AN — - NT — R[E & ZEH O AL

Introduction to the Curry-Howard isomorphism*

Ken-etsu Fujita (Gunma University)
June 22-23, 2022

B =

®HIZ, Y — - N7 —R[FARE, Formulae-as-Type, Proofs-as-Programs 72
ERRARIEEN %2 LTWD “GEHICT 2 /A OFERIZZR>TWwWbd &N
7% BHK (Brouwer-Heyting-Kolmogorov) f#fR [TD88] %, Matrin-Lof (O #IAH
i [NPS90] DB SHABL TAS. ZDHR I, Judgement la € A) (ZK
LT,

la 13 ADESHE] = lalddme A DOFEH]
la |ZHE A OfE)
la \3f1hk A 2724707 F L)

BEDMRE G X TV, R, T = 7027 A0k OIRTIE, 7n
75 LD Gl (BER, #17) OBEgE, FHlifERTH 5 “4E” (value, canonical
BRE) OBEERAARTH Y, MORGIZHATINS OBSAEE L > T
5. AEIZHERRAH] OB ARIA & BEZBIR L TW5 DS, FHMIE DL (21X CPS
LHMODEZRELZD I L CHIGHRIZAS Z L2 DBIIBWTHRRS. 22T,
BHK fi#fliZ D\ T id Troelstra-vanDalen [TD88] #£%1Z L T, Martin-Lof @D
RIHERIZ D\ T Nordstrom-Petersson-Smith [NPS90] 22 55| 5.

Iz, FEEOEHE (Evaly) & &EIFEFOFHE (Evaly) DO#I% BifmR % -
THNTE. ZhoDEHEEIRE 7T1u 0T AEBMOEARTEHL 26 0H CPS £
LIEENT WS, 22T, #Y— - NT—FEAEDL LTI

Turoh (FLXAX) = GfH
THY, 7007 LOEBIIEIHOERIIINT 5 Z 212745, Rz, EIFOE
1%, G A OFEH M &2 REOI DAL ¢ TEMU 7l - A7 OFEIZE
L TW3.
TNy M:A =— T1 FMmM: - A9

*This work was supported by the Research Institute for Mathematical Science, a Joint
Usage/Research Center located in Kyoto University, and partly supported by Grants-in-Aid
for Scientific Research KAKENHI (C) 17K05343 and 20K03711.

F72, FLAXARM O ZEOER L0, @wHEKNA DA M »5a)VEITR 70D
DA k CEHL 723 R AF OFFH M DESNDE I LT85,

Py M:A = TV by M : AP
ZZTIE, HiEE [F22) (it TR NJ OEER FIZiR5.

gz, HEERE (NK) o E#ERRE (NJ) ervhigf (Min) ~0O#
DIAAE LTI IRYIDER, ¥Y—F)N - FyVzvOEH, a)LEITo 70
2, BRHOZBBHISNT VDA [TD8S], TNO6DEMEF 257 L4 IaUR
W8 T5 2%, 2z &b, Martin-Lof ORIBE R THIH & T W72 3741 -
EOWLEDRBERIZEBRHINT WS Z e W5HARNS.

F;A l_NK M:A — F(F),F(A) l_NJ(Min) F(M) : F(A)

BB, =TV TV yOEH, J)LEITOTOEH (LRI \u iHE) ,
BHOZH (EIFO A\ GH5R) OEEMRIZNS 2 F OEFRIZHR [FI5) 125 5.
ZUT, IVEITuIOEM (HEIFOER, &) Tk, LAiECEIE —; »ME
IOV —3 12 & W EfiE 5 &\ S Plotkin OREfE 2B N5 5.

BMMEE (Plotkin [Plot75]) Evaly(M id) = ®(Evaly(M))

M =V
U s
Mid = ®(V)
Ju% Z OBMEIITRID N T AR EFRORRTHRONFERTH S, Al
I} % & Kolmogorov negative translation 2% E->TL 5. 7z, EHOZE
e (EREOZH, ©) T, EFOREILEIIFOHE BRI G Z i d
[Plot75].
i iTid, RIS T R0 M % CPS 2 1EH U TR 1 B (L3 A%
H 3 [Sel0l, Wad03]. Z ZTi, dUlFiZfRE LURWACH DS [F10] (2B
BRTBMEREELDS.

Summary

This tutorial consists of three talks respectively devoted to the following subjects
based on the references.

1. Curry-Howard-deBruijn isomorphism [TD88, NPS90]:
The isomorphism provides an interpretation of compound formulae in
terms of proofs, and we review the isomorphism from the viewpoints be-
low.
e Propositions-as-types and proofs-as-programs
e BHK-interpretation (Brouwer-Heyting-Kolmogorov)
e Programming in Martin-Lof’s Type Theory

We note that following Martin-Lof’s explanation [NPS90], the notions of
evaluation and values (canonical expressions) are indispensable in particu-
lar to the correspondence of types-as-specifications (proofs-as-programs),
compared with other correspondence. The notions of evaluation and val-
ues can be formally handled by corresponding CPS-translations.

Remarked that for formal variants of BHK, see the notion of realizability
interpretation [TD88] such as Kleene: realizer for proof and partial recur-
sive operation for construction; and Feferman: interpretation in type-free
theories called APP consisting of k and s combinators.

. Correspondence between type system (simply typed A-calculus) and logic
(minimal logic with implication):

We review the following correspondence by using simple examples [F22].

e \-terms (Programs) as proofs

Type checking as proof checking

Computation rule as proof reduction

e Program translation as proof translation

Call-by-Value CPS-translation as Kuroda’s negative translation

Call-by-Name CPS-translation as Kolmogorov’s negative translation

Remarked that for more general frameworks, take the notion of PTS (Pure
Type System).

. Negative translations and CPS-translations [TD88, Plot75]:

We summarize four embeddings and variants from classical logic into intu-
itionistic or minimal logic in terms of Au-calculus, which reveals program
translations depending on evaluation strategy.

e FEmbedding: Gdédel-Gentzen, Glivenko, Kolmogorov, and Kuroda
e CPS-translation: Call-by-value and call-by-name

For the implicational fragment of classical logic, the definitions of four
embeddings are given by [F95] in terms of call-by-name and call-by-value
Ap-caleuli.

We should note that CPS-translations are originally investigated for se-
mantics and interpretation of programs in general, and Plotkin [Plot75]
established the theorems of simulation between call-by-value and call-by-
name evaluations via CPS-translations of type-free A-terms. The CPS-
translations for type-free A-terms are still available even for typed cases, so
that attached types reveal negative translations depending on evaluation
strategy, i.e., program translations as proof translations. This correspon-
dence between programs and proofs can be naturally extended to classical
logic, for which Ap-calculus is devised to represent proof terms.

Remarked that CPS-translation is also applied to analyze duality of input-
output and evaluations in classical logic by Selinger [Sel01] and Wadler
[Wad03]. Moreover, we show that CPS-translations work not only for
classical logic but also for intuitionistic logic to investigate duality [F10].

1 Curry-Howard-deBruijn isomorphism

The slogan is owing to Martin-Lo6f’s Type Theory [NPS90]:
Sets = Propositions = Specifications
In his type theory the judgement
a€A

can be read in at least the following ways:

e ¢ is an element in the set A.

e q is a proof object for the proposition A.

e q is a solution to the problem A.

e ¢ is a program satisfying the specification A.

We should note that the notions of evaluation, computation, execution; and
value, canonical expression are indispensable to the last reading, which comes
to us again formally via CPS-translations.

1.1 BHK interpretation

According to BHK interpretation (propositions as sets of proofs), a constructive
explanation of propositions is given in terms of proofs as follows:

e A proof of A — B is a function (method, program) which to each proof of
A gives a proof of B. The set of functions from A to B can be written by

(A — B) =I(A, (z)B).

e A proof of AA B is a pair whose first component is a proof of A and whose
second component is a proof of B. The cartesian product of A and B is
now can be written by

(AN B) = (A x B) = S(A, (z)B).

e A proof of AV B is either a proof of A or a proof of B with the information
of which of A or B we have a proof. The disjoint union of A and B can
be written by

(AV B)=(A+ B).

e For L (Absurdity), we have no proof, so that L can be written by the
empty set. Then a proof of = A constructs a proof of a contradiction from
a hypothetical proof of A.

