THE CLOSURE PROPERTY OF THE FOKKER-PLANCK
EQUATION, GAUSSIAN HYPERCONTRACTIVTY, AND
LOGARITHMIC SOBOLEV INEQUALITIES

SHOHEI NAKAMURA

ABSTRACT. An importance of functional inequalities can be usually seen by
being applied to analysis of differential equations. In this report, we explain an
idea reversing such understanding, namely applying properties of differential
equations to analyze functional inequalities. This idea is motivated from the
work on the theory of Brascamp-Lieb inequality due to Bennett—Carbery—
Christ-Tao [5] and Carlen—Lieb—Loss [9]. More precisely, we report that one
can improve the best constant of Nelson’s hypercontractivity inequality and
Gross’s logarithmic Sobolev inequality via the regularizing property of the
Fokker—Planck equation, which is the main result in the work with Bez and
Tsuji [7].

1. INTRODUCTION

This report is based on the work with Bez and Tsuji [7].

1.1. Closure property of the Fokker—Planck equation. Once one finds out a
functional which is monotone along inputs flow of a given evolution equation, one
would obtain certain inequality which leads us to a deep understanding about the
functional. Such a framework known as flow monotonicity or semigroup interpola-
tion has been developed and employed over the years as a powerful tool for proving
geometric and functional inequalities as stated in the abstract in Ledoux’s survey
paper [14]. We simply refer the textbook due to Bakry—Gentil-Ledoux [2] for the
comprehensive treatment of this framework. Despite of such a fruitful consequences
of the flow monotonicity framework, it is yet unclear, as far as we are aware, what
is a theory sitting behind the flow monotonicity phenomena. Toward this investiga-
tion, the closure property of diffusion equations recently have been paid attention,
see [1, 3, 4]. Let us demonstrate the idea of the closure property with the simplest
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example which yields the Cauchy—Schwarz inequality. Take an sufficiently regular
non-negative functions fi, fo € L(R™) and aim to prove

(1) | a@ip@ia<([mif

Let uj,us be positive and suitably regular solutions to the heat equation on R™:
Opuj = Aug, u;(0,2) = fi(x), j=1,2.

11
Then from a direct computation, one can see that u := ujuj also becomes a
supersolution, namely % satisfies®

Oru > Au.

This property shows the monotonicity of the functional

At) == / w (t,2)2up(t, )2 do = / u(t, x) da
]Rn n

in the sense that

d ~ ~

—A(t) = ouu(t,z) dz > Au(t,z)dx =0

dt ]Rn Rﬂ.
thanks to the integration by parts. Once this monotonicity is ensured, one can
easily prove the Cauchy—Schwarz inequality as follows. In fact, the monotonicity

shows that
A(0) < lim A(2).

t—o0
On the one hand, we know that

A(0) = s f1(2)? fo(z)? da.

On the other hand, if we do the rescaling z = v/ty for each ¢t > 0, then we obtain
that

50 = [ (Vi) (Ve Vi)

It is straightforward to see that lim; o v/t (t, V/ty) = (f fj)yl(y), where v1(y) :=
(QW)%e_%‘y‘z, from the explicit form of the heat-solution and hence we obtain that

hmA(t /f1 /f2 / Y 719) dy = /fl /f2

Putting altogether, we conclude (1.1).

It is worth to remark that this idea is robust enough to generate the monotonicity of
functionals which relate to the Brascamp-Lieb inequalities, see [4] and functionals
which relate to the sharp Young’s convolution inequalities, see [3]. More recently
in [1], authors observed the closure property of the Gaussian heat equation or
backward Kolmogorov equation. In order to state their result, let us introduce
notations. For a diffusion parameter 3 > 0, let L be a generator of the Ornstein—
Uhlenbeck semigroup with a diffusion parameter 8 given by Lgo(z) := SA¢(z) —

1Indeed, one can show slightly stronger statement
atu]- > AUg = O > Au.

