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1 Introduction

Electronic energy levels (eigenvalues of electronic Hamiltonians) govern the
properties of molecules such as stable structures and dynamics and are cen-
tral to quantum chemistry. The electronic Hamiltonian for N electrons acting
on L?(R3N) is written as

1 N N 1
H(Ry,...,Ry) = —§ZAW+ZV(W)+ >
i=1 1=1 S

V(r) = — i _Za
A0t r = Ral

where Ry,...,Ry € R? are positions of M nuclei, Z1,...,Zy € N atomic
numbers of M nuclei, ry,...,rxy € R? positions of N electrons and A,, is the
Laplacian for r;. Let E(Rq,...,Rp) be an eigenvalue of H(Rq,...,Rps). The
equilibrium structures of the molecule are minimum points of the function

ZAZp
F(Rla---aRM) ::E(Rla---aRM)+ Z m . N
\<i<p<m Ba—Rop|
of the nuclear positions Rj,...,Rjys. The rate of chemical reactions are also
determined by the graphs of F(R4,...,Rps) over curves connecting two equi-

librium positions. (The whole system may split into subsystems, in which case
the equilibrium position is at infinity.)

Enormous time and effort are spent on the evaluation of the cigenvalues.
However, most of the results are concerned with upper bounds by the varia-
tional method (Rayleigh-Ritz method based on the min-max principle) or some
perturbation or expansion theory. As for the perturbation or expansion theory,



it would be hopeless to give practical error estimates between the values calcu-
lated by the method and the true eigenvalues. As for the variational method,
only upper bounds are obtained and it is obviously impossible to obtain error
estimates by the variational method only.

A method to obtain error estimates is to obtain both upper and lower
bounds. If we obtain an upper bound E,; and a lower bound Ej;, of an eigen-
value E, we obviously have |E — E|, |E — Ep| < Eup — Epp. Thus Eyp, and Ejp
are approximations to £ with an error estimate E,;, — Ej,. This is the reason
why we seek lower bounds. Despite the obvious motivation there has not been
significant progress for lower bounds. There is no general method for lower
bounds without strong additional restriction or information about the operator,
known methods often do not have enough accuracy, and quantities needed in
the estimates are usually very difficult (impossible at present) to evaluate.

The most successful method for lower bounds would be the method by Tem-
ple’s inequality (cf. [8, 15]). The lower bound by Temple’s inequality is known
to have high accuracy at least for simple systems, but in the inequality we need
a lower bound to the eigenvalue next to the evaluated one. Therefore, it is
impossible to obtain lower bounds by Temple’s inequality only, and we need
to find rough lower bounds by other methods. The most promising method
for that purpose would be the Weinstein-Aronszajn intermediate method (cf.
[17, 2]) or rather methods derived from that method (cf. [16, 4]). However, in
the application of the Weinstein-Aronszajn method, we confront integrals for
which no method of accurate evaluation have been known. The integral has the
form

[V1(ra)v2(rp)[s(re)a(rp)]

= [ [ tars(en) s el v (1)

wherery =r— Ry 6 R3 and v;, i = 1,...,4 are the Slater type orbitals (STO).

If the factor m is replaced by the usual Coulomb potential = r,‘, the
integral is the multi-center integral whose evaluation is the central subject of the
calculation of the variational upper bounds of electronic Hamiltonians. In the
variational method when all STOs are centered at the same point (i.e. Ryq =

Rs = Rc = Rp), we can calculate the integral using the Laplace expansion
(see e.g. [18, 7))

| Z Z 21+1 l+1 l:n(e/v@/)ylm(e,ﬁp),

where (r,6,¢) and (',0',¢") are polar coordinates of r and r’ respectively,
r< =min{r,r’}, r~ = max{r,7’'}, and Yj,, is the spherical harmonics.

