SPHERICAL HARMONICS AND HARDY’S INEQUALITIES

SHUJI MACHIHARA

ABSTRACT. We consider the derivative operators for radial direction and spherical di-
rection. We also investigate the operator which takes the spherical average for functions.
We reconfirm those properties with particular attention to orthogonality. As an applica-
tion, the Hardy type inequality is presented with spherical derivatives in the framework
of equalities. This clarifies the difference between contribution by radial and spheri-
cal derivatives in the improved Hardy inequality as well as nonexistence of nontrivial
extremizers without compactness arguments.

This paper is based on the joint work with Neal Bez and Tohru Ozawa.

1. PRELIMINARIES PART 1

In this section we define and investigate some derivative operators in Euclian space.
Although the facts are well-known, we here check the all lines for calclations and the
orthogonality of those. We define the radial derivative and the spherical derivative

arz V= foa

L:V—i&z (al—%ar,...,an—ﬁ@).

] |z]

where 0; = 0/0z;,5 =1,...,n. We define

€X; Tl .
Lj=0; — |Ja—a Z|J|Qak, ji=1,...,n,

to have Lf = (Lif,..., L,f). We use the polor coordinate z = rw,r = |z|,w = z/|z|
for x € R"\{0}. We may write f(x) = f(r,w). If f(r,w) depends on r only, that is
f(z) = f(r), we have

Z df|x| Zj r)o;|z| = ZW: ),

Lif(x) = (aj = 20.) fah = 1) - L) =0

|z] = ||
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If f(r,w) depends on w only, that is f(z) = f(w) = f (i), we have

6jk _ T
Z e (s |a:|3)
M-I E 99 SO I S

= (o) (1) -0 0 (2) 050

if we continue to calcurate

) < / (ﬂ)) - %@f)(w) - ;wkf)(w)fﬁf

_ p:i'(@jf)(w) ~ 0N
1 1
= L) = <ijf> (w) = (L;if)(w)-

Since we have Leibniz rule
O (f9) = fOrg+ 90 f,  Li(fg) = fLjg+9L;f,
we estimate for f = f(r),g = g(w) and general h = h(r,w) as
(L1) Or(gh) = gdh,  Ly(fh) = fLsh.
We have the pointwise orthogonality between Lf for any f and z as

n

Lf-sz(f)jf = |8f>m]—:n Vf—|z|o.f =0.

j=1

Therefore we have the orthogonality pointwisely between Lf and ﬁﬁr f for any f,

i top="1

] 2]

We use the inner product and the norm for L?(R"),

(flo)= | f@g@dr,  Ifle= 1/l = V1)

(Lf-x) =

We define
ILAIS = IL;f1I5.
j=1

We have the relation V = ‘—i‘&n + L and, as a corollary, the following orthogonality in the

Hilbert space L*(R™).
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Proposition 1.

(1.2) IVAIZ = l0-£12 + LI

Proof. We estimate

IVAIz = Z

7j=1

2
Lj

||df+Lf

+2R/R &f,. Lfd:v+Z||Lf||2 18, 713 + 12113

We give the following two results by parts for L.

(Lyulo) = —(uld;0) + 3 (u
= —(u|Ljv) + (n—1) (u

TjTk
o ( of? ))
.
|:c|2”) ’

i:(L | L) Z (ulL20) + (n— 1) ( L Lv) _ —i:(uw?z}).

j=1 j=1 7=1

and so

We consider second order derivative. We introduce the Laplacian on the unit sphere,
that is, the Laplace-Beltrami operator.

ASn—l = Z (xﬁk — xké‘j)Q.
1<j<k<n

We have the following relation between the second order of the spherical derivative L and
the Laplace-Beltrami operator.