This statement is more appropriate for the name of closure property.
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7 - V¢(r) and Py = e**t be the Ornstein-Uhlenbeck semigroup according to £;.
Explicitly, Ps is an integral operator defined by

P.p(x) := ole Pz +vV1—e2%y)dy(y), x=e€R",
]R‘VL
for a test function ¢. For a fixed time parameter s > 0, let 1 < p < g < oo satisfy
-1
(1.2) 1= 2,
p—1

Then it is observed in [1] that if u = w;(x) is a positive and sufficiently regular
supersolution on R"™:

Owu > Lyu, (t,z) € (0,00) x R",
then
(1.3) Ot > L1, (t,x) € (0,00) x R", w(t, )7 := Py[u?](x).

Again this closure property ensures %A(t) > 0, where the functional is given by

1
A(t) == / P, [ut”] ()7 dyi (),
Rﬂ.
. 2
and dv,(z) :== (27Ta)_%e_% is a normalised Gaussian with variance a > 0. From
the Ergodicity limg_oo 4y = f ug dyy, one can in particular derives Nelson’s cele-
brated hypercontractivity inequality

(14 P2y < ([ wodn)

for all sufficiently regular initial data uy : R™ — (0,00). Note that authors in [1]
worked on the framework of the Markov semigoup which is more general setting
than the Ornstein—Uhlenbeck semigroup.

S =

Our first aim is to obtain new closure property of the Fokker—Planck equation with
a diffusion parameter g > 1:

(1.5) Ow=Lzv=PBAv+x-Vv+uv, (tx)e(0,00)xR",

where £% is a dual of £z with respect to L*(dx). Tt is worth to mention that the
Fokker—Planck equation (1.5) with 8 = 1 is closely related to the Gaussian heat
equation

Oiu = Lqiu
via a transformation u = % Moreover, from this relation, the closure property
of the Gaussian heat equation (1.3) yields that if v = v is sufficiently regular and
positive supersolution of the Fokker—Planck equation:

Ov > Liv,
then it holds that

~ ~ v(t, 1 1
0w > L7, (t,z) € (0,00) x R", (M) 1= PS[(E)”](QJ)7
m gi!

regardless of the initial condition on v;. Hence the closure property of the Fokker—
Planck equation is a direct consequence from the one of the Gaussian heat equation
due to [1] when 8 = 1. The first result in this report is about the validity of this
closure property when 5 > 1. Usually modifying the diffusion parameter may be
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regarded as a minor modification. However, regarding the closure property, this is
not the case. For example, it is clear that the above argument reducing the matters
to the closure property of the Gaussian heat equation does not work well when

8 > 1. This is because u := % is not always the solution to the Guassian heat

equation even if v is a solution to the Fokker-Planck equation (1.5)? unless 8 = 1.
More importantly, we find that the closure property of the Fokker—Planck equation
does not always hold when 5 > 1 and an appropriate initial condition should be
involved. The condition we introduce is related to the semi-log-convexity, namely

(1.6) V2 log vy > —%.

Typical examples satisfying (1.6) are centered gaussians whose variance is greater
than 3, namely v, with a > 3. More generally, if vy is give by

(1.7) vo(z) = ;z/ e du(y), (t,a) € (0,00) x R”

27B)2 Jrn
for some positive finite measure dy, then the assumption (1.6) can be ensured as
the log-convexity is preserved under the superposition. We first exhibit the closure
property of the Fokker—Planck equation for 8 > 1 under the semi-log-convexity
assumption (1.6).

Theorem 1.1 (Theorem 3.5 in [7]). Let s >0, 8> 1, and 1 < p < g < oo satisfy
g% = e%%. Suppose that the twice differentiable v : (0,00) x R® — (0,00) is in

L2('y§1) and satisfies (1.6). Then

(18) 6151)15 > L;ﬂ)t = 3,55 > L;}SJ’:IZ (t71') S (07 OO) X Rn,
where vy is defined by

o(t, )| L ITNE

—=) = Ps|(—)?|(x),

ety () w)
and Bs, > 1 is given by

4 —2s

(1.9) Bspi=1+ (B~ 1)56 25,

We give few remarks.