The case of R4 = Rp # R¢ = Rp can also be evaluated using the Laplace
expansion. When R4 = R¢ # Rp = Rp, the integral for the usual Coulomb



potential can be calculated using the Neumann expansion (cf. [11, 14])
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where (&,7,¢) and (£',1/, ') are ellipsoidal coordinates of r and r’ respectively
with foci R4 and Rp, £« = min{¢, ¢}, & = max{¢, ¢}, Pl|m‘ and Q}m‘ are the
associated Legeandre functions, and R = |[R4 — Rp|. For the other cases we
use the translation of STO (cf. [13]). We expand ¥ (rg) by STOs ¢; centered

at R4 as
o0
rp) =Y cip;(ra).
j=1

In the case of multi center integrals for lower bounds of the eigenvalues we
need to deal with = r,|2 instead of == r,‘ Therefore, we can not use either the
Laplace and Neumann expansions, and similar expansions are not known for
the squared Coulomb potential. By methods free from such expansions analytic
expressions and expressions by one-dimensional integrals have been derived for
fundamental one-center and two-center integrals by the author (cf. [3]). A re-
duction scheme of three and four-center integrals to the fundamental one and
two-center integrals with error estimates have also been derived. Numerical cal-
culations of the fundamental one and two-center integrals have been performed
by these expressions. Fundamental hybrid two-center integrals were also eval-
uated using the results for the fundamental one and two-center integrals. The
results obtained using the expressions by one-dimensional integrals were found
to have high accuracy and would be reasonable for the calculations of lower
bounds for energy levels of small molecules.

2 Lower bound methods

2.1 Temple’s inequality
Let us denote isolated eigenvalues of a lower semibounded operator H in as-
cending order as

1 < pe < < ooy
where (1o is the infimum of the essential spectrum of H. When p; is the lowest
isolated eigenvalue, we interpret yi; for j > i as p; = fioo. The following Temple’s

inequality gives highly accurate lower bounds at least for simple systems (see
[8, 4]).

Theorem 2.1 (Temple’s inequality). If) € D(H), ||¢|| = 1 and 41y satisfy
(¥, HY) < peg1yn < prr1, we have the following Temple’s inequality:
<¢7 HQU)) — <w7 Hl/}>2

Pty — (0, HY)

Mk 2 (wva> -



Here 141y, must be a lower bound to pix+1. A variational upper bound to
U1 is not allowed. Since (v, H2¢) — (v, HY)? = (¢, (H — (3, H))?y) > 0,
the second term in the right-hand side is negative. Thus it is predicted that for
accurate lower bounds we need (v, H) > ui (This inequality always holds for
k = 1). Therefore, we need p 41y > ik, that is, p(g41) separates px and
pg+1. Moreover, the larger pi(x1 1y is, the larger the right-hand side is. In order
to apply Temple’s inequality we need to obtain lower bounds pi(x41y;, by other
methods.

2.2 Weinstein-Aronszajn intermediate problem method

Actually, we do not have many methods for lower bounds. A method which
seems to have a possibility to give a value fi(x4-1)5 which satisfies p(pi 1y, > pk
is the Weinstein-Aronszajn intermediate problem method and methods derived
from that method (although this speculation is groundless). The idea of these
methods is summarized as follows (see [16, 4]).

e If operators A and B satisfy A < B, then pff < ub.

e If C is a finite-dimensional operator, i is an eigenvalue of A + C' if and
only if p1 is a zero of det W (), where W () is a finite-dimensional matrix
expressed using A, p and a basis of Ran C'.

If A< A+ C < B, we have ,u? < ,u?+c < ,uf. Moreover, in some cases the
calculation of the zeros of det W(u) can be executed. Thus we can calculate
a lower bound M?J“C of ,ug which improves a trivial lower bound u,? in such
a case. In all methods derived from the Weinstein-Aronszajn method, B must
be an operator represented as a sum A + G of A whose eigenvalue problem is
solvable and a positive operator G.