According to Heyting (1956), quantified propositions can be explained by sets
of proofs as follows:

e A proof of (3z € A)B(x) is a pair whose first component a is an element
in the set A and whose second component is a proof of B(a). The disjoint
union of a family of sets (Xz € A)B(z) can be written by

(Jze A)B(z) = (Xxe A)B(x) = X(A, B).

e A proof of (Vo € A)B(z) is a function which to each element a in the
set A gives a proof of B(a). The cartesian product of a family of sets
(Ilx € A)B(x) can be written by

(Vze A)B(z) = (e A)B(z) = I(A, B).

Similarly, according to Kolmogorov (1932), if A and B are tasks (problems)
then propositions can be explained as tasks (problems) as follows:

e A A B is the task of solving the tasks A and B.
e AV B is the task of solving at least one of the tasks A and B.

e A — B is the task of solving the task B under the assumption that we
have a solution of A.

Finally, if A and B are specifications of a program, then propositions can be
explained as specifications of programs as follows, together with the notion of
execution:

e A A B is a specification of programs which, when executed, yield a pair
(a,b), where a is a program for the specification of A and b is a program
for the specification of B.

e AV B is a specification of programs which, when executed, either yields
inl(a) or inr(b), where a is a program for the specification of A and b is
a program for the specification of B.

e A — Bisaspecification of programs which, when executed, yields Az.b(z),
where b(x) is a program for the specification of B under the assumption
that x is a program for the specification of A.

e (Vx € A)B is a specification of programs which, when executed, yields
Az.b(x), where b(x) is a program for the specification of B(z) under the
assumption that z is an object of A.

e (Jz € A)B is a specification of programs which, when executed, yields
(a, b), where a is an object of A and b is a program for the specification of
B(a).

1.2 Programming in Martin-Lof’s Type Theory

As a formal example of propositions-as-specifications, we cite Martin-Lot’s Type
Theory [NPS90]. The judgement forms of the theory have one of the following
four forms:

1. A set (Ais a set)

To know that A is a set is to know how to form the canonical elements in
the set and under what conditions two canonical elements are equal.

2. A= B (A and B are equal sets)

To know that two sets, A and B, are equal is to know that a canonical
element in the set A is also a canonical elements in the set B and, moreover,
equal canonical elements of the set A are also equal canonical elements of
the set B, and vice versa.

3. a € A (ais an element in the set A)

If A is a set then to know that a € A is to know that a, when evaluated,
yields a canonical element in A as a value.

4. a="be€ A (a and b are equal elements in the set A)

To know that a and b are equal elements in the set A is to know that they
yield equal canonical elements in the set A as a value.

We note that the canonical expressions are the values of expressions under eval-
uation by computation rules, called equality rules below.

We show an example of natural numbers, where four types of rules are
generally defined, respectively called formation, introduction, elimination, and
equality rules. Here, we use the constant N of arity 0; and canonical constants
0 and succ of arities 0 and 0 — 0, respectively.

e N-formation

N set
e N-introduction 1
0eN
e N-introduction 2
a €N
succ(a) e N

We often write 1 for succ(0), 2 for succ(l), and so on. We should note that 0,
succ(0), succ(l), ... € N are canonical elements in N.
We also use the constant natrec which has arity 0 ® 0 ® (0 ® 0 — 0) — 0.

e N-elimination
[v e N] [x € N,y € C(x)]

beN deC(0) C(v)set e(x,y)e€ C(succ(x))
natrec(b,d,e) € C(b)

We note that the value of natrec(b,d,e) is a canonical element in C(b), as
follows:
1. Case the value of b is 0:
The value of natrec(b,d,e) is the vale of d in C(0). The value of d is a
canonical element in C(0) by the second premise.
2. Case the value of b is succ(a) with a € N:

The value of natrec(b, d, e) is the value of e(a,natrec(a,d,e)) from
natrec(a,d,e) € C(a). The value of e(a,natrec(a,d,e)) is a canonical
element in C(succ(a)) from natrec(a,d, e) € C(a) by the fourth premise.

The above explanation can be justified by the following equality rules, which
means the computation rule for natrec:

e N-equality 1

[v e N] [z € N,y € C(z)]
C(v) set deC(0) e(z,y) € C(succ(x))
natrec(0,d,e) =d € C(0)

e N-equality 2
[v e N [z € N,y € C(z)]
C(v) set ae€N deC(0) e(z,y)e C(succ(x))
natrec(succ(a),d, e) = e(a,natrec(a,d,e)) € C(succ(a))

We show an example from Peano’s third axiom:

meN neN succ(m)=succ(n) e N
m=ne&cN

First define the predecessor:
pred = (x)natrec(z, 0, (u, v)u).
Let x € N. Then the definition of pred and N-elimination give
pred(xz) € N. (1)
Let m € N, n € N and
succ(m) = succ(n) € N. (2)
From (1), (2) and Substitution in equal elements, we have:

pred(succ(m)) = pred(succ(n)) € N.

The definition of pred and N-equality 2 give:
pred(succ(m)) = m € N, pred(succ(n)) =n € N.
From symmetry and transitivity of judgemental equality, we finally obtain:
m=mnc N.

We show another example of cartesian product of a family of sets. We use
constants II and A, which have arities 0 ® (0 - 0) — 0, (0 —» 0) — 0, respec-
tively. The formation and introduction rules are defined as follows:

e [I-formation
[z € A
A set B(z) set

TI(A, B) set

e Il-introduction
[z € A]
_b@) € Bz)
A(b) € II(A, B)

We should note that the canonical elements in the set II(A4, B) are of the form
A(b) where b(x) € B(x) with z € A. For the II-set, a non-canonical constant
funsplit is introduced, which has arity (0 ® ((0 —» 0) — 0)) — 0. The elimi-
nation and equality rules are defined as follows:

e Il-elimination
[z € A]
vell(A,B)] [y(z) € B(z)]
fell(A,B) C(v) set d(y) € C(\(y))
funsplit(f,d) € C(f)

e Tl-equality
[w e A]
[z € A] [vell(A,B)] [y(w) € B(w)]
b(z) € B(z) C(v) set d(y) € C(A\(y))
funsplit(\(b),d) = d(b) € C(\(b))

Now apply can be defined by the following way:
apply(f,a) = funsplit(f, (z)(x(a))) € B(a).

Indeed, an example of the so-called proof detour consisting of successive (V1)
and (VE) can be reduced as follows:

apply(A(b),a) = ((z)(z(a)))b = b(a) € B(a).

2 Correspondence between type system and logic:
simply typed A-calculus and minimal logic with
implication

The key point of the second talk is how to evaluate programs, and transfor-

mation of evaluation strategy of programs can be given by the so-called CPS-

translations. Based on the Curry-Howard isomorphism, this means that pro-

gram translation can be read as proof translation, some of which are known as
logical embedding via negative translations:

e Call-by-value translation as Kuroda’s negative translation
e Call-by-name translation as Kolmogorov’s negative translation

Originally, CPS-translations are investigated for denotational semantics of pro-
grams in general. For instance, consider the following simple example of proce-
dural program:

int z,7;
if x =0 then z :=1;
1=z —1;

while i >2do (z:=xx*i; i:=1i— 1;);

A naive translation from procedural programs to functional programs provides
transformation of state transition semantics to denotational semantics, so that
the following recursive program with two arguments can be obtained from the
above program:

factorial(z) 43¢ 2 =0 then (1,0) else f(z,z —1)
where f(z,i) = if i > 2 then f(z *i,i— 1) else (z,1).

Here, we note that the recursive definition of f can be regarded as a function
which is derived from the definition of factorial ! by CPS-translation:

o = 1,
(n+1)! = (n+1)xn!
The slogan of the second part is given as follows:

e Proofs-as-programs:
Computation rule = proof reduction,
Program translation = proof translation.