(1) The Bs,p introduced here is natural. In fact, when vy = 73 which is the
stationary solution to (1.5), one can see that

~ V8% T
w@) = n@P[(2)7]@)" = 85 857 35, (2).
Hence, we see that
=7 = 0= Lfawat,

which strongly suggests the validity of (1.8) with 3, ,. Hence the moral of
Theorem 1.1 is that if one has some property which can be established for
gaussian, then it should hold true on more general setting. Such idea can

20One may wonder another option to transform by u = e However, this does not suit for our

later purpose and moreover one needs to modify the semigroup Ps by e®45.
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be found in several places over sciences. We here simply mention the work
of Lieb [15].

(2) If one considers the shrunk gaussian v, for a < 3, then the assumption (1.6)
fails true. For such example, one can also see that the closure property (1.8)
cannot be true if g > 1.

(3) It is remarkable that even if one combines Theorem 1.1 and the transforma-
tion u = 2+, one cannot expect any closure property of Ornsten—Uhlenbeck
semigroup unless § = 1. This distinguishes the situation of the Ornsten—
Uhlenbeck flow and the Fokker—Planck flow and this is one of the reason of
the preference of the Fokker—Planck equation.

As a consequence of Theorem 1.1, we next show that Nelson’s hypercontractivity
(1.4) can be improved in terms of the Fokker—Planck equation.

1.2. Reguralised hypercontractivity and logarithmic Sobolev inequality.
Nelson’s hypercontractivity inequality, which manifests the smoothing property of
the Ornstein—Uhlenbeck semigroup Ps, states that the inequality (1.4) holds for all
positive ug € L*(dvy1). It is worth to note that the equality in (1.4) is established for
ug(x) = ¥ a € R™, b € R, and these are the only case (among smooth initial
data), see Ledoux’s work [13]. Therefore, uy = jr_? does not attain the equality in

(1.4) unless a = 1. In fact, one can see from the direct calculations that
Y8\ S T
(110) HPS[(I)ZD]HLQ(’H) :5211 Bs,pml < 17

where S5, > 1 is given by (1.9). Our next result on the hypercontractivity claims
that this simple observation works for more general initial data described by Fokker—
Planck equation, or the assumption (1.6).

Theorem 1.2 (Theorem 1.4 in [7]). Let 8> 1, s> 0, and 1 < p < ¢ < oo satisfy
% = e2%. Then for any twice differentiable vy € LQ(*y/}l) satisfying (1.6), we have
that

1 n_ —;LT
(1.11) P12 gy < 8576557 ([

R

U_O d"yl)%7
1

where Bsp s given in (1.9). Moreover the equality is established for vo = 3.

In fact, Theorem 1.2 is an immediate consequence from our closure property Theo-
rem 1.1 as follows. Let vy be an L!(dx)-normalized function satisfying assumptions
in Theorem 1.2 and v; be a 8-Fokker—Planck solution to (1.5) with initial data vg.
Then we see that v; satisfies

vy > L vy

from Theorem 1.1. If we introduce the quantity Q(t) by

Q= [ w

then the closure property ensures the monotonicity of Q(t):

d ~ -
EQ(t) = atl)t dx Z / ngvt dx =0
R» n
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thanks to the integration by parts. Note that the definition of v; reveals that

Q)= [ PIEYH an =PI e,

which is the left-hand side of (1.11). On the other hand, B-Fokker—Plank solution
converges to its stationary solution g as ¢ — oo: limy_,o, v; = g and hence we
obtain that

Jm Q) = 1P L)y,

Putting altogether, as well as (1.10), we conclude

qn

1 [( o )74, = QM) < lim Q(t) = 55 5,2
Since we assumed f dy1 =1, (1.11) follows.

As a special case of Theorem 1.2, we may observe the phenomena that we mentioned
in the abstract, namely the Fokker—Planck equation improves the hypercontractiv-
ity. In order to provide a precise statement, we introduce further notations. First
we introduce a class of initial data reguralised by the Fokker—Planck equation. Con-
sidering general setting, for § > 0 and initial data any non-negative finite measure
dy, let v, be the corresponding 23-Fokker—Planck solution:

(1.12) O = L3gv.,  (t, ) € (0,00) x R, 0,(0,7) = du(x).
Then for fixed time t, = % log 2 > 0, we introduce our class
FP(8) := {v =v.(ts,") : v. isnon — negativesolution to (1.12) }