In the case of the electronic Hamiltonian we regard H as a sum A + G of

N N
A== A+ V().
i=1 i=1
and a positive operator

1

1<i<j<N

Although the eigenvalue problem of A is not solvable, it is a sum of one-body
operators, and it would be better to handle such a one-body operators first than
handling the eigenvalue problem of H directly. When we apply the Weinstein-
Aronszajn method in the next step, we need to calculate the integral (¥, G?T)
where ¥ is an approximation of the eigenfunction of H. In fact, the same kind of
integral is needed in all lower bound methods including the method by Temple’s
inequality



3 Structure of the eigenfunction

3.1 Exponential decay

A well-known property of the eigenfunction of the electronic Hamiltonian is the
exponential decay (cf. Agmon [1]). Let us introduce a few notations to express
the decay rate.

For I C {1,---, N} we define a subset X of R* by

X;:={(r1,...,rn) RN :r; =0if 5 ¢ I}.

We also define an operator H; on L*(X;) by

Hi=-Y g+ V) + Y %

; ; -yl
el i€l 1<i<j<N
el
Set A; :=info(Hy) for I # () and A; := 0 for [ = (). For any (ry,...,ry) €
R3N \ {0} denote by I(ry,...,ry) the subset of integers i € {1,---, N} such
that r; = 0. For E < info.ss(H) let us denote by p(ri,...,ry) the geodesic

distance from 0 to (ry,...,ry) with respect to the Riemannian metric
N
d82 = (AI(I‘],...J‘N) - E) Z |dr,-|2.
i=1

Here |dr;|? := (dx;)? + (dy;)* + (dz;)?, where (24,v;,2;) is the Cartesian coor-
dinates of r; € R3. Using the distance the exponential decay is expressed as
follows.

Theorem 3.1 ([1, Theorem 4.12]). Let U be an eigenfunction associated with
an eigenvalue E < infoess(H). Then for any € > 0 there exists a constant
C¢ > 0 such that

[B(r.... ey)| < Cem(mOpteronn)

a.e. on R3N,

3.2 Kato’s cusp condition

Another important property of the eigenfunction is the cusp condition (cf. Kato

[9])-

Theorem 3.2 (Kato’s cusp condition [9]). Let r € R be a position of an
electron and ¥ € R3 V=1 be the position of the other electrons. Then an eigen-

%‘%: ‘T 0= —Z AV (Ra,T) except at some points T of
A=

function U(r,T) satisfies

a set of lower dimension, where 4 = |r — Ry|, and U4 is the average value of
U taken over the sphere r4 = const for a fived value of T.



An approximation to the eigenfunction is constructed as a linear combination
of Slater determinants

\I’(I‘l, ... ,I‘N) = (N!)_1/2 Z (SgnT)wl(rT(l)) o 'wN(rT(N))'

TESN

According to Kato’s cusp condition we can expect that ¢;(r) with a radial factor
e¢", ¢ > 0, r := |r| is suitable for the approximation. Such a function is in
general called a Slater type orbital (STO).

4 Slator type orbital (STO)

Let us denote the Cartesian coordinates and the polar coordinates of r € R3
by z,y,z and r, 6, ¢ respectively. Here we consider the following unnormalized
STO:

X (1,€) := Z[" (x)r"™te T,

where n,l € N, m € Z, =1 <m <1, ( > 0is a parameter, and Z"(r) is the
spherical function defined by

Zlm(r) — imHm‘T‘l]Dl‘ml(COS a)eim@,

that are actually homogeneous polynomials of x,y,z of degree I. Here P™(t)
is the associated Legendre function defined by P/™(t) = (1 — t2)™/24p)(t),
where Pj(t) is the Legendre polynomial. It is well known that Z]™ satisfies the

Laplace equation V2Z™ = 0. We also define Y,,,(6, ) by

Vi (8, ) 1= it (W

(@D m)NYE
- (Urdimn) A,

1/2 '
) Pl‘ml (cos@)e'™?

Then Y}, are spherical harmonics, and they are orthogonal to each other in

L2(S?), ie.
T 2T
/ / Y (0,0)Yirm (0, @) sin 0d0dp = 6117 G- (4.1)
0 0

5 Fundamental one and two-center integrals

5.1 fundamental one-center integral

When all functions in (1.1) are centered at the same point (i.e. Ry = Rp =
Rc = Rp) and each function is STO, the integral (1.1) is reduced to the
following fundamental one-center integral.

