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Abstract

The homotopy type of the space of rational curves on a toric variety has been
well studied by several authors since the work of Segal [27] appeared (cf. [9], [10],
[12], [15], [18], [25]). In this note we shall consider the real analogue of these spaces.
In particular, we report about the homotopy type of spaces of algebraic loops on a
toric variety. This result is based on the joint works with A. Kozlowski given in [19].

1 Introduction

First we shall recall several basic definitions and facts about toric topology.

Fans and toric varieties. A convex rational polyhedral cone o in R™ is a subset of R”
of the form

(1.1) o = Cone(S) = Cone(my,--- ,my,) = {ZAkmk : Ax > 0 for any k:}
k=1

for a finite set S = {my.};_, C Z".! A convex rational polyhedral cone ¢ is called strongly
convex if o N (—o) = {0,}, and its dimension dimo is the dimension of the smallest
subspace in R™ which contains 0. A face T of ¢ is a subset 7 C ¢ of the form

(1.2) r=oN{xeR": L(x) =0}

for some linear form L on R", such that L(x) > 0 for any x € 0. If {k: L(my) = 0,1 <
k < s} =i, i}, we easily see that 7 = Cone(my,,--- ,m;,). Thus, a face 7 of ¢ is
also a strongly convex rational polyhedral cone if ¢ is so.

A finite collection ¥ of strongly convex rational polyhedral cones in R" is called a fan
in R™ if every face 7 of 0 € X belongs to Y and the intersection of any two elements of X
is a face of each.

"When S is the emptyset (), we set Cone(()) = {0,,} and we may also regard it as one of strongly convex
rational polyhedral cones in R™, where we denote by 0,, the zero vector in R™ defined by 0,, = (0,--- ,0) €
R™.



An n dimensional irreducible normal variety X (over C) is called a toric variety if it
has a Zariski open subset T¢ = (C*)" and the action of T¢ on itself extends to an action of
T% on X. The most significant property of a toric variety is the fact that it is characterized
up to isomorphism entirely by its associated fan . We denote by Xy the toric variety
associated to a fan X.

Since the fan of T¢ is {0,,} and this case is trivial, we always assume that any fan ¥ in
R" satisfies the condition {0,} & X.

Definition 1.1. Let ¥ be a fan in R” such that {0,} & ¥ and let

(1.3) S(1) ={p1,--o0}

denote the set of all one dimensional cones in Y. For each integer 1 < k < r, we denote by
ny € Z" the primitive generator of py, such that

(14) Pk NZ" = ZZO N

Note that pr, = Cone(ny) = R>g - my, for each 1 <k <. O

Polyhedral products and homogenous coordinates. Next, recall the definition of
polyhedral products and homogenous coordinates of toric varieties.

Definition 1.2. Let K be a simplicial complex on the vertex set [r] = {1,2,---,7},? and
let (X, A) be a pair of based spaces such that A C X.

(i) Let Zx(X, A) denote the polyhedral product of the pair (X, A) with respect to K
given by the union

(15) ZK(Xv A) = U(X7 A>Ja
oEK
where we set (X, 4)7 = {(z1, - ,2,) € X" 1y € Aif k ¢ o}.
When (X, A) = (D?,S'), we write Zx = Zx(D?,S") and it is called the moment-angle
complex of K.
(ii) For a fan 3 in R", let Ky denote the underlying simplicial complex of ¥ defined by

(1.6) Ky = {{il,‘.' ,ist C [r] : Cone(m;,, nyy, -+ ,m;,) € E}.

Note that Ky is a simplicial complex on the vertex set [r].
(iii) Let Gy C T = (C*)" denote the multiplicative subgroup of T¢. defined by

(1.7) Gy = {(p,+ ) € T+ [ [ () ™™ =1 for all m € Z"},

k=1

2Let K be some set of subsets of [r]. Then the set K is called an abstract simplicial complez on the
vertex set [r] if the following condition holds: if 7 C ¢ and ¢ € K, then 7 € K. In this paper by a
simplicial complex K we always mean an an abstract simplicial complex, and we always assume that a
simplicial complex K contains the empty set ().



where (, ) denotes the standard inner product on R” given by (u,v) = > ;_, uxvy for
u = (uy, - ,u,) and v = (vy, -+ ,v,) € R™
(iv) Consider the natural Gy-action on Zi. (C,C*) given by coordinate-wise multi-

plication, Le. = (:ulxla U ,/,Lrl'r) for (:uv CL‘) = ((:ula U aﬂr)> (xla U ,$r)) S GZ X
Zk,.(C,C*). We denote by Zx, (C,C*)/Gy, the corresponding orbit space and let

(18) qs - ZICE ((C> (C*) — Z/CE ((C> C*)/GE
denote the canonical projection. O

Lemma 1.3 ([6], [7], [19]). Suppose that the set {ny};_, of all primitive generators spans
R® (ie. Y7 R-my = RY).