Here we chose somewhat artificial parameters 25 and t, = %log 2 but this should
not be worried. These choice are taken in order to ensure the fact that g, which
is our base of investigation, is in FP(8). The moral is that FP(3) is a class of
functions regularized for certain time by the Fokker—Planck equation. Let us pro-
vide basic facts about the class FP(3). First, it is easy to check the monotonicity
FP(51) C FP(B,) for 81 < B2. Secondly, that ?ﬁ is in FP(p) is equivalent to a > §.
In particular, if 8 > 1, then 77, which is the extremiser of the hypercontractivity
inequality (1.4), is not in the class FP(f) and in some sense the difference between
~1 and FP(8) are measured by 8 — 1. Based on this observation, together with the
reguralising property of the Fokker—Planck equation, one might expect an improve-
ment of the hypercontractivity inequality by restricting input functions to the class
FP(3). This is in fact true and follows from Theorem 1.2.

Theorem 1.3 (Theorem 1.2 in [7]). Let > 1, s >0, and 1 < p < g < oo satisfy

Z%} =¢e25. Then (1.11) holds true for all vo € FP(3).

Remark. Our reguralised class FP(8) is motivated from so-called Type-G func-
tions introduced in the work on the reguralised Brascamp-Lieb inequality due to
Bennett—Carbery—Christ—Tao [5], see also [6].

Among several applications of Nelson’s hypercontractivity, perhapps one of the most
important one is the equivalence to the Gaussian logarithmic Sobolev inequality
(LSI for short) which is found by L. Gross [12]. The LSI states that

(113 Eits, (/) < 51 (1),
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where the entropy Ent., (f) and Fisher information L, (f) are defined by

(1.14) Ent., (f) == /Rn flog fdy — (/]Rn fdyl)log (/Rnfdm),
L= [V og 27 dn

We refer to [10] for the history of the hypercontractivity, how it emerges from a
motivation of the quantum field theory, and how important its link to LSI is. It is
also figured out by Carlen [8] that the equality in (1.13) is attained if and only if
f(z) = e*®*? q € R", b € R. Therefore, one may expect to reguralise or improve
LSI by restricting input functions to FP(8) for # > 1. This is indeed possible
thanks to Theorem 1.3.

Theorem 1.4 (Theorem 1.3, 1.4 in [7]). Let § > 1. Then

v 1 Vo n 1
1.15 Ent,, (—) < =L, (—) = Dn(B), Dn(B) = =(log 8 -1+ —
(1.15) v (’Yl) Tl (,}/1) (B) (B) 2( g f ﬁ)
holds for all vy € LQ(’ygl) satisfying (1.6). In particular, (1.15) holds for all vy €
FP(3). Moreover, the equality is established for vy = z.

Remark. One can rewrite the inequality (1.15) in more symmetric and dimension
free way as follows. Introduce relative entropy and relative Fisher information for
probability distribution p which is absolutely continuous w.r.t. y; by

d d
(1.16) Hipin) = Bnty, (), phn) =1L, (-

&)
Also, one can check that

[ Y
Dn(ﬂ) = 5171 (’7_[13) - Ent% (f) > 0.

With these two in minds, the inequality (1.15) can be stated as
1
(1.17) H(volm) = H(yglmn) < 5 (I(voln) = 1(vs/m))

for any vy satisfying the assumption in Theorem 1.4.

It is interesting to compare Theorem 1.4 to the result on the stability of LSI recently
obtained by Eldan-Lehec—Shenfeld [11]. Let us recall their result (Theorem 3) by
restricting special cases. For a probability measure p, denote its covariance matrix

by
cov (p) = (/Rn ziwj dp — (/n i dﬂ)(/Rn ; dp))lgi,jgn.

Theorem 1.5 (Theorem 3 in [11]). Let 3 < 1. Then for any probability measure
p on R™ such that cov (p) < fid,

(118) Hipbn) ~ Hiysbn) < 5 (Iphn) ~ T(vs).

