 39–72.
- [28] V. A. Vassiliev, Complements of discriminants of smooth maps, Topology and Applications, Amer. Math. Soc., Translations of Math. Monographs 98, 1992 (revised edition 1994).
- [29] K. Yamaguchi, Complements of resultants and homotopy types, J. Math. Kyoto Univ. **39** (1999), 675-684.

Department of Mathematics, University of Electro-Communications 1-5-1 Chufugaoka, Chofu, Tokyo 182-8585, Japan E-mail: kohhei@im.uec.ac.jp