> (2|Ly)? = [« ZL? |:1:|ZZ(8]2 fﬂlaa | JPQ?)
7j=1

J=1

=i+ 22 (F A+ + D) = (270 + -+ 2207) -2 Z x;0;x0

1<j<k<n

1<j<k<n 1<j<k<n

where we use (1.1) at the first equality. The following is also well-known

A=t




2. PRELIMINARIES PART 2

We denote by L2 ;(R") and H! ;(R") the closed subspaces L?(R") and H'(R™), respec-
tively, of radial functions:

L2 (R") ;= {f € L*(R"); There exists u € LQ(O o0) such that

f(x) = u(|3:|)|33| * for almost all z € R™\{0}},
(R™) == {f € (H' N Loa)(R"); O,f € Liaa(R™)}.
For any f € L*(R"), we denote by Pf its radial average over the unit sphere

1
P =
(PA@) = — .
Then P : f — Pf induces the orthogonal projection from L*(R") onto L2 4
as from H'(R™) onto H}  (R™) (see Proposition 3 below).

Hl

rad

f(|rlw)do(w), xeR"
(R™) as well

Lemma 2.
P:=pr

)

P*=P.
Proof. For any radial function f € L*(R"), and we write f(x) = f(|z]), we have
1 D)
(PP)@) = -
-1

fado) = 22 [ dotw) = f(a).
Snf Un_l Snfl
Therefore for any f we have the radial Pf and so we have P(Pf) = Pf. For any u, v, we
calclate

(Pulv) = /R n Unl_l /S oo (w)a(a)dr
- /S /0 N <Onl_1 /S n_lu(rw)da(w)) 3(r0)r"drdo (6)

_ /S /0 h ((Tnl_l /S n_lﬁ(ré))da(O)) w(rw)rtdrdo(w) = (u|Pv).
0

We define the orthogonal projection onto the orthogonal complement of these spaces
pt=1-P

We have f = Pf + P*f.

Proposition 3. The following relations hold:
(1) (P1)? PL, (P4) =P+
(2) PP =pPip=0.
(3) (PulPtv) =0, [lull3 = [|Pull3 + [|Pull3, u,ve€ L*R").
(4) (VPu|lVPto) =0, ||Vul=|VPul3+|VPul3, wu,ve HY(R").
Proof. The all orthogonal projections satisfy the properties (1), (2) and (3).
(1) From Lemma 2,

(PYY?=1—-2P+P*=1-2P+ P =P+
(Pulv) = (ulv) = (Pulv) = (ulv) — (u|Pv) = (u|Pt0).
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(2) From Lemma 2,
PPt =pP'P=P-P*=P-P=0.
(3) From (2),
(Pu|P*+v) = (u|PP*v) = (u|0) = 0.
|ul|? = || Pu+ Prul]* = || Pul|* + 2Re(Pu| Pv) + || PHo||? = || Pul|® + || P
(4) We have

1 n
0, Pu = on_—lla:| Z_:mj /S 0;(u(|z|w))do(w)

= Zrl—J (Vu)(|r|w) - wdo(w) = P(Vu - w) = Po,u.

We have seen L;v = 0 for any radial function v, and so Lv = 0 and LP = 0.
O

By using the orthogonal projection P and P+, we have the following orthogonal de-
compositions:

LQ(RTL) Ll?ad(Rn) @ (Lfad(Rn))La
H'(R") = Hpg(R") @ (Hpg(R"))*.
We also use the complete orthogonal decomposition
(2.1) L*(R") = P H*R),
k>0

where H*(R") is a closed subspace spanned by spherical harmonics of order & multiplied
by radial functions. We denote by Py the associated orthogonal projection. We refer the
reader to [4, 5, 6, 24, 26] for details on the decomposition (2.1). Here we notice that

P=F,
Lia(R") = H(R™).
We introduce the eigenvalues of the spherical harmonics
Agn-1Py = —k(k+n—2)P, k>0.