On the other hand, (1.18) is completely wrong if the condition cov (p) < Bid is
removed.
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It is immediate to find that their inequality (1.18) is same as our (1.17). On the
other hand, the condition of input function is somehow complement. In fact, our
assumption (1.6) or vg € FP(f) is stronger statement than that the covariance of
vg is large:

vo € FP(B) = V?log vy < —% = cov (vg) > pid,

see Lemma 1.5 in [7] for the proof. This means cov (vi) > idgn as we impose
8 > 1, and our improvement (1.15) or (1.17) is under the case where the covariance
is large which is the complement situation of Theorem 1.5. Also Eldan-Lehec—
Shenfeld provide a counterexample pr = (1 — %)71 + %’yl( — k%), k € N, on R,
which satisfies

1
cov (p) = 00, S1(pklm1) — Hprlm) = 0 as k — co.

From this example, one cannot expect any improvement of LSI under the large
covariance assumption in general. However, our result tells us that one can still
improve LSI if one makes covariance large in a nice way according to the Fokker—
Planck flow. In fact, their counterexample py is excluded from the class FP(/3).

2. PROOF OF THEOREM 1.1 FOR GAUSSIAN INPUT

In this section, we provide a proof of Theorem 1.1 for specific input vg = ¥4, a > 0
in order to explains an idea of the proof. For the complete proof for general input,
we refer [7]. Note that for vy = 7,, the assumption (1.6) is equivalent to a > 3.

ors . -1
Proposition 2.1. Let s > 0, 8 > 1, and 1 < p < g < o0 satisfy g_—l =e. If
Vo = Ya, @ > f3, then (1.8) holds true.

2.1. Preliminaries. In order to prove this proposition, we give several formulae
regarding to the Ornstein—Uhlenbeck flow.

Lemma 2.2. Let o € R satisfy

1— —2t
(2.1) atl-c” o
o
Then for
a+1—e2
Q= T eR
we have <t > 0 and
1.2 « 1 Ll 42
Pile=] (@) = (=) e ™"

Remark. Practically speaking, we will always consider the case a € (—o0, —1) U
(0,00). In this case, the assumption (2.1) automatically holds and

at € (0,00), if a€(0,00),
ap € (—oo,—1), if «a€ (—o0,—1).
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Proof. This is a consequence from the definition of P, and gaussian integral. Hence
we omit the details. ([l

Using Lemma 2.2, we may compute P; [xe_Tlﬂxz].

Lemma 2.3. Suppose 8 € R satisfy

—2s
(2.2) “% > 0.

Then for

B4+1—e"28
T e ©

Bs :

we have Bﬁ >0 and

3 1,2
)zxe_ﬁz .

P [ze_%f] () =e%(

ﬁse—Zs

Remark. As before, we will always consider the case § € (—o0,—1) U (0,00). In
this case, the assumption (2.2) automatically holds and we have

Bs € (0,00), if Be(0,00),
Bs € (—o0, —1), if g€ (—o00,—1).

Proof. We first note that, under the assumption (2.2), we know ze W7 € L' (1)

and hence P, [a:e_ﬁﬁ] is well-defined. From the definition of P; and Claim 2.2,
we have that

P, [xe_ﬁxz] (z)

2
:/ (e—S:c+ (1 —6_25)%y)e_%ﬂ|e_sx+(1—e_2s)%y\2 e 21 dy
(2m)z
2
—eT 2P [e7 " ] (2) + (1 - e7)? /ye_71/3|e_sr+(1—e_2s)%y\2 ©
(2m)2

y2

B I5) 1 1 2 9 1/ 1 .-s l_e 2952 €7 2
—e “z(——=-)2e T 4 (1—e 23 [ yemzale Tetl-e T2l —___ gy
(ﬂse—2s) ( ) (2m)%
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Regarding the second term, we do the integration by parts to see that
2

1) —s —2s\% 12 e_yT
I( ;:/ L At S LT I
(z) Y 20} y
= /e—ﬁle’sﬂ(l—e’“)%y\zay(_ e‘Tl)dy
(2m)2

:/ay(e—ﬁ\e‘%ﬂl—e‘“ﬁyf) a dy

(2m)*
1 1 1
= / [— ﬁ(e_sa: +(1—e)2y) x (1 —e )2
NP e LI
(2m)2
1 2
= —5678(1 — e *)2gP, [e_ﬁw | (z)
1—e 2 1),—s —2s\1 12 e_g
—agle o t(l-e?) 2y
- - - e 28 n d
8 /y (2m)2 4
1 5 1— —2s
= e 5(1— e 2%)22P, [e_ﬁx (z) - Tel(x).
From this,
1—e72 1 1 2
(1+ Te)f(a:) = —Ee_s(l — e *)2gP, [6_2%“” |(z)

and then applying Claim 2.2 again, we arrive at

— 1
e‘S(l_e 23)2( ’ )%xe_ﬁxz.