(i) There is a natural isomorphism
(1.9) Xy & Z.(C,C")/Gx.

(ii) If f : CP™ — Xy, is a holomorphic map, there exists an r-tuple D = (dy, -+ ,d,) €
Z>o)" of mnon-negative integers satisfying the condition > ,_. dpmy, = 0 and homogenous

> k=1
polynomials f; € Clzg, -+, zm] of degree d; (i = 1,2,--- ,r) such that polynomials {f;}ico
have no common root except 0 € C™ for each o € I(Ks) and that the diagram

Cr\ fo) L 2, (C.0)
(1.10) vml qgl
cpm L5 2,(C,CY/Gy = Xy

is commutative, where 7,, : C"1\ {0} — CP™ denotes the canonical Hopf fibering and
the map qx is a canonical projection induced from the identification (1.9). In this case,

we call this holomorphic map f as a holomorphic map of degree D = (dy,--- ,d,) and we
represent it as

(1.11) f=1h . fl

Moreover, if g; € Clzo, -+ , zm]| is a homogenous polynomial of degree d; (1 < i <r) such

that f = [f1,--+, fr] =01, -, 9s], there exists some element (ju1,--- , ) € Gy such that
fi = i+ gi for each 1 <i <r. Thus, such r-tuple (f1, -, f;) of homogenous polynomials
representing the holomorphic map f is uniquely determined up to Gx-action.

(i) Let hy € Clzo,---, 2] be a homogenous polynomial of the degree dj for each
1 < k < r such that the polynomials {h;. }reo have no common real root except 0,41 € R™T!
for each o € 1(Ky). Then there is a unique map h : RP™ — Xy, such that the following
diagram

R {0} Lt 2, (T, T¥)

(1.12) wm,Rl qzl
RP™ s 2, (C,CY)/Gy = Xy
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is commutative if and only if Y, _, dgny, = 0, where v,z : R™\ {0} — RP™ denotes
the canonical double covering. U

Remark 1.4. We call the map h determined by an r-tuple (hq,--- ,h,) of homogenous
polynomials given in (iii) of Lemma 1.3 as an algebraic map and we write h = [hq, -+, h,].

Note that two different such r-tuples of polynomials can determine the same maps.
In fact, if we multiply all polynomials in such an r-tuple by the same polynomial which
does not have any real roots except 0,,, we obtain the same algebraic map. For example,
suppose that (hy,---,h,) is the r-tuple of homogenous polynomials in Clzg, - - , 2] of
degree di,--- ,d, satisfying the same condition as before. If (ai,---,a,) € N" is the r-
tuple of positive integers and it satisfies the condition Y, _, axny = 0,, we can casily see
that h = [hy, -+ A = [(g1) oo, (90)* ] = [(92)%ha, <+, (g2)* by ] for g1 = 370, 2
and go = (20 + 21)% + D ey 21 O

Assumptions. Let X be a fan in R” satisfying the condition (1.3) as in Definition 1.1.
From now on, we assume that the following two conditions hold.

(1.9.1) Thereisan r-tuple D, = (dj,--- ,d*) € N" of positive integers such that Y, _, diny =
0,.

(1.9.2) The set {m}}_, of primitive generators spans Z" over Z.