For the core fragment, we take the system of natural deduction I' kg M : A,
where S is NJ(—) or minimal logic consisting of the following inference rules:

(z:A) el

TtFz: A (Var)

I'x:A-M:B (= 1)
'+Xx.M:(A— B)

I'M:(A»B) THFN:A
I'~(MN):B

(= E)
For instance, one can derive
F (AzA\y.x) : (A— (B — A))
where we adopt proof terms in the style of Curry, instead of Church-style:
(Ax:AXy:B.z) : (A — (B — A)).

Another example is that there exist no proof terms for (((A — B) — A) — A)
under the system.
The definitions of negative translations of formulae are given as follows:

1. Kuroda’s translation ¢:
X1=X,(A— B)1= (A7 — —-—BY).

2. Kolmogorov’s translation k:
Xk =—-=X, (A — B} =—-=(A*F - —=BF).

2.1 Recursion, iteration, and CPS-form

We introduce simple examples of recursive functions in distinct forms. First
take the following definition of fact : int — int

fact(0) = 1
fact(n+1) = (n+1)xfact(n),

and observe elementary computation steps including a recursive call of fact(3)

fact(3) = 3x*fact(2)
= 3x(2xfact(l))
= 3% (2% (1xfact(0)))
= 3x(2x(1x1)).

Here, each recursive call is executed under the contexts with the so-called hole

[]:
[, 3% 3% (2% []), 3% (2 (1+[])).

The contexts in which fact is called are often refereed to as evaluation contexts
for the computation, and also as continuations with respect to each recursive
call. Then the definition of fact can be rewritten with an extra argument, such

10

that the evaluation contexts are handled as one of the arguments of fact-it :
int X int — int as follows:

fact-it(0,k) = Kk,
fact-it(n+1,k) = fact-it(n,kx*(n+1)).

This form of recursive definitions is often called iteration. The evaluation con-
text with a hole can be regarded as a function waiting for a returned value,
and then we can associate evaluation contexts (continuations) to A-terms, for
instance, (n 4+ 1) % [] to Av.(n 4+ 1) x v. In this way, the iterative form can be
redefined in the functional form fact-cps : int x (int — int) — int as follows:

tact-cps(0.f) = (1),
fact-cps(n+1,f) = fact-cps(n,A\v.f((n+1)xv)).

For any natural number n we have the equation:

fact-cps(n, f) = f(fact(n)),

and then fact(n) can be defined by fact-cps(n, Az.z) where the identity func-
tion Az.z means the evaluation context [|, i.e., no task remains. Now, observe
the following proof of the equation by induction on n where case n of k + 1:

fact-cps(k+1,f) = fact-cps(k, .f((k+1)*v))
—in Owf((E+ 1)) (fact (k)
—g f((k+1)«fact(k))
= f(fact(k+1)).

Here, we can read the elementary computation steps such that the function
fact-cps sends the value of fact(k + 1) to its continuation f, and in other
words, the continuation (function) f is waiting for and accepting the returned
value of fact(k 4+ 1). And the value of fact(k) is sent to its continuation
M. f((k+1)*v) as well, and the continuation can be read as accepting the value
of fact(k). That is, the cps-form sends an evaluated value to its continuation,
and the continuation accepts the expected value.

Under this kind of reading, next we consider examples of translations of
a function to its cps-form. First, take an example of an unary function F,
and write F for its cps-form with an extra argument. In the following, we take
Curried functions, e.g., fact : int — (int — int) — int for fact : int — int,
instead of fact-cps : int X (int — int) — int.

e Flm)+n K = Fm (M\.K(v+n))

1. Consider the case where F(m)+n is evaluated under the continuation
K.

2. First, evaluate the value of F'(m), to say v, which is executed under
its continuation Av.K (v + n).

11

3. F with two arguments sends the value v of F'(m) to the continuation
Mv.K (v+n), so that the continuation K accepts the sum of v and n.

The second example has two unary functions F' and G, and then write F
and G for their cps-forms with two arguments, respectively.

e F(G(m))+n K = G m (Avi.F vy (M\va.K(vg +n)))

1. Evaluate F(G(m)) + n under the continuation K.

2. First, evaluate the value of G(m), to say v1, and next evaluate the
value of F(v1), to say vg, which is executed under its continuation
Mg K (vg + n).

3. G with two arguments sends the value v1 of G(mn) to its continuation
M1 F v (Ava. K (va 4+ n)).

4. F accepts the value vy, and sends the value vy to its continuation
Av2. K (va 4 n), so that the continuation K accepts the sum of vy and
n, which is the expected computation.

In this way, we evaluate A-terms with S-reduction:
(Ax.My) My —5 Mz = My).
Two reduction strategies are well-known as call-by-name and call-by-value.
e Call-by-name evaluation of (M N):

1. First evaluate M, and then let us call the result Az.M’.

2. Next execute f-reduction M'[z := N|, and continue this evaluation.
e Call-by-value evaluation of (M N):

1. First evaluate M, and then let us call the result Az.M’.
2. Next evaluate N, and then call the result V.
3. Then execute S-reduction M'[z := V], and continue this evaluation.

Observe cps-form MN of an application term (MN) under the call-by-value
evaluation.

e M NK = M (Avi.N (Avg.vivg K))

(1) Evaluate (M N) under the continuation K.

(2) First_evaluate the value of M, to say v, under its continuation
()\Ul.N ()\1}2.1)11)2 K))

(3) Next evaluate the value of N, to say wve, under its continuation
()\UQ.UlUQ K)

(4) M sends the value v; of M to the continuation Av;. N (A\vg.v1ve K).

12

(5) The continuation Avi.N (Avg.v1ve K) accepts the value of M.

(6) N sends the value vy of N to the continuation \vy.vive K.

(7) The continuation Avy.v1ve K accepts the value of N, from which M
and N are evaluated under the continuation K by call-by-value.

We refer to the explanation numbers (1), (2),---,(7) for the formal com-
putation steps in the next subsection.

2.2 Call-by-value translation as Kuroda’s embedding, Call-
by-name translation as Kolmogorov’s embedding

In the previous subsection, we observed A-terms transformed under the strategy
of call-by-value. These kinds of cps-forms are originally investigated in type-free
A-calculi [Plot75]. Under call-by-value, it is commonly considered as values that
the terms in the form of variables or A-abstractions, so that the continuation K
can accept variables and A-abstraction directly. Now the obtained cps-form can
be rewritten by using A-abstraction over the variable k as follows. Then putting
type information on terms reveals the embedding of Kuroda.

e (Call-by-value CPS translation:

1. T = Mk.kx
2. Ao M = Me.k(Aa.3T)
3. MN = Me.M(Am.N(An.mnk))

where we write V = A\k.kW¥ (V) such that ¥(z) = z and W(A\z.M) = A\z.M
for a value V' which is either x or Az.M.

e Kuroda’s negative translation g:
If T Fngo) M : A then T by, M =AY

Now observe the computation of call-by-value Sy -reduction:
Az M)V =5, Mz :=V],

which can be simulated by this translation with continuation K, as follows:

Az M)V K =5 Az.M(Om.V(An.mnK)) (1)
= (MEQa.M)Om.V(nmnK)) (2), (3)
—5 (AmV(AnmnK))(\z.M) 4)
—5 V(On.(\z.M)nk) (5)
= (AkE@V))(Mn.(Az.M))nk) by definition of ¥
—5 (.. M)nK)(¥(V)) (6)
S5 Qe IDW(V)K (7)
—p Mz =9 (V)|K
= Mz:=V]K by simple induction.

13

The computation steps are indeed justified by explanations (1), (2),...,(7) given
in the previous subsection.
We should remark that the following variant is available for the translation

as well o L
MN = Me.N(An.M(Am.mnk)),

which means that the notion of CPS-translation is so sensitive on evaluation
order.