’ 1 R ’
[X?mbd}m’] = /]R"s /]R3 mx?m(r7C)X??n’(rl>gl)drdr,'



5.1.1 analytic expression

We can prove that [x7,, [xf,] = 0 unless I = I’ and m = m/ (cf. Subsection
5.2). Moreover, when | = m = 0, we have the following analytic expression for

[XBolXol-

: ON" [ 0 \" log¢ —log(’
[Xiolcin] = 167 (—a—c) (—%) log ¢~ g (5.1)

For the calculation of the derivatives in the right-hand side of (5.1) we need the
formula ([12, (A.3)])

) v v s 19 k
(3_C> Zk%]ﬁ% Br (ZO_§> ; (5.2)

which can be easily confirmed by induction with respect to v, where 37 =

% and [t] is the greatest integer less than or equal to ¢. Using this
equation and for derivatives equation of the form
1 d 1 2k
= — 5.3
rdr (s +r2)F (s 4 r2)kt1’ (5:3)
we obtain
0¥ HU/ 1 - kok ~2k—v Qv a k' A2k =V Qv
aTEE s 2. LR D 2ty
k=[5] k=[5 ]
, 1
x (k+ k")

(CQ _ C/Q)k+k’+1‘
The right-hand side of (5.1) is easily calculated using this formula.

5.1.2 expression by one-dimensional integrals

If we allow one-dimensional integrals to remain in an expression of [}, |x}./],
we have the following expression which is valid even if [ # 0 and m # 0.

n
DXE ] =)™ S Gt > (B

]

x Z ¢~ nﬁq /pq pq’
e

22H3(IN2(1 + |m])!7?
@2+ 1)1 —|m)! 7

(5.4)

where

Ay, - —



l+p+q)!
’Y;f)q = (_2)p+q( I ) )
and l 1 ul+p(1 _ u)l-‘,—q
I, = / T et (5.5)
0

5.2 fundamental two-center integral

When the condition Ry = Rp # Re = Rp is satisfied in (1.1) and each
function is STO, the integral is reduced to the following fundamental two-center
integral.

’ o 1 — /
Xt [ Xlme R == /]R"s /]R3 mx?m(rA)X?,m,(rjg)drdr’

|
= /’]RPs /]R? mx?m(r)xl/m/ (I")dl‘dl‘l,

where R := Rg—R 4. If we choose the direction of R as the direction of the axis
of the polar coordinates of x}%, and xJ},,,,, the integral depends only on R = |R|.

Thus using the parameter R we have denoted the integral by [x7. |2, /]r. For
the two-center integrals we can prove

[Xﬁnbd}m’]R = Oa m 7& m,'
We need the following formula for products of Yj,,:
lmax
Y Yirm: = Z GEMY s (5.6)
I[=lmin
where G%’”l/m/ is called the Gaunt coefficient (cf. [18, Appendix C]). Here the
summation limits in (5.6) are given by

lmax =10+ ll,
_ Hmin lf lmax + Hmin is even,
lmin - . . (57)
Hmin + 17 lf lmax + HMmin 18 Odd,

Hmin = maX{“ - l/lv |m + m/|}

5.2.1 analytic expression

We have the following analytic expression of [x].,| X?;’n] R

Imax
/ any W=m)l'm A (—m)l/
i XEal = (1) g2 37 prmtm g
[=lmin
Al
% ZEIZJAZR2AZ_QPZI"O(R)

p=0

< (UL, (R, 6, ¢) + U™, (R ¢ Q)),



where

it AT@IE D+ pmDE + I~
! S\ @)@+ D)= [mDN = | DY+ |[m 4 m])!

i 2AIT(AL+1+3/2)
P Al —p)T(Al+1—p+3/2)
and .
sy - l
U;’Llnl (R7C7<l) — Z <Z> Z (V> n/l/u - V(C C )wMV(R C)
n=0 =0
with
seo=(7)" (%) (2) () =
Unalsy (C C ) <8< cac ¢! ¢ o¢’ C2 _ 6'27
) o\ [10 9(CR)
wy" (R €)= (3—4) (Za_g) <R 8R) (R~
Here

g(t) == e 'Ei(t) — 'Ei(—t),
where Ei(t) is the exponential integral defined by

Ei(t) := —p.v./ € ds.