Remark 1.5. Note that Xy, is a compact iff |J, .5, 0 = R". Note also that Xy is simply
connected if and only if >, | Z - n; = Z". Hence, the condition (1.9.2) always holds if
Xy, is compact or simply connected. On the other hand, if the condition (1.9.2) holds, one
can easily see that the set {n;}}_; spans R"” over R, and there is an isomorphism (1.9) for
the space Xy. Moreover, we know that the condition (1.9.1) holds if Xy is compact and
non-singular [7, Theorem 3.1]. O

Remark 1.6. Let ¥ denote the fan in R? given by ¥ = {{0,}, Cone(e;), Cone(ez)} for
the standard basis e; = (1,0), e; = (0,1). Then the toric variety Xy, of ¥ is C? which has
trivial homogenous coordinates. It is clearly a (simply connected) smooth toric variety, and
the condition (1.9.1) also holds. However, in this case, 37_, dpny. = 0y iff (dy, dy) = (0,0).
Hence, it follows from Lemma 1.3 that there are no algebraic maps RP™ — Xy, = C?
other than the constant maps. Assuming the condition (1.9.1) guarantees the existence of
non-trivial algebraic maps RP™ — Xy,. Of course, it would be sufficient to assume that
D = (dy,...,d.) # (0,...0) but if d; = 0 for some 7, then the number d(D,Y) (defined in
(2.2)) is not a positive integer and our assertion (Theorem 2.2 below) is vacuous. For this
reason, we will assume the condition dj > 1 for each 1 <k <rin (1.9.1). t

Let Xy be a non-singular toric variety and make the identification
(1.13) X5 = Zx.(C,C")/Gx.

Let zg,- - , 2z, be variables. Now we consider the space of all tuples of polynomials which
define based algebraic maps.



Definition 1.7. (i) For each d,m € N, let H% (C) denote the space of all homogenous
polynomials f(zo, -, zm) € Clzo, - , 2] of degree d.

(ii) For each r-tuple D = (dy,--- ,d,) € N", let Pol},(RP™, Xx) denote the space of
r-tuples f = (f1(20, - »2m)s +» fr(20, 5 2m)) € HE(C) x -+ - x H(C) of homogenous
polynomials satisfying the following two conditions:

(1.14.1) f(z) = (fi(z), -+, f-(x)) € U(Kg) for any point & = (zg,- - , 2,) € R™\{0,,11}
(1.142) f(e1) = (fu(er), -+, fu(er)) = (1,1,--- 1), where e = (1,0,--- ,0) e R™1. [

Definition 1.8. We always assume the identification Xy, = U(Ky)/Gyx, and denote by
[y1,- -+, y,] the point in Xy, represented by (y1,--- ,y,) € U(Kyx). Moreover, we choose the
two points [1: 0 :---:0] € RP™ and « = [1,--- ,1] € Xy, as the base-points of RP™ and
Xy respectively.

Let D = (dy,--- ,d,) € N" be an r-tuple of positive integers such that Y, _, dyng = 0,,.
Then by using Lemma 1.3, for each r-tuple

f = (fl(ZO>"' >Zm)a"' >fr(ZOa"' >Zm)) S POIE(RPmaXZ)

one can define based algebraic map

(1.14) U1 = [f-- /il (RP™ [ed]) = (X, %) by
(1.15) (z]) = [fi(z),- - fo(=)]
for [z] = [zg : -+ : 2] € RP™, where ¢ = (x¢, -+ ,2,,) € R™1\ {0,,,1}. Hence,

we denote by Map},(RP™, X;) the path-component of Map*(RP™, Xy;) which contains all
algebraic maps of degree D, and we obtain the natural map

(1.16) ipm : Pol(RP™, Xx) — Map}, (RP™, Xx)

given by

(1.17) ipm(f) =1f1=1fi.- fi]

for f = (fi(20,- 2m)s -+ fo(20s- - 2m)) € Polly(RP™, Xy),. 0

When m = 1, we make the identification RP! = S* = R U oo and choose the points oo
as the base-point of RP*. Then, by setting z = 2 we can view a homogenous polynomial
f(z0,21) € Clzy, 21] of degree d as a monic polynomial fy(z) € C[z] of degree d. Thus,
when m = 1, one can redefine the space Poly,(S?, Xy) as follows.

Definition 1.9. (i) Let P? denote the space of all monic polynomials f(z) = 2% +a;2¢ ! +
<o+ ag1z + ag € C[z] of degree d, and let

(1.18) PP =P% x P2 x ... x P



Note that there is a homeomorphism ¢ : P? 2 C¢ given by ¢(2? + 20, apz¥*) =
(ar, -+ ,aq) € CZ
(ii) For any r-tuple D = (dy,--- ,d,) € N", let Pol} (S, Xx) denote the space of all

r-tuples (f1(2),---, f-(2)) € PP of monic polynomials satisfying the following condition
(1):
(1) The polynomials f;, (2),- -, fi.(2) have no common realroot for any o = {iy, - ,is} €

I(ICE)> Le. (fh(a)a T ?f’is(a)) 7& 0, for any o € R.