3. HARDY’S INEQUALITIES AND EQUALITIES, KNOWN RESULTS.
In this talk, we study the classical Hardy inequality of the form

(3.1) ("3 2)2 il < e

for all f € H'(R") with n > 3. We remark the constant (n — 2/2)? is optimal and is not
attained. The follwoing also holds

(57)

for all f € H'(R") with n > 3.

f

2
< ||, fI?
|LU| 2—” Tf||2




We call a kinds of the followings Hardy’s equalities. Dolbeault-Volzone (2012) and
Bogdan-Dyda-Kim (2016) showed

(”‘2>2 = iwsiz- - e+ 222 2
2 || ? 2" ],
M-Ozawa-Wadade (2016) showed
(%2) |5 = o - 2
2 [, : ﬂl

Meanwhile, Ekholm-Frank (2006) introduce the fillowing as an 1rnproved Hardy inequality
2

32 o

for all f € C°(R") with n > 2 satlsfylng

(3.3) s flrw)do(w) =0

for all 7 > 0, where o is the Lebesgue measure on the unit sphere S"! = {w € R™; |w| =
1}, [7, 12]. In [12], the inequality (3.2) is referred to as an improved Hardy inequality on

the basis of the improvement in the coefficient - on the left hand side of (3.2), which is

larger than the corresponding coefficient ( = 2) on the left hand side of (3.1), as well as
of the applicable range of dimensions, in partlcular, n = 2 is now admissible.

4. HARDY’S INEQUALITIES AND EQUALITIES, THEOREMS.
We now state the main results in this paper.

Theorem 4. Let n > 2. Then the following equality

(A1) (n—1) H }Itl

holds for all f € H'(R").

[e.e]

LR AR =S k= Dk 1) \

k=2

2

DPef

]

2

Corollary 5. Let n > 2. Then the following inequality
Py
EP

holds for all f € H*(R™). Equality holds in (4.2) if and only if there exist « € C" and
g,h € H. (R™) such that

rad

(4.3) f(x) = (o x)g(x) + h(z)
for almost all x € R"\{0}, where a -y =377
of (4.2) are given by

(4.2) (n—1) < IZPfII3

L0y, fory € R™. In this case, both sides

pLr|?

(4.4) (n—1) H = |LP*f||3 = an 1e)? / r)|dr,
where u € L*(0,00) satisfies g( ) = u(|z|)|z|~ "= for almost all = € R™\{0} and |a|? =
D i Q.



Theorem 6. Let n > 2. Then, the following equalities

() |2 HP“”

2 12] |, ||
_(n—2 P> n2||PLf?

(4.5) —< 2) K. "7 |

2

Pt
||

_ 2_ (o,
st (5. g7 ) ]

hold for all f € H'(R").

1

Corollary 7. Let n > 2. Then, the following inequality

n—2\2 f
4.6 —
0 =) .
holds for all f € HY(R™). Equality holds in (4.6) if and only if f = 0.

2

2
< |IVfI5.
2

PJ_
w5

Theorem 8. Let n > 2. Then, the following equality
2

Rl [ CRE= T

2

(4.7) % P
—Z(k—1)(k+n—1)‘ﬁ 2

holds for all f € H'(R").

Corollary 9 (Improved Hardy inequality [7, 12]). Let n > 2. Then, the following in-
equality

pPLf?

(4.8) = IV P I3

holds for all f € H*(R™). Equality holds in (4.8) if and only if f € H
case, both sides of (4.8) vanish.

(R™). In this

rad

The inequality (4.6) improved the Hardy inequality (3.1) in the sense that (4.6) reveals

2
a novel term (n—1) H P|TL|f H on the left hand side and that the improvement in (3.2) in two
2

2
space dimensions arises as a result of the existence of the novel term H P|Tl‘f H when n = 2.
(R™) with
coefficient n — 1, which together with the standard coefficient (" 2) yields the improved

coefficient ” in (3.2) on the basis of the simple identity (%52 2)2 +(n—-1)= %2.