—t S

It remains to calculate vZ;f; (¢,¢") and wh¥(R,¢). With the help of (5.2)
and (5.3) we obtain

ni

Z;zl;(f ()= (— ) Z (_1)/\12/\14—115?%2,\1_711

M= ]
n2
Ao+l 2Xa— ALt h+ A2 +1o)!
X Z 272 26;\122C 2 (42 _ CIZ))\1+11+)\2+l2+1 :
Ao=["%]

As for w¥ (R, () using (5.2) one finds

WRO =Y AT (RQ)

o=[*3]

7 (Lo (L0 9CR)
o= (i) (7o) L

where



Since wy(R, () is symmetric with respect to the exchange of the pairs (¢, s) and
(R,q), it remains to derive an expression for w; (R, ¢) with s > ¢. Here we need
the following formulas for operators:

10 10y
(R6R> ZCqR2j 2¢—1 (Eﬁ) , (5.8)
with )
01— 2T (25 — 2+ 1)
ST T G- )@
and
10\ o\"
- 11’ ﬁBTn2T<_> ,
(ca > ;( o
with
BT 21—k —1)!

B2t R(r — gk — 1)1
which can easily be confirmed by induction with respect to ¢ and 7 respectively.
Note that l in (5.8) is a multiplication operator and that the left hand side

does not mean application of ( ok R) to . Combining these equations and

191 9 g™MRr) _ g™ ((R)

COCROR ¢ ¢ ’

one has
@3(R, )
s—j+1
_ Zcq Z 1 s—j+1— nBs ]+1<n 2(s— ]+1)R2j 2q+K— 2g(2]+n 1)(CR)
k=1

(5.9)
The derivatives of g in the last expression is expressed by direct calculations as

M .
g0 =~y 22y g,

i=1

M .
g(2M+1)(t) _ Z M _ etEi(ft) _ e—tEi(t).

t2z
j=1

5.2.2 expression by one-dimensional integrals

Also for two-center integrals if we allow one-dimensional integrals to remain in
an expression, we have the following expression:

lmax
X Xl = AL @+ 1)2GEm M (5.10)

I=lmin

10



where

’ 1/2
AU = (1)l gl 3 m(l+ [m)'{A" + [m])!
@+ 1)U+ 1)1 — |mDI — |m|)!

l
o
y | (5.11)
x Z 5}7;/’ C/2p’—n’( ) (l +p ) l+p 4 +p

- [%} T lAl
and
Jaxi U+p' :(2ﬂ)3/2(_Z-)[Rl+l/+2p+2p/+2

IAl
0 et +1/2J~ (k) (5.12)
/0 ((CR)? + k2)l+p+1((C/R) i k2)l’+p’+1dk'

Here J; 1)2 is the Bessel function.

6 Three and four-center integrals

For three and four-center integrals we expand STO by a complete orthogonal
system of STO. A complete orthogonal system of STO is given by

P/"(cos Q)Bim“’rle_TLf)Hz (2r),

where p,l € N, m € Z, | > |m| and L22(s) is the associated Laguerre poly-
nomial [5]. Using this system we can expand STO centered at Rp by those
centered at 0 as

Péw(cos@ RN-1e— Z P (cos0)( 2,ur)le wr ZC LMLQI+2 (2ur), (6.1)

where R := |r — Rp|, © is the angle between the z axis and r — Rp and p > 0.
Recurrence relations for the calculation of CZJX LM have been obtained by Rico
and Lépez [13],

In the following arguments we consider expansions by a complete orthonor-
mal system ¢; of STO generally. We expand ¢2(rp) and 14 (r';) of [¢1(ra)2(rp)
|3 (re)a(r)] in (1.1) by STOs ¢, centered at R4 and Re respectively:

Yo(rp) = ZCM(PA),

I'D) Z CkPk rc)