When the condition Y, _, dyn; = 0, holds, by identifying Xy = Zi,.(C,C*)/Gy5 and
RP! = S' = RU oo, one can define a natural map

(1.19) ip=1ip1: Polp(S", X5) — Map*(S', X5) = QX5 by

(1.20) in(fu(2),- -, fr(2))(a) = {[fl(oz),.-‘-- Sr(@)] ifaeR

[1a 1a : 1] if o =00
for (f1(2), -+, f+(2)) € Pol} (S, Xx) and o € S' = RU oo, where we choose the points oo
and [1,1,--- 1] as the base-points of S' and Xs..

Note that Pol}, (S, Xx) is simply connected and that the map Qgs : QZk,.(C,C*) —

Xy, is a universal covering. Thus, when 22:1 dpny, = 0, the map ip lifts to the space
02k, (C,C*) ~ QZ,. and there is a map

(1.21) jp : Polh (St Xx) — Q2
such that
(1.22) Qgs; 0 jp = ip.

Remark 1.10. Even if Y, _, dyn;, # 0, we can define the two maps
ip: Polh (S, Xy) — QXyx, jp: Pol} (S, Xy) — QZ,,
by using stabilization maps. The detail is given in [19]. O
Now we need to define the numbers 7y, (X) and d(D, ).

Definition 1.11. Let ¥ be a fan in R™ as in Definition 1.1.

(i) We say that aset S = {m;,, -+, m;_} is primitive in X if Cone(S) ¢ X but Cone(T) €
% for any proper subset TS S.

(ii) For D = (dy,--- ,d,) € N" define integers rmm(2) and d(D, ¥;m) by

(1.23) Tmin(¥)  =min{s € N: {n;,, -+, n; } is primitive in 3},
) d(D,Z;m) = (2rmn(X) —m — 1)dwnin — 2, where dp, = min{dy,--- ,d,}.
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Definition 1.12. Recall that a map g : V' — W is called a homology (resp. homotopy)
equivalence through dimension N if the induced homomorphism g, : H,(V;Z) — Hp(W;Z)
(resp. gi : (V) — mp(W)) is an isomorphism for all £ < N. O

Now recall the following result.

Theorem 1.13 ([13]). Let m > 2 be a positive integer, Xy, be a compact smooth toric vari-
ety and D = (dy,--- ,d,) € N" be an r-tuple of positive integers such that Y, _, dymy, = 0,,.
Then the natural map ip ,, : Polp(RP™, Xy,) — Map},(RP™, Xy,) is a homology equivalence
through dimension d(D,3;m). O

Note that the above result does not hold for the case m = 1. For example, this can be
seen in [11] for the case Xy, = CP". In fact, the main purpose of this paper is to investigate
the result corresponding to this theorem for the case m = 1.

2 Main results

Previous results. First, recall the following result concerning to the homotopy type of
space of rational curves one a toric variety.

Theorem 2.1 ([18]). Let Xx be a simply connected non-singular toric variety associated
to the fan X such that the condition (1.9.1) is satisfied. Then if D = (dy,--- ,d,) € N" and
> r1 demy, = 0,,, the inclusion map

ipner - Holp(S%, X5) == O3 Xy,

is a homotopy equivalence through dimension d.(D,%) if rmin(2) > 3 and a homology
equivalence through dimension d.(D,%) = dyin — 2 if Tmin(2) = 2.

Here, 03, Xy, (resp. Hol},(S?, X)) denotes the space of based continuous (resp. based
holomorphic) maps from S* to Xx of degree D, and d,(D,Y) is the number given by

(2.1) di(D, %) = 2rmn(2) — 3)dmin — 2, where dy;, = min{dy,--- ,d.}. O

The main results of this note. The main result of this paper is to consider the real
analogue of the above result and this is stated as follows.