Similarly, the call-by-name evaluation can be rewritten by the following
translation, which together with type information, provides the embedding of
Kolmogorov.

e (Call-by-name CPS translation:

1. z = \k.xk
2. Az M = Me.k(Ax. M)
3. MN = M. M(Am.mNk)

e Kolmogorov’s negative translation k:
Ifr FNJ(_,) M : A then T¥ Fumin M : Ak,

Now the reduction (Ax.M)N — M][z := N] can be simulated by this call-by-
name CPS translation as follows:

Ax.M)N = Me.(OK K (Ax.M))(Am.mNk)
—p Ak.(Am.mNE)(Ax. M)
S Ae(Ar.M)NK
—p MMz := N]k
% Mk.M[z = Nk
—3 Mz := NJ,

where each computation step can be justified by the call-by-value Sy -reduction,
which leads to the theorem of simulation of call-by-name computation under
call-by-value computation.

2.3 Overview of Curry-Howard correspondence

The corresponding notions between programs and proofs are summarized in the
following Table 1 [F22].

Moreover, we can adopt extended A-calculi and 2nd order logics so that
polymorphic functions are formalized as proofs of 2nd order V-formulae and
abstract data types are as proofs of 2nd order I-formulae [F10].

14

Simply Typed A-calculus NJ(—)

type formula
function space implication
A-term proof figure
bound variable discharged assumption
free variable open assumption
function abstraction introduction rule (— I)
function application elimination rule (— E)
redex cut formula
reduction (computation rule) proof reduction
normal form normal proof
type check checking proof of formula
type inference generating formula from proofs
CPS-translation (program translation) embedding (negative translation)
(Call-by-Name/Call-by-Value CPS trans.) | (Kolmogorov/Kuroda embedding)

Table 1: Corresponding notions between programs and proofs [F22]

3 Embedding from classical logic into intuition-
istic or minimal logic

The third part is devoted to four embeddings and their variants from classical
logic into intuitionistic or minimal logic in terms of Ap-calculus. For this, we
introduce the system of Ap-calculus with call-by-name reduction and call-by-
value reduction rules.

e Inference rules of Au-calculus
x:Ael

I''-AbFz: A (Var)
z:A-M:B r-M:(A—-B) I';-AFN:A
(—1I) (= E)
I;-AbF A z.M: (A— B) I''-A+F(MN):B
I'i-A+M:A T;-AFN:B I''-AFM:ANA
’) 3 1 2 (/\E)

A
I-AF(M,N): AANB (AD) I';=A b proj, (M) : A;
where we may write £st and snd instead of proj, and proj,, respectively.
I''=AFM: A
F, A+ anl(M) : Al V A2
where we may write inl and inr instead of inj; and inj,, respectively.

i-AFM:AvB T,z:A;-AFN :C T,y:B;-AFNy:C
I; A F when(M, 2.N1,y.Na) : C

(V)

(VE)

15

I'=AFM:A vI)* I''-AFM:Vz.A
i-AF XM :Vz.A (v1) Ts=AF Mt: Alx =1t

where (VI)* denotes the eigenvariable condition = ¢ FV(T', A).

(VE)

[;-AFM: Az =t
I;-AF (¢,M): 3z.A
I'-AFM:32.A T,z:A,-AFN:C
I';-=At split(M,z.N) : C
where (3E)* denotes the eigenvariable condition z ¢ FV(I', A, C).

(31)

(3E)

I;-Aa:—AFM: L N Ii-AFM:A
Ii-AbFpaM: A (Lo) Di=Aya:—AF [o]M: L

(Name)

We may sometimes use another form of (AE):

I''-A+-N:AAB T,z:Ay:B;-A+-M:C
I;-AFlet (z,y) =N in M : C

(NE)

We also adopt a dual form of implication < in particular for an intuitionistic
fragment:

I''-AFM:B T,z:A;-AFN: L

T Armal(MoN) (A—B) 1

Ii-AFM: (A<~ B) Ty:B;-AFP: A
I;-AF ppA(M,y.P): L

(& E)

e Call-by-name reduction rules of Au-calculus

1. Az.M)N — M|z := N|

proj,; (M, Ma) — M; (i =1,2)
when(inj, (M), z1.N1,x2.N2) = Nz, == M] (i =1,2)
Az M)t — M|z :=t]

split((M,t),z.N) — N[z := M|

SO AN B

(pae.M)N — pa.M[a < NJ, where M[a < NJ denotes a term such that
each subterm in the form of [a]N’ in M is replaced with [a](N'N).

7. peJo]M — M with « & FV (M)

8. [8)(ua-M) — Mo =

9. let (z,y) = (N1, N2) in M — M|z := Ny,y := Ny
10. ppA(maL(M,z.N),y.P) — N[z := Ply := M]]

16

e Call-by-value reduction rules of Au-calculus
1. Az. M)V — Mz :=V]
2. ppA(maLl(V1,z.N),y.Va) = Nz := Val[y := V1]

3. V(pa.M) — pa.M[V = a], where M[V = a] denotes a term such that
each subterm in the form of [a]N in M is replaced with [a](VN).

4. Call-by-name reduction rules on which value restrictions are imposed,
where the notion of values may depend on concrete systems.

In this section, we summarize the following embeddings from the view-
point of reduction strategy, equational correspondence, reduction correspon-
dence, and /or duality of formulae.

1. Glivenko
2. Godel-Gentzen
3. Kolmogorov

4. Kuroda

3.1 Glivenko’s theorem Gl

For propositional logic, it is well-known that Glivenko’s theorem holds:
I'Fyg At T Fyy —A.

In order to establish the same statement for predicate logic, one may add the

so-called DNS (Glivenko, Godel) Vz——A — ——Vz A to NJ:
'ty AT |—NJ+DNS ——A.

However, due to DeMorgan’s law VxA < —3Jz—A, one can replace each Vx A
with =3x—A. Then we have the following statement even for predicate logic:

IDhyg A I by A

We note that this form of Glivenko’s theorem holds as well for 2nd order clas-
sical propositional logic and 2nd order intuitionistic propositional logic. This
embedding can be applied to obtain decidable fragments of 2nd order intu-
itionistic propositional logic, where 2nd order intuitionistic propositional logic
is in general undecidable for the fragment of (v2,—). On the other hand, it is
known that 2nd order intuitionistic propositional logic becomes decidable for
the fragment of (V2, 32, -, A).

Based on DeMorgan’s law, we show Glivenko’s theorem for predicate logic.

Theorem 1 (Glivenko)
IfZ:T;d:~Abnk M 2 A then Z:T;d:-A by GUM) : ——A.

17

Here, GI(M) is given as a translation from classical logic into the full intuition-
istic logic in terms of Au-terms as follows:

1. Gl(z) = Mk.ka
2. Gl(Ax.M) = Mk.k(Ax.puB.GUM)(Am.k(Av.m)));
GIMN) = Me.GI(M)(Am.GUN) (An.k(mn)))
3. GI({(M,N)) = \t.GUM)(Am.GI(N)(An.k(m,n)));
Gl(fst(M)) = Ak.GI(M)(Am.k(fst(m)))
4. Gl(inl(M)) = \k.GI(M)(Am.k(inl(m)));
Gl(when(M, z.N1,y.N2)) = Me.GU(M)(Am.when(m, z.GI(N1), y.Gl(N2))k)
5. Gl(pa.M) = a.Gl(M)id; Gi([a]M) = Xk.E(GI(M)a)
6. GI((M,t)) = Me.GUM)(Am.k(m,1));
Gl(split(M,z.N) = Mk.GI(M)(Am.split(m,z.GI(N))k).

Note that the rule of L (ex falso sequitur quodlibet) is indispensable to estab-
lish the theorem, see the case of GI(Axz.M) above where p3 is applied vacuously.
Note also that GI(M) may be quite similar to the forthcoming call-by-value
translation by Kuroda’s embedding, however it is not straightforward to inter-
pret the case of GI(Az.M) along this line where vacuous A and g abstractions
are applied.