11



The equation (6.1) is an example of such an expansion. Let us assume that
; can be written as a linear combination of xj,,. Then with the help of the
Gaunt coefficients each [11(ra)p;(ra)|vs(re)er(ry)] can be written as a finite
sum of fundamental one or two-center integrals. Since in practical calculations
we need to truncate the expansions up to a finite sum @ ;(r4) = Zj 16i5(ra)

and P (rl) = Zk 1 Cror(ry), we have to estimate the error by the truncation
written as follows:

[01(ra) 2 (rp)|¢s(re)a(rn)] — [¢1 (ra) @ (ra)|vs(re) P (r)]
= [1(ra)(¥2(rp) — ©(ra))lts(re)a(rp)]
+ 1 (ra) 2 (ra) s (r0) (Va(rD) — P (x))].

Using the Fourier transform and the Hardy inequality we can obtain the follow-
ing estimate:

11 ()2 (0 8) (e ) ba ()] = 1 (04) @ (1) 03 () B ()|
< 42y | oo [0 (1) | o
% (Is(rs) = @sa)llval + 1@ l¥a(xp) = Sxlr)]) -

where [|-|| is the L?-norm and ||| = is the L>-norm. Note here that since ; is
an orthonormal system, the L?-norms of ®; and 12(rg) — ®(r4) are evaluated
as

J
@502 = le;
j=1
J
[2(rp) = ®s(ra)ll? = l[2]* =Y le;I*.
j=1
The other norms are evaluated from the explicit form of STO.

7 Fundamental hybrid two-center integral

Fundamental hybrid two-center integrals are defined by

[Xllm1 lzmlegm@]

/ / Xllm1 A7<1)| r/|2Xlzm2( A7c2)Xl3mg(rlB7C3)drdr,
/]R3 /]R3 Xllml Cl I'/|2Xl2m2( /742)X;?m3(ri43743)drdr/7

where R4 # Rp and 7y =r'—Rp+R4. The integral (1.1) withRy = Rp =
R¢ # Rp is reduced to integrals of this form using the Gaunt coefficient. We

12



apply the method in Section 6. For the expansion of Xl3 s (Tap, C3) we use the
following formula [13] which is identical to (6.1):

PM(cos@)rigle mae = Z ZCNLkaM(r,u), (7.1)
k=M p=0

for NL,M € N, L > M, 11> 0, where rap = |rap| and
g (1) = P (cos ) (2pm) e L2+ (2pm),

The coefficients C’N LM can be calculated by recurrence relations depending on
pwand R=|Rp — RA| Since the functions w}, (r,p), k=M, M +1,..., p=
0,1,... form a complete orthogonal system, we can apply the arguments in
Section 6.

The formula (7.1) and the expression of the Laguerre polynomial yield the
expansion

co oo p

X (TaB, G3) = g7 BHE N © N "N “apslamay dtl (v, Gy), (7.2)

k=M p=0q=0

where T}l = C(""‘“?)lﬂm?l( 1)q(2k+p+2> L1(2¢;)¥+, and C(n"s+lz)lz\m3\ de.

pends on (3R. Usmg this expansion we obtaln

ny —nz—Il3+1 E E E nalams ny q+1
[Xllml IXlngXlgmg]R - C Tkpq Xl1m1 |Xl2m2ka3]
k=|ms| p=0¢=0

where
— 1
+l +1
O, P EE) = [ X (0 0) i, (0 N G

Using (5.6) we can see that

+1
X X s X

l k l k lo+k—1
lemz m‘"‘Glfmz ms [Xllm] |Xl12+q+ 2+ 1(< + C3)]

mi

(7.3)

= 5m1(m2+m3)

for ly+l3 > I3 > lyin and it vanishes in the other cases. Here [\, |X712:L1q+l2+k_l]