B 536—25

I(x) =—

Hence,

= o™ 1-e7® = b )%aje i
7 B Bee ™
e () He e

2
We then next compute P, [z%‘ﬁw ].

Lemma 2.4. Let 8 € R satisfy (2.2). For

B4+1—e"28
ﬁSZZTER,

we have ﬂﬂ >0 and

P [a%e % | (2) = (ﬁsf_%)%e—%xze—ﬁxz (1= e

B

Bse~2s
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Proof. Note that if 8 satisfies (2.2), then we have that z2e” 2% € L'(v) and hence
Py [:ch_?%"*x?] (x) is well-defined. One may directly compute P [I2€_2%”m2]($) but
here we argue in a different way. First it is reasonable to expect that the form of
P, [z%ﬁﬁﬁ] (x) would be

(2:3) Py[a%e 77| (x) = Ag(s)ae” 7% 4 By(s)e 777 .

Hence we will identify Ag(s), Bs(s) and then check if it satisfies the equation. On
the one hand, we have that

P[x%e37%°](0) = By(s)
while the definition of Py shows that
P, [IQe_ﬁﬁ] (0)

o 12 L2 dye
:/|(1—e 2)zy[Te2s e TR gy (y)

(2m)}
_ vy
=(1 6_28)/y2€ fae 79 (Qﬂ-y)%
=(1 _25)(6;_23)%/92 dy_s_(y)
:(1_ —25)(6Sf_zs)g
Hence we see that
By(s) = (1 ) ()’

So we obtain that

e

Q) P @) = Aglorte T 4 (1 ) () e
N

Next let us identify Ag(s). To this end, we appeal to the fact that P, preserves the
L'(y)-mass, namely

/PS (2%~ | (z) dy(z) = /x%—ﬁx? ().

For the right-hand side,

/:cze_ﬁg”2 dvy(z) = (%)% /x2 dy s (z) = (L)%

Combining this with (2.4), we have that

AB(S)/IQe_iﬁ dy(z) + (1 —e)( p )%/e—ﬁxz dr(z) = (_)g

Bse~2s
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For the left-hand side, we argue in a similar way as before to see that

Ap(s) /51326771*53”2 dy(z) + (1 —e ) b )% /67ﬁ12 dry(z)

556_23
_A/B( )(5 +1)% +(1 _6_28)(385_23)%(68ﬂi1)é

Therefore, we conclude

Ags(s) ::{(Zgiz‘I)

__—2s ﬁ g
= (ge=)

3
2

[N

—osvy B \B Bs il Bs \-
-a- e ) )

What we did in the above argument is that we identify the necessary condition on
2

Ap(s), Bg(s) by assuming Ps [xQefﬁx |(z) has a form of (2.3). However, we may

directly check that it is indeed the solution of the equation. g

2.2. Proof of Proposition 2.1. We recall that the formula

L L
- 1-z N

q T
(25)  =p(Bp = AP[()PIR[(CF)? Alog 1]
g (PRI Tiog 22 P) = P22 wiog 21]).

holds true as long as g:—i = 2%, see Lemma 3.2 in [7]. In general, the S-Fokker—
Planck solution v, is explicitly given by

lz—e"ty|?

1 T oB(1_e—2t)

and hence in our case vy = 74, we know that
Ut = VBt (a)> 6t(a) = 672160’ + (1 - 672t)ﬁ'
Hence (2.5) implies that

pp/ 8{@ - LZ p’{)/t 2

q

~1-2 1
a 3
_ - 1 Wat(a) :
—p(ﬁs,p /3)(1 ﬂt(a))‘Ps[ 7 ) ”
. RN 2Bt (@) 3 Vgt L 21 Y@\ L )2
+ g1 ) (Pl ()P (20 ) | (212 )

Now we are in the position to apply Lemmas 2.2-2.4 to compute the right-hand
side. After that, it is just a coefficient computation and one can obtain that the
right-hand side is non-negative in the end.
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3. EXAMPLE
In this section, we give an example showing that the closure property (1.8) for
8 > 1 cannot generally hold true with any assumption like (1.6).