3.2 Godel-Gentzen g

The second embedding is known as Goédel-Gentzen from classical logic into min-
imal logic.

[Fnk A HETY By A9,

where g is defined as follows:

1. P9=—-=P (19=1),

2. (A— B)Y = A9 — BY,

3. (AANB)Y = A9\ B9,

4. (AV B)9 = =(=A9 A-B9Y),

5. (VzA)9 =Vz A9,

6. (JzA)9 = —~Vz—A9.

Note that we have the property of double negation elimination for A9 in minimal
logic:
FMin ——A9 — A9

from the elementary facts such that

18

e (A — B)— (A— —=B); -—VzA — Vx—-—A.

Now we show the translation of Gédel-Gentzen from classical logic into minimal
logic.

Theorem 2 (G6del-Gentzen)
If Z:T;a:-Abnk M : A then Z:T9,8: =AY byin G(M) : A9,

where the translation G is defined as a translation from Ap-terms to A-terms as
follows:

1.

C)

) =
.G\ M) = Az.G(M); G(MN) = G(M)G(N)
G((M,N)) =(G(M),G(N)); G(fst(M)) = £st(G(M))

[\

=~ w

G(inl(M)) = Mk.fst(k)G(M);

(
(
(
(in
G(when(M, 2.N1,y.N»)) = Dn(Ak.G(M) (A2 k(G(N1)), Ay.k(G(Na))))
5. GO M) = A\e.G(M); G(Mt) = G(M)t

(

(

(

6. G((M, 1)) = Me.kt(G(M));
G(split(M, 2.N)) = Dn(Me.G(M)(Az z.k(G(N))))

7. G(pa.M) = Dn(Aa.G(M)id); G([ao]M) = Ak.k(a(G(M))).
Here, we write Dn for the double negation elimination for A9:
x:——A9 by Dn(z) « A9,

which is applied essentially in classical reasoning of the definition of G(M).
We note that the following formulae are equivalent in minimal logic:

® FMin —\(—\Ag A —|Bg) RN —|—|(A9 \/BQ)
o Fyin Va—AY « ——IJrAI.

This means that we have yet another translation, a variant of Goédel-Gentzen,
for the cases of vV and 3, as follows:

1. G(inl(M)) = Ak.k(inl(G(M)));
G(when(M, z.Ny,y.N2))
= Dn(Ak.G(M)(Am.when(m, .k(G(N1)),y.k(G(N2)))))
2. G((M,t)) = Mk.k(G(M),t);
G(split(M, z.N)) = Dn(Ak.G(M)(Am.split(m, z.k(G(N))))).

19

The case of G(inl(M)) can be read computationally such that first evaluate M,
and then obtain G(M), and next send the value in1(G(M)) to the continuation
k. The case of G(when(M, z.N1,y.N2)) can be read similarly such that evaluate
M, and then depending on the value, to say m, we continue the computation
when(m, z.k(G(N1)),y.(G(N2))). The cases can be verified formally as follows:

G(when(inl(M),z.N1,y.No2)) = Dn(Ak.k(G(Ny[z := M]))).

The case of 3 can be handled similarly. For the case of G(ua.M), see also [F95].

3.3 Kolmogorov k

The third embedding is known as Kolmogorov from classical logic into minimal
logic.

I Py A iff TF by, AR

where k is defined as follows:

1. Pk =P

2. (A — B)F = -=(A% — BF)
3. (AAB)F = ——(A* A BF)
4. (AV B)k = ==(A* v BF)
5. (VeA)k = =z Ak

6. (rA)k = -—IzA*.
Note that in minimal logic, A9 and A* are equivalent each other:
Fatin A9 < AR,

We write A* for the formula obtained by removing —— from AF such that A* =
—-—A*. Now we show the translation of Kolmogorov from classical logic into
minimal logic.

Theorem 3 (Kolmogorov)
IfZ:T;a:-AFnk M : A, then Z:T%,&: A Fyin M 2 A*,

where the under-lined translation is defined as a translation from Ap-terms to
A-terms, as follows:

1. z = Mk.xk

2. de. M = Mk k(A M); MN = e.M(Am.mNk)

3. (M,N) = Mk.k(M,N); £st(M)= k.M (Im.fst(m)k)
4. inj(M) = Me.k(inj(M));

when (M, x.N1,y.No) = k. M (Am.when(m, z.N1,y.Na)k)

20

5. AzM = Nek(Ae.M); Mt = Ne.M(Am.mtk)

6. (M, 1) = MN.k(D, 1);
split(M, z.N) = Ak.M (Am.split(m, z.N)k)

7. poa.M = a.Mid; [o]M = Mk.E(Ma).

We should note that following Martin-Lof’s explanation [NPS90], each introduc-
tion rule can be read as providing the notion of values V under the computation
of call-by-name, such that

Vi=Xe.M | (M,N) |proj,(M) | (M,t).
Then one can define the auxiliary function ® as follows:

1. ®(z) =z id

[\

L BNz M) = XM
3. ®((M,N)) = (M, N)
4. ®(inj(M)) = inj(M),

where we have V. = Me.k®(V) for V' £ x. The reduction correspondence is
obtained at least for the intuitionistic fragment NJ.

Proposition 1 (Reduction correspondence)

1. If &:T bny M : A, then T:T% by M 2 AP,

2. If M —y N under call-by-name, then M — N under call-by-value.
Here, the reduction rule —y of call-by-name is defined by the following rules:

1. (Az.M)N — M|z := N,

2. proj,;(My, Ma) — M,

3. when(inj,(M),z1.N1,z9.No) = N;[z; == M],

4. split((M,t),x.N) — N[z := M],

5. (na.M)N — pa.M with « ¢ FV(M).

Now the simulation theorem of call-by-name via call-by-value can be established
from the reduction correspondence such that if M — V then M id —¢ ®(V).

Theorem 4 (Simulation [Plot75]) Evaly(M id) = ®(Evaly(M))

For the full system NK, it is straightforward to prove the equational corre-
spondence between \u-terms and A-terms.

Proposition 2 (Equational correspondence) If M =, N then M =5 N.

21

Here, the equality =, is defined by the following reduction rules.
1. Ax.M)N — M|z := NJ,
2. proj;(My, Ms) — M,
3. when(inj,(M),z1.N1,z2.N2) = N;[z; == M],
4. split((M,t),z.N) — Nz := M],
5. (ua.M)N — pa.Ma < N,
6. pa.fa)M — M with a & FV(M).
Note that the fifth rule above is justified by the substitution property such that
Mo <= N] —=* Mo := dm.mNa], see also [F95] for the details.
3.4 Kuroda ¢

The fourth embedding is known as Kuroda from classical logic into minimal or
intuitionistic logic.

Ik A i 19y, —— A9,

where ¢ is defined as follows:

1. pi=p
2. (A— B) = A% — ~~B1
3. (AAB)? = A1\ BY

4. (AVB)? = A1y B1

5. (VoA)? = Yz—Ad

6. (JzA) = JwAQ.

We should note that the original embedding of Kuroda (1951) is defined as
¢ such that (A — B)Y = A9 — B? for the second case above. Then this
embedding provides a translation from classical logic into the full intuitionistic
logic, see also 3.1 Glivenko’s theorem. The original embedding can be considered
as Glivenko’s theorem for the fragment of V-free systems.

Note also that in minimal logic, we have the following equivalence:

}_Min Ak & A
Now we show the translation of Kuroda from classical logic into minimal logic.

Theorem 5 (Kuroda) .
If2:T;a:-Abnk M : A, then Z:T9;,a: A by M —— A9,

where the over-lined translation is defined as a translation from Ap-terms to
A-terms, as follows:

22

~ W N

7.