(&2 + ¢3)] is the fundamental one-center integral with the index (2 + (3 of the
second STO, and [y, is the natural number defined by (5.7) with 1,1',m,m’
replaced by lo, k,ma, ms. From (7.3) we can see that [XZImI|X12m2X13m3]R =0
unless mq = mo + mg. In practical calculations we truncate the expansion of
Xiom, (Tap) in (7.2) up to finite terms. We denote the finite sum by @ (r) as in
Section 6, that is, if we use the terms up to k = knax and p = pmax,

kmax Pmax

(I‘) 7Zm3+|mz|elm<p<—n3 I3+1 Z ch3+ls)13\m3\wz|m3|( 7(3)’
k=|mg| p=0

13



Following the arguments in Section 6 we have the error bound of the truncation
DX X Xy )R = DX, X, @]
AT, O NN, 2 X, (aB) — @5 (x))

< g2, | T@n1+ 20+ Ul + ) <n2 +lp— 1)”2“2—1 (I + |ma))!
- (2G)7m 208320 4+ 1) (L — [ma ) G 2!

x e e (rap) — @4 (x)ll,

(7.4)

where

[Xllm1|Xl2m2 / / Xl1m1( Cl) | r/|2 Xl2m2 (I‘MCQ)(DJ(I‘/)drdr/.

8 Numerical results

8.1 fundamental one and two-center integrals

The accurate significant figures of the one-center integral [x}},,| X{;/n] for ¢ =1,
¢’ = 0.5 were determined by the expression (5.4) and numerical one-dimensional
integration. Examples are given in Table 1. The one-dimensional integral I]qu in

Table 1: The accurate significant figures of [x7,,| Xﬁ/n]

non L om X X0m]  Nac
2 3 0 0 1.56039270526650(4) 14
2 3 5 4  3.425716931848(16)
2 3 10 9 1.0469905487775(39)
4 4 0 0  1.953591848090(6) 13
4 4 5 4 58161756391883(19)
4 4 10 9 6.7706640231478(42)
6 5 0 0 6.77033700568(8) 11
6 5 5 4 1.5712472039294(23)
6 5 10 9 5.9442801255419(46)
8§ 8 0 0 8.8795833287(13) 9
8§ 8 5 4 2.22546915631(29)
8§ 8 10 9  4.332795650516(53)
1110 0 0 5.5789551(19) 7
1110 5 4 7.1529791758(35)
1110 10 9 5.881306549(60)
4 14 0 0 2.5509(28) 4
4 14 5 4 3.91588207(45)
14 14 10 9 1.642355950(71)

The notation (v) signifies x10".

(5.5) was evaluated approximating the integrand by the Chebyshev interpolation
with typical order 1000 and integrating the polynomial. The accurate significant
figures were obtained by determining invariant figures by varying the order of
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the Chebyshev interpolation. For [ = m = 0 the evaluation by the analytic
expression was also executed. The number of the accurate figures N,. of the
value by the analytic expression are also shown in Table 1. The number N,. was
determined comparing the value obtained by using the expression (5.1) and the
value by the one-dimensional integrals obtained above as a reliable reference.

The accurate significant figures of the two-center integral [Xﬁn|xﬁ/m] g for
R =4,¢=1, { = 0.5 were determined by the expression (5.10) and numer-
ical one-dimensional integration. Examples are given in Table 2. The integral
L U gy (5.12) was evaluated using the Chebyshev interpolation with typ-
ical order 1000 as in the case of one-center integral. Typically integration on
the interval [0, 100] is enough, because that on [100, o) is relatively very small
and negligible owing to the decay of the integrands. The accurate significant
figures of [X7m|xﬁ/m] r were obtained by determining invariant figures varying
the order of the Chebyshev interpolation and the interval of the integration of
L;ZI; "+ The evaluation by analytic expression was also executed as in the
case of one-center integrals and the number of the accurate figures N, of the
value by the analytic expression are given.

Table 2: The accurate significant figures of [x2, [x} 1r
! v XX m] R Nae

=
S
=
=
=
=
=

3 02 3 2 1 2.2243751772625(7) 10
3 2 3 3 1 —2.7566722179287(8) 10
2 4 4 5 4 -1.3610327905104(16) 6
2 4 4 6 4 2.0420467016732(17) 4
2 5 2 6 4 -—54090782928132(16) 3
2 6 2 6 4 4.986742283667(17) 1
2 7 2 6 5 273141199999476(20) 1
2 7 2 7 5 8.0955544928731(21) 0
5 9 5 10 3 —1.0629407232265(33) 0O
5 10 5 10 3 9.83626880416(33) 0
10 5 10 4 2 3.8326037195(29) 0
10 5 10 5 2 6.9193761122(31) 0

The notation (v) signifies x10".