Theorem 2.2 ([19]). Let D = (dy,--- ,d,) € N be an r-tuple of positive integers and let
Xs be a simply connected non-singular toric variety such that the condition (1.9.1) holds.
Then there is map

jD : POI*D(Sl,Xz) — QZICE

which is a homotopy equivalence through dimension d(D,Y), where the number d(D,Y) is
gien by

(2.2) d(D,X) =d(D,%;1) = (2rpin(X) — 2)dmin — 2. O

7



Corollary 2.3 ([19]). Under the same assumption as in Theorem 2.2, there is the map
ip : Pol}, (S, Xx) — QXyx induces an isomorphism

o

(ZD)* : Wk(POl*D(Sl, XE)) — Wk(SZXE) = 7Tk+1(Xg)
for any 2 <k <d(D,X). O

Corollary 2.4 ([19]). Let D = (dy,--- ,d,) € N" be an r-tuple of positive integers satisfying
the conditiony ", _, dyny = 0,,, and let X5, be a simply connected compact non-singular toric
variety. Let (1) denote the set of all one dimensional cones in ¥, and ¥ any fan in R"
such that (1) C 1 G X,

(i) Then Xy, is a non-singular open toric subvariety of Xy, and there is the map

jD : POIE(SI,Xgl) — QZZl

which is a homotopy equivalence through dimension d(D, ).
(i) Moreover, there is the map ip : Pol}, (S, Xx,) — QXsx, which induces the isomor-
phism
(ip)« : me(Polp (S, Xx,)) — m(2X5,) = i1 (X))

for any 2 < k < d(D,X). O

Examples. Finally consider the example of the main results. Since the case Xy = CP”
was already well known, we consider the case that Xy is the Hirzerbruch surface H (k).

Definition 2.5. For an integer k € Z, let H(k) be the Hirzerbruch surface defined by
H(k) = {([o : z1 : 2], [y1 : yo]) € CP? x CP' : 31y = xoy5 } C CP? x CP'.

Since there are isomorphisms H(—k) = H(k) for k # 0 and H(0) = CP! x CP!, without
loss of generality we can assume that k& > 1. Let Y, denote the fan in R? given by

), = {Cone(n;, n;y1) (1 <i < 3),Cone(ny,ny), Cone(n;) (1 <j<4), {0}},

where we set ny = (1,0), np = (0,1), ng = (—1,k), ng = (0,—1).

It is easy to see that ¥y is the fan of H(k) and that H(k) is a compact non-singular
toric variety. Note that ¥ (1) = {Cone(n;) : 1 < ¢ < 4}. Since {ny, n3} and {ny, ny} are
only primitive in Xy, ryuin(2x) = 2.

Moreover, for D = (dy, dy, ds, dy) € N* the equality >;_, dny = 0y holds iff (ds,dy) =
(dy, kdy 4+ do). Thus, if Zi:1 dpmy, = 0y, we have dyy, = min{dy, ds, d3, dy} = min{d,, d}.

(I

Example 2.6. Let D = (dy,dy,ds,dy) € N*, k € N, and ¥ be a fan in R* such that
Yr(1) = {Cone(mn;) : 1 <i <4} C X C Xy as in Definition 2.5.
(i) Xy is a non-singular open toric subvariety of H(k) if & G %



(i) If Zizl dyny, = 0o, the equality (ds,ds) = (dq, kdy + ds) holds and the map jp :
Pol}, (S, Xx) — QZk,. is a homotopy equivalence through dimension 2min{d;,dy} — 2.
Moreover, the map ip : Pol} (S, X5) — QXy induces an isomorphism

o

(ZD)* : Wk(POlE(Sl, XE)) — Wk(QXE) = 7Tk+1(XE)

for any 2 < k < 2min{dy,ds} — 2.

(iti) If Sop_, dxmy # Og, there is a map jp : Polh(S', X5) — Q2Zx,, which is a ho-
motopy equivalence through dimension 2min{dy,dy, d3,ds} — 2, and there is a map ip :
Pol, (S, Xx) — QXs, which induces an isomorphism

(i) : mp(Poly (S, Xx)) — mp(QXs) = mpq (X))

for any 2 < k < 2min{dy, ds,ds,ds} — 2. O

Remark 2.7. As we considered as above, the space Pol},(S*, Xx) can be regarded as one
of real analogues of the space Hol},(5?, Xx). In our previous paper [17], we investigate the
homotopy type of the space Poly®™(C) of resultants of bounded multiplicity. We can also
consider the real analogues of it, and we shall investigate the homotopy types of them in
the subsequent papers ([20], [21]). O
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