T = \k.ka
Ax. M = Me.k(Ax.M); MN = \k.M(Am.N(An.mnk))
(M, N) = \k.M(Am.N(An.k(m,n))); £st(M) = \e.M(Am.k(fst(m))

inj(M) = \e.M (Am.k(inj(m)));
when(M, z.Ny,y.No) = Ae. M (Am.when(m, z.Ny,y.N2)k)

o.M = Me.k(Az.M); Mt = \e.M(Am.mtk)

(M, t) = M\e.M (Mm.k(m,t));
split(M,z.N) = \e. M (Am.split(m,z.N)k)

paM = Aa.Mid; [a]M = \k.k(Ma).

We should remark that the translation (interpretation) above provides the no-
tion of values V' under the computation of call-by-value, such that

Viu=ao| A e.M | proj(V) | (V,V) | inj(V) | (V,¢).

Then one can define an auxiliary function ¥ as follows:

1.

= w N

o.
6.

U(z) ==
U(\z.M) = \z.M
U(proj(V)) = proj(¥(V))

v

(
(
T((V1,V2)) = (¥ (V1), ¥(V2))
(inj(V)) = inj(¥(V))

(

(V1) = (¥(V), 1),

where we have the following reduction properties:

o V 5" AET(V)

o Mz :=V]—=* Mz :=¥(V)].

Now the equational correspondence holds for the intuitionistic fragment NJ.

Proposition 3 (Equational correspondence)

1.
2.

IfZ:T by M 2 A, then &:T9 by - M : A9
If M =y N, then M =5 N.

Here, the reduction rule of call-by-value is defined by the following rules.

1.
2.

A M)V —y Mz :=V]
proj;(Vi,Va) —=v V;

23

3. when(inj,(V),z1.N1,z2.No) =y N;jz; := V]|
4. split((V,t),z2.N) =y N[z :=V].

For the full system NK, we have the equational correspondence as well, see
also [F95] for the implicational fragment of Ap-calculus.

Proposition 4 (Equational correspondence)
1. If #:T;&:~AbFnx M+ A, then Z:T9; &~ A9 Fygin M : =AY,
2. If M =,, N, then M =3 N,

where the equality =, is defined by the reduction rule —,, of call-by-value,
consisting of the following rules:

1. Az M)V — M[z :=V],
proj;(Vi,Va) = Vj,
when(inj,(V),z1.N1,22.N2) = Nj[z; :== V],

= N

split((V,t),z.N) — Nz :=V],
5. (na.M)N — pa.M[a < NJ,
6. V(pa.M) = pa.M[V = aof,
7. poJo]M — M with a & FV(M).
Note that we have the following reduction properties:
e Mo <= N| —* Mo := Am.N(An.mna)]
o M[V = a] »* Mo = n.¥(V)na)].

3.5 Modified Kuroda ¢

In order to establish the reduction correspondence for the full intuitionistic
fragment, we modified Kuroda’s embedding, naturally leading to the simulation
theorem of call-by-value under call-by-name.

Theorem 6 (Modified Kuroda ¢) .
If2:T;a:-A Nk M : A, then Z:T9%2;3: A2 by M 2 7 A%2,

where the modified embedding g5 is defined as follows:
1. P2 = Pp;
2. (A— B)® = A2 — -~ B%;
3. (AANB)2 =~ A®2A-—B%;
4. (AV B)# = == A%®\V—-—B%;

24

5. (VzA)? =Vr——A%;
6. (3xA)” = Jz——A%.

Accordingly, the over-lined translation is modified as well as follows:
1. T = Ak.kx
2. A\v.M = \e.k(DAx.M); MN = Xk.M(Am.N(An.mnk))
3. (M,N) = \k.k(M,N); fst(M) = \e.M(Am.fst(m)k)
4. inj(M) = Me.k(inj(M));
when(M, x.N1,y.No) = Ak.M (Am.when(m, uu(Azx.N1 k), v.o(Ay.Nak)))
o.M = Me.k(Mx.M); Mt = \k.M (Am.mtk)
6. (M,t) = \k.k(M,t);
split(M, z.N) = Ak.M (Am.split(m, u.u(Az.Nk)))
7. po.M = M. Mid; [o]M = \k.k(Ma).

Then we also modify the notion of values V for call-by-value, together with the
modified auxiliary function ¥, respectively as follows:

Vo= | Ae.M | (M, M) | inj(M) | (M,t)

ot

1. ¥(z) =2

2. W(\z.M) = \z.M

3. W((M,N)) = (M,N)

4. ¥(inj(M)) = inj(M)
5. W(M,t) = (M,t),

where the expected properties hold for values and substitution as well:
o V=) kk¥T(V)
o Mz :=U(V)] = Mz :=V].

Now the reduction correspondence is established for the full intuitionistic frag-
ment NJ, where the definition of —y is the exactly same as that of —y in the
previous subsection. Note that the definition itself has the same form, however
the notion of values and ¥ are modified from those in the previous subsection.

Proposition 5 (Reduction correspondence ¢z)
If M —y N under call-by-value, then M — N under call-by-name.

Then the simulation theorem of call-by-value via call-by-name can be established
from the reduction correspondence such that if M —; V then M id — ¥(V).

Theorem 7 (Simulation [Plot75]) Evaly(M id) = U(Evaly(M))

For the full system NK, we still have the equational correspondence just like
in the previous subsection.

Proposition 6 (Equational correspondence) If M =, N, then M =3 N.

25

3.6 Modified Kolmogorov k,

From the viewpoint of DeMorgan’s duality such as A-V and V-3, we modify
kolmogorov’s embedding such that A is interpreted by V, V is by 3, and vice
versa under the modified k2. The definition of the embedding ks is given as
follows:

1. Pk2 = <= P;
2. (A — B)k2 = ——(Ak> — BF2),
3. (AV B)F2 = =(=Ak2 A-BR2);
4. (ANB)k = ~(A*VB*);
5. (VrA)kz = -3z A%,

. (FrA)ke = Vr—Ak2

where we write A* for the formula obtained by removing — from A*2 such that

Ak2 = =A%,

Theorem 8 (Modified Kolmogorov k)
IfZ:T,a:~A bk M : A, then Z:TF2; & A* bFypin M : A*2,

where the under-lined translation is defined as a translation from Apu-terms to
A-terms as follows:

1. z = \k.xk
2. Ae.M = Nek(Ae.M); MN = Me.M(Am.mNFk)
3. (M, N) = Ak.when(k,z.Mz,y.Ny);
£st(M) = Ak.M(inl(k))
4. inl(M) = Me.fst(k)(M);
when (M, x.N1,y.No) = \k. M (Ax. N1k, A\y.Nok)
5. Ax.M = Mk.split(k,x.Mz); Mt = \k.M(k,t)
6. (M, 1) = AkktM; split(M,z.N) = Ak.M (A A2 Nk)
7. poM = Ao Mid; [0 M = Akk(Ma).

=2

In particular, the full intuitionistic fragment NJ enjoys the reduction correspon-
dence, where the reduction rules are defined as usual.

Proposition 7 (Reduction correspondence k3)
1. If &:T bny M : A, then T:T% by M : AF2,
2. If M — N then M —* N.

We remark that the second case M N of the under-lined translation can be read
as a coding of the pair Ak.M (N, k). In the next subsection, this reading makes
it possible to interpret implication — by conjunction A, where we use another
form of (AE) with the expression of let.

26

3.7 Modified Kolmogorov k3 in dual

We introduce yet another modification of Kolmogorov, that is to say ks as
follows:

1. Pk = -p;

2. (A — B)*s = (mAks ABks);
3. (AAB)ks = (AFav BFs);

4. (AV B)ks = ~—Aks A~ BFs;
5. (VoA)ks = JpAks;

6. (FrA)ks = Vr--Aks,

Note that the second case interprets — by A, where (A — B) can be read as
(mAV B) under the dual translation k3 between V and A. We show that this
dual embedding k3 works as a translation from classical logic into minimal logic.