Example 3.1. Let s >0, 8> 1, and 1 < p < ¢ < oo satisfy ;% =e2. If vy =6,
then vy = y(1_c—2:) satisfies v = Ljv on (t,z) € (0,00) x R but if one has

00 > nga, reR

for some ¢t > 0 and B3 > 0, then

»‘33 < ﬂs,py t < %IOg ((1 - 5)_1)

Q=
Il
20
—
—
|
SN—

Here as before (%)

In particular, the closure property
(3.1)
O = Ljv, (t,z) € (0,00) x R=383>0: gv > L5 v, (t,2)€ (0,00) xR,

cannot be true unless 5 < 1.

We give a detail of the proof of Example 3.1. To this end, we corrects formulae
that we showed in the above.

(1) Let 8 > 0 in general. If a € [—3,00), then v; := 7g4.—2, is a Fokker-
Planck solution: dyv; = Ljvy on (t,x) € (0,00) x R with the initial data
V0 = Yp+a- In particular, vy := yg(1_.-2¢) is also Fokker-Planck solution
which does not satisfy the log-convexity nor (1.7).

(2) Using Lemma 2.2, one can see that for v := yg(1—c-21,

(3.2)
~ UVt % q
U(@) =n(@)P[(5)"]@)
— L (81— ) F (8, - Lpe ey e T
(2m)= D
207
Proof of Claim 3.1. In view of the formula (3.2), we write v; = é I)); Vi, where
) 2
—d ! —2t)x2

Vi(z) == (1 — e_Qt)a(ﬁS,p — ce_%) e 2(Bs,p—ce

)

and
4 _ 9, -2 . q
a = 2—p,7 c .= Eﬁf S, d—§>0

It suffices to investigate if V; is a supersolution for some 3 > 0 or not.
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From the direct computations, we have that

—2t\a —2¢\—d—1 — _1 —2t z?
O Vi(z) = —z(1 —e™%) (Bs)p —ce ) e 2Bepee 0T
Iz _ _ —d—1 _%_t
Ouw i) = (m 1)1 — e 2)(B,, — ce ) T e 2 e

from which we have that

1.2

ﬁs,p _ Ce—Qt

x (1 _ e—2t)a(ﬂs)p _ Ce—2t)

LZ?W(x) :<53( N 1) —° + /Bs,p - C€_2t>

—d—1

1
R E——
e 2(Bs,p—ce 2t) .

Also,

2 / _ —2t
atvt(g;):( v ggPsp e —2cd)

Bs,p — ce™2t 1—e 2

_ 1 2
_d—le 2(357:[1_“_2”00 6_2t.

% (1 _ 6_2t)a(ﬂs,p _ Ce—2t)

Hence, we obtain that

S W
&gV — LB3V = (Atl?2 + Bt)(l — 6_2t)a(ﬁs7p — C€_2t)_d_1@ 2(L‘s,p*"€72t)x s
where
ce ? — B3
A= ———— 2 +1
t ce 2t — B p +1h

e—2t

Bt = (2&@ — 1)(857;0 — C€_2t) + 53 — 26_2tcd.

The sign of 8;V — L3,V is determined by the one of A;x? 4+ B; since other parts
are all positive.

First, notice that A; > 0 if and only if 83 < B, . So, considering the case x — oo,
we see that 3 < S, is necessary for 0;V — Lg,V > 0. Next, consider B; which
can be further simplified to

e—2t

q _ _

By = W(l —e %)e 2t(m —(6-1)) = Bsp + Bs.

Since —f,, + B3 < 0, the first term need to be nonnegative to ensure By > 0,
namely

e—2t

Toem (F-D=0
is necessary. It is immediate to see that the last expression is equivalent to
1 1
t<=log ((1-=)"1).

By considering x = 0, we know that B; > 0 is necessary to ensure 0,V — Lg, V >
0. O
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