In Sectlon 2, we prove a density lemma, which enables us to prove the main theorems
for functions in C°(R™\{0}). In Section 3, we prove the main results stated above.
Furthermore, we also include a justification of the observation that the constant %2 in the
improved Hardy inequality (4.8) is best possible and thus we establish the nonexistence

of nontrivial extremizers for the improved Hardy inequality.
7
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5. PROOFS OF THE MAIN THEOREMS

The following proposition is important in the proofs of the main theorems:
Proposition 10. P+ (C5(R™\{0})) is dense in PH(H'(R")) = (HL. (R™))* if n > 2.

In this section, we prove Theorems 4, 6, 8 and their corollaries. By a density argument
based on Proposition 10, it suffices to prove the theorems for functions in C§°(R™\{0}).
In the proofs below, all functions are supposedly elements of C§°(R™\{0}).

Proof of Theorem 4. Let f € C3°(R™\{0}). By Propositions 3 and ??, the first term on
the right hand side of (4.1) is represented as

ILPE A3 = L P13
j=1
== (L;P-f|Pf)
j=1

==Y > (L2P'P.f|P'f)

j=1 k=0

==Y D (LPtRfIP)
j=1 k=1

[e.9]

= —Z(|x|_2Agn—1PkPLf|PLf)
k=1

and hence
PR = =3 [ (@ars PP DG OIP (D sn o™
k=1

=Sk 2) [P OO ey

[e'e) 1 2
— Z k(k+mn—2) HEPkPLf

=1

2

0o 2

PkPL +Z (k+n—2)—(n—1)) H| PPt f
2 2
o] PJ_ 1 2
< f) Z k—l—n—l)H—PkPLf
k= 2 k= |ZE| 2
=(n—1) +Z 1)‘ B
2 |z




where we have used relations
PPt = PtpP, =0,
PP+ =PI —P) =P, fork>1,

|
Pk<|g|) g for k20
T

This completes the proof. ]

Proof of Corollary 5. The inequality (4.2) is a direct consequence of (4.1). The equality
in (4.2) holds if and only if P ‘“f = 0 for all nonnegative integers k& with £ > 2, namely,

€ Ho & Hi. This proves (4 3) Then we take g,h € H. ;(R") as in (4.3). In this case,

|z\ rad

we have

(PHf)(z) = (- 2)g(2),

(LPf)(x) = (a (o))

for almost all x € R™\{0}. Since g is radial and P‘L‘f € Hi, a new function u € L*(0, 0o)
is defined to satisfy g(z) = u(|z|)|z|~ "% for almost all z € R™\{0}. We evaluate two

integrals in (4.2) as
/ / o - w2lg(reo)|Pdo ()™ dr

— [ lavePdo) [ utpar
=2t af? [ uar

n 0
ez [T _ L2 2
2P = [ [ o —wta-w)Pdot)ut)far

_/ (Ja]* = |a - w]?)do(w )/oo lu(r)[2dr

(1— —) oo laf? / ")\2dr,
where we have used

/ lov - wl*do(w Zz%ak/ wjwgdo (w
Sn—1

Il

]

71=1 k=1
= s 2 CL)QdU w
J J
j:1 Sn—1

n
1 1
- Z |Oéj|250'n—1 = Effn—1|04|2-
j=1
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This proves (4.4). O

Proof of Theorem 6. The equality (4.5) follows from (?7?), (1.2), (4.1), and ||[LP* f|ls =
ILf][2- O

Proof of Corollary 7. The equality in (4.6) holds if and only if (4.3) and

B (el Bl ) = n—2\ . _
20 (el 1) = (0. + 52 ) £ =0

Then f is written as f(x) = |z['72 (‘—i‘) for some function ¢ : S"~! — C, which together
\

if and only if o = 0, which means f = 0. U

Proof of Theorem 8. The equality (4.7) follows by substituting f by PLf in (4.5). O

Proof of Corollary 9. The equality (4.8) follows if and only if P1f = 0, which means
f € Hrlad( n) O

with (4.3) implies that f(z) = |z|'~2 (0/ : %) for some o € C". In this case, ﬁ € L*(R")
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