Theorem 9 (Modified Kolmogorov k3)
If&:T;a:~A bk M : A, then £:—T%, @: A*s by, M 2 ~AFs,

where the under-lined translation is given as a translation from Ap-terms to
A-terms as follows:

1. z = Mk.xk
2. dxz.M = Mk.(let (z,k) = k in Mk);
MN = Me.M\k.N, k)
3. (M,N) = Ak.when(k,k.Mk, k.Nk);
(let (z,y) = M in N)
= Ak ((Ay.(A\x.Nk)(Ak.M(inl(k))))(Ak.M (inx(k))))
4. inj;(M) = Ak.(let (z1,x2) = k in z;M);
when(M, z.Ny,y.No) = \k.M (Az. N1k, A\y.Nak)

5. Ax.M = Mk.split(k,z.Mx); Mt = Ne.M(k,t)
6. (M,t) = Mk.ktM; split(M,z.N) = k.M (Ax.\z.Nk)

7. pa.M = da.Mid; [o|M = Mk.E(Ma).

For the third case of let (z,y) = M in N, instead one can take the substituted
form N[z = Ak.M(inl(k)),y := Ak.M(inr(k))] by contracting the redexes.
Observe that (— I) is interpreted by (AE), (— E) is by (AI), and each intro-
duction rule is by the corresponding elimination rule in dual, and vice versa. In
particular, for the full intuitionistic fragment NJ, the reduction correspondence
is obtained, where the reduction rules are defined as usual.

27

Proposition 8 (Reduction correspondence k3)
If M — N, then M —+ N.

We should note that this form of dual embedding is applied to 2nd order propo-
sitional logic, so called Girard’s System F with extensional rules. Then the
reduction correspondence induces the fundamental properties such as Church-
Rosser, Normalization, polymorphic functions, and abstract data types between
source and target calculi, see CPS-translation as adjoint [F10] for the details.

3.8 Modified Kolmogorov k£, in dual

We introduce another and yet another embedding k4 which handles both impli-
cation — and its dual implication <—, rather than conjunction with negation.
For convenience, recall the inference rules and reduction rule here.

e Inference rules:

'tM:B T,z:AEN: L (
I'Fmal(M,z.N) : (A<« B)

+— 1)

T+M:(A« B) T,y:BFP:A
I'FppA(M,y.P): L

(& E)

e Reduction rule:

ppA(mal(M,z.N),y.P) — N[z := Ply := M]]

The dual embedding k4 is defined as follows.

1. Pk =P,

2. (A — B)ks = (== Ak Bka);
3. (A<« B)Ft = (Aks 5 --Bk);
4. (AN B)ks = (Akav Bka);

5. (AV B)Fs = = AFs o Bhs,
6. (VrA)ks = JpAks;

7. (JzA)F = VoAb,

We show that the embedding k4 works as a translation from classical logic into
minimal logic as follows.

Theorem 10 (Kolmogorov k)
If&:T;a:~AbFnk M : A, then &:—T%, @: AR L AR by, M: 1,

where the double-underlined translation is given as a translation from Ap-terms
to A-terms as follows:

28

=N

=T

N
> 18

x.M = ppA(k, k.(A\z.M));
MN = Mk := maL(k, k.k(Ms.N))]

3. mal(M,x.N) = N[k := id][z := Aa.ka(Mk.M)];
pPA(M, y.P) = Mk := \k.\y.P]

-
—~

M, N) = when(k,k.M,k.N);

let {(x,y) = M in N)
= N[z := Ak M[k := inl(k)],y := \k.M[k := inr(k)]];

proj,;(M) = ﬁ[k = inj, (k)]

—~

—~

5. inj;(M) = (let (x1,72) = k in x;(Ak.M));
inj;(M) = proji(k)()\k.%);
when(M, z.N1,y.No) = M[k := (Az. N1, \y.Na)]

6. \e.M = split(k, k.M); Mt = Mk := (k.t)]

7. (M,t) = kt(\k.M); split(M,z.N) = M[k := Av.\2.N]

8. po.M = M[k := id][a == k]; [a]M = k(M[k := a]).

We note that the following substitution properties hold here.
o Mz := \k.N] —* M|z := NJ;

o M[a <= N] = M[a := maL(a, k.k(Ak.IN))].

Now we obtain the reduction correspondence for the full system NK in the
following sense.

Proposition 9 (Reduction correspondence k)
If M = N, then M —* N.

Remarked that for a term N with type L, we may consider an extra substitution
[k = id], such that ppA(maL(M,z.N),y.P) —% Nz := Ply := M]|[k := id],
and for the same phenomena, see the definition of ® for the simulation theorem
Theorem 4 in 3.3 Kolmogorov k.

The following elementary properties hold where —=A := (A — 1).

o Fatin ~A 6 (A € ~L), and by (R4 o AR
e by (m—A == B) < =(——A <+ B) & (-—A «+ —-—B)

Hence, we have the following proposition for the original Kolmogorov k.

29

Proposition 10 i, AF < __\(Ak4)k4-

Here, we define (A <+ B)* = ——(A* < B¥). For Glivenko’s theorem, we note
that Fyy ——(A*)k <3 == A for the V-free fragment, since Fnj ——(A4 < B) <
(——A + ——B).

3.9 Kuroda ¢; revised in dual/contrapositive

From the viewpoint of duality and contraposition, we consider Kuroda’s embed-
ding under call-by-value computation. The embedding g3 is defined as follows:

1. P®s = P;
2. (A— B)#s = —~(ABA-B%®);
3. (AAB)® = ~(~A%Y-B);
4. (AV B)® = ~(~A%A-B)
5. (VoA)s = ~Jz-As;
6. (JwA)® = Va-A®.

We show that the embedding g3 works as a translation from classical logic into
minimal logic.

Theorem 11 (Kuroda g3) .
If2:T;a:-AbNk M : A, then Z:T% @:—AB k:—AB Fyin M 2 L

where the over-lined translation is given as a translation from Ap-terms to A-
terms mutually together with an auxiliary function ¥ in the following:

1. T =kx

5]

2. \z.M = k(\k.let (z,k) = k in M);

(a
(b

<

VN = N[k := M. ¥ (V)(n, k)] for value V,

MN = M[k := Am.N[k := An.m(n, k)]] for non-value M

//

3. (M, N) = k(\k.when(k, k.M, k.N));

(let (x,y) = M in N) = Mk := Me.k(inj,(Ay-k(in]; (Az.N))))]
4. inj;(M) = k(\k.let (k1, ko) = k in M[k := k;]);

when(M, z.Ny,y.No) = M[k := Am.m{\z.Ny, A\y.No)]

5. Ax.M = k(\k.split(k,k.M)); Mt = Mk := dm.m(k,t)]

6. (M,t) = k(Am. Mk := mt));
split(M,z.N) = M[k := Am.m(Az.\z.N)]

7. po. M = Mk := id|[a == k]; [a]M = k(M[k := o),

30

where the auxiliary function W for V with V = k¥(V) is defined as follows:
Vi=a| M| (M,N)|inj(M) | \x.M | (M,t) | [o]M

1. ¥(z)=2x

2. W(A\z.M) = \k.(let (x,k) =k in M)

3. U((M,N)) = \k.when(k, M, N)

4. W(inj,) = \k.(let (ky, ko) = k in M[k := k;])
5. U(A\x.M) = \k.split(k,k.M)
6. U((M,t)) = \k.M[k := kt]
7. U([a]M) = Mk := al.

Note that for the case (b) of M N, one can take another form such that MN =
N[k := Mn.M[k := dm.m(n, k)]] as well.
We define reduction for call-by-value —y consisting of the following rules:

1. M. M)V — Mz :=V]

let (z,y) = (V1,Va) in M — M|z := Vq,y := V3]
when(inj,(V), z1.N1,22.N2) = Nj[z; == V]

(\x. M)t — M

split((V,t),2.N) = N[z :=V]

(pa.M)N = po.M[o <= N]

V(pa.M) — pa. M[V = a

pefa]M — M if a & FV(M)

© 0 N Gk wN

[6](neV) = Vie:= fl.

Note that the following substitution properties hold.

o Mz = 0(V)] = Mz = Vj; W(Vi)[w := (Va)] = B(Vif := Vi)

e 1. U(V)a:=Am.N[k := Am.m(n,a)]] —% ¥ (V] <= NJ) for value V,

4. MV = o] = M[a := An. ¥ (V)(n, a)]] for value V.
For the full intuitionistic logic NJ, we have the reduction correspondence.