In contrast to the high accuracy of the method by one-dimensional integrals,
the accuracy of the analytic expression deteriorates rapidly as [, I, n and n’
increase, and the results are completely meaningless for the parameters greater
than moderate values. It was observed that in the calculation of w; in (5.9)
enormous cancellations of significant digits happened.

8.2 fundamental hybrid two-center integral

The fundamental hybrid two-center integrals were evaluated by the method in
Section 7. For the evaluation of the one-center integrals in the right-hand side
of (7.3) the expression by one-dimensional integrals was used. Here recall that

X XD Xiom, )R = 0 unless my = mg + m3. Examples for ¢; = 1.0,(2 =
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0.5,{3 = 1.0, R = 0.5 are presented in Table 3. Terms in (7.1) corresponding
to k < 15 and p < 15 were used for the calculation. The error bounds of the
errors by this truncation given after £ in Table 3 were calculated from (7.4).

Table 3: The accurate significant figures of [)(711(m2 +ms) Xy Xl | R

1 n2 n3
ni i no lo mo n3 l3 ms [Xl](m2+m3)lxlzmlegms]R

1 1 1 1 0 3 2 1 2.00918 £ 0.00042(3)
1 1 1 1 0 4 2 1 8.49388 + 0.00039(3)
1 2 1 1 1 3 2 1 —5.6044 == 0.0084(3)
1 2 1 2 1 4 2 1 5.77148 + 0.00035(5)
3 2 1 1 0 4 2 1 —1.8072 £ 0.0054(4)
3 2 1 2 1 4 2 1 1.573420 + 0.000095(7)

The notation (v) signifies x10”.

9 Multiple precision calculation

In order to evaluate three and four-center integrals by the method in Section 6
we need more accuracy for one and two-center integrals. The main reason of
the loss of accuracy in the evaluation of the fundamental one and two-center
integrals is the cancellation of significant digits in the summations in expressions
(5.4), (5.10) and (5.11). Since a double precision number has only 53 bits
in its significand, it can keep at most only 15 digits as a decimal number.
Therefore, even if we calculate the one-dimensional integrals numerically with
the best accuracy in double precision, the cancellation of significant digits in
the summations causes low accuracy. The only solution of this problem would
be the calculation by higher precision.

Because currently no commercial CPU supports arbitrary precision calcu-
lations at the level of computer architecture, we need to use a module of pro-
grams which supports arbitrary precision calculations at the level of software.
A famous module (library) of C programming language for arbitrary precision
calculations is GNU MP (GMP) (see e.g. [10]). For floating point numbers a
library called MPFR which is based on GMP is available. In order to use C++
libraries and write readable codes using the four basic arithmetic operations
we also use the MPFR C++ wrapper by Holoborodko (cf. [6]). Using these li-
braries we can easily evaluate the integrals numerically with very high accuracy.
Even several hundreds of accurate significant digits can be obtained easily. For
example the first 200 accurate significant figures of the integral IZ, in (5.5) is
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given as follows.

I3, =0.07664094942893281828397749119614244898576630389125840252214941
5914026951207585817558339758721247143374374291248115193609879247
6474965688533369608952446389071642438871068908406568618914484331
69594302624

For the evaluation we used the Chebychev interpolation with typical order 1000
and integration of the polynomial as in Section 8. The accurate significant
figures were obtained by determining invariant figures by varying the order of
the Chebyshev interpolation.

When we evaluate each integrals with such high accuracy and subsequent
summations in (5.4), (5.10) and (5.11) by multiple precision calculation, even
if cancellation of dozens of significant figures happens, we will have more than
a hundred of accurate significant digits for the fundamental one and two-center
integrals. Thus we can also evaluate three and four-center integrals with very
high accuracy.
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