Proposition 11 (Reduction correspondence)

31

1. If :T Ny M : A, then T:T9 k: =A% by M@ L.
2. If M —y N then M —+ N.

For the full system NK, the reduction correspondence holds together with
the following facts.

1. pa.fa]M — M if a ¢ FV(M),

- Bl(pa. V) = Ve :=] for value V,

2
3. (pa.M)N = pa.M[a < N for non-value M,
4. (pa.M)V —7% po. Mo <= NJ for value V',

5. pa. MV = a] = V(pa.M) for value V.

Proposition 12 (Reduction correspondence)
If M —v N, then M —3 N.

We should remark that a similar embedding is also investigated for 2nd order
Ap-calculus of call-by-value with extensional rules, see [F00] for the details.

3.10 Kuroda ¢4 yet modified

We introduce yet another embedding g4 which handles both implication — and
its dual implication <.

1. P = P
2. (A— B)#* = =(——B#1 <+ A%);
3. (AN B)# = —(=A%V-B%);

4. (A + B)# = (B4 ———A%);
5. (AV B)# = ~(~A%A-B%)

6. (VoA)# = -3r-A%,;

7. (JzA)% = VoA,

We show that the embedding g4 works as a translation from classical logic into
Minimal logic.

Theorem 12 (Kuroda ¢4)
If&:T;a:~Abnk M: A, then :T%, &: A% k: =A% by, M L,

where the double-overlined translation is given as a translation from Ap-terms
to A-terms mutually with an auxiliary function ¥ as follows:

= kx

Sl

1.

32

2. Az.M = k(\k.ppA(k, z.\ke.7));
(a VN =]=V[k: = An. ¥ (V) maL(n, m.mk)] for value V,
N = ﬁ[k = Az N[k = An.zmaL(n, m.mk)]] for non-value M
3. maL(M, z.N) = k(M. M[k := \b.kb(Az. N[k := id])));
pPA(M, y.P) = Mk := MNe.k(Ay.\k.P)]

e~
—~

M, Ny = k(Me.when(k, k.M, k.N));
let (z,y) = M in N) = M|k := M.k(inj,(Ay-k(inj,(Az.N))))]

—~

5. inj, (M) = k(Me.let (ki ko) = k in Mk := kj]);

when(M, z.N1,y.Na) = [k = Az.z(A\z Nl,/\y.ﬁgﬂ

6. Mx.M = k(Mk.split(k,k.M)); Mt = Mk := dm.m(k,t)]

8. pa.M = Mk := id|ja == k]; [a]M = k(M[k = a)),
where the auxiliary function ¥ for V' with V= kWU (V) is defined as follows:

Vi=z| e M |mal(M,z.N) | (M,N) | inj(M) | Ax.M | (M,t) | [a] M

1. U(x) =
2. U(\z.M) = \k.ppA(k, z \k. M)
3. U(maL(M,2.N)) = MNe. M|k := Ab.kb(Az. N[k := id])]

(
(
(
4. W((M,N)) = \k.when(k, k.M, k.N)
(inj,(M)) = Ak.let (ki ko) =k in M|k == ki
6. U(Ax.M) = Ak.split(k,k.0M)
7. U((M,t)) = Ak M[k := kt]
(

8. U([a]M) = [= al.

Note that instead one can take M N = ﬁ[k =)\nﬁ[k = Az.z(maL(n, m.mk))]]
for the case (b) above.
We define reduction for call-by-value —y consisting of the following rules:

1. Az.M)V — Mz :=V]

33

2. ppA(mal(V1,2z.N),y.Va) = Nz := Val[y := V1]

3. let (z,y) = (W1, Vo) in M — Mz = Vi,y = V3]
4. when(inj,;(V),z1.Ny,22.N3) — N;[z; := V]

5. (Ax.M)t - M

6. split((V,t),2.N) — N[z :=V]

7. (pa.M)N — poa.Mo < N|

8. V(pa.M) = pa. MV = a

9. pafa)M - M it a g FV(M)

10. [B)(pa.V) = V]a := f].

We note that the following substitution properties hold.
o ﬁ[aj =U(V)]) =Mz :=V]; T(Vy)[z:= T(V3)] = ¥(Vi[z := Va))

o U(V)[a:=)\zﬁ[k := An.zmal(n, m.ma)]] =% ¥(V]a <= NJ) for value V,

[)
<
o

= /\z]=\7[k = An.zmal(n, m.ma)]] =% Via < NJ for value V,

o Mlaw < N] = ﬁ[u =)\zﬁ[k := An.zmaL(n, m.ma)]] for non-value M,

o M|V = a] = Mo := An.¥(V)maL(n, m.ma)]| for value V.

Accordingly, the reduction properties hold as follows.

e (pa.M)N = pa.M[a < N] for non-value M,

e (pa.V)N —% pa. Mo <= N| for value V,

o V(pa.M) =7 pa.M[V = af for value V.
Now for the full system NK, the reduction correspondence can be established.

Proposition 13 (Reduction correspondence)
If M =3,V then Mk := id] —} ¥(V).

We also have the following elementary properties where =4 := (A — L):
e Fyin A < o(——L < A), and then Fyp, (DA)# > A%,
e Fnj (A — —==B) <> ==(A — B) and Fny 7 (A < B) > (—A < - B).

Hence, the following proposition is obtained for the original Kuroda ¢, where
define (A < B)? = =A% + BY.

34

Proposition 14 g, —(A%)% < - A9,

In addition, q42 works just as Glivenko’s theorem for the V-free fragment of
predicate logic, see 3.1 Glivenko’s theorem.

Proposition 15 Fyj ——(A%)% +» == A for the V-free fragment.

In other words, the effect of the double-negation of Glivenko’s theorem is sep-
arated into two steps of q4, which works in minimal logic. Note also that
VzA := —Jax—A provides Fyin (V2 A)%)% 5 —Jx—(A%)%,

In summary, four embeddings and their variants enjoy the following relations.
o Fyin A9 AF o =47 & —|—|(AQ4)q4 “ —|—|(Ak4)k47
o g 1 (AM)% ¢ A < ~—(AF)ka for the V-free fragment.

As concluding remarks, more detailed analysis will appear in a forthcoming
paper.

References

[Plot75] G. Plotkin: Call-by-name, call-by-value and the A-calculus, Theoretical
Computer Science Vol. 1, pp. 125-159, 1975.

[TD88] A.S. Troelstra, D. van Dalen: Constructivism in Mathematics: An In-
troduction, Vol. I, II, North-Holland, 1988.

[NPS90] B. Nordstrém, K. Petersson, J.M. Smith: Programming in Martin-
Lof’s Type Theory, Oxford University Press, 1990.

[F95] K. Fujita: On embedding of classical substructural logics, Kyoto Uni-
versity RIMS Kokytroku Vol. 918, pp. 178-195, 1995.

[FO0] K. Fujita: Domain-free Au-calculus, Theoretical Informatics and Appli-
cations Vol. 34, pp. 433-466, 2000.

[Sel01] P. Selinger: Control Categories and Duality: on the Categorical Seman-
tics of the Lambda-Mu Calculus, Math. Struct. in Comp. Science Vol.
11, pp. 207-260, 2001.

[Wad03] Ph. Wadler: Call-by-name is dual to call-by-value, International Con-
ference on Functional Programming, Sweden, 25-29 August 2003.

[F10] K. Fujita: CPS-translation as adjoint, Theoretical Computer Science
Vol. 411, pp. 324-340, 2010.

[F22] BEEHAED : BEL SOV TR S ER LAY, J0F4, 2022
https://www.coronasha.co.jp/np/isbn/9784339029239/

Fujita Kenetsu
Department of Computer Science, Gunma University
Kiryu, Gunma 376-8515, JAPAN

fujita@gunma-u.ac.jp

35

