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1 Introduction

A set-valued map is a map that associates with a set depending on each element.
Considering a singleton set, a set-valued mapping can be launched as a single-
valued mapping. Because the concept of set-valued mappings includes single-
valued maps, set-valued optimization presents a significant generalization along
with unification of scalar and vector optimization problems.

On the other hand, transforming vectors or sets into real number, in other
words scalarization, processes a quintessential methodology solving optimization
problems with vector-valued or set-valued maps. One of challenging scalarizing
functions ensues sublinear scalarization introduced by Tammer (see [2], [3], [4]
and [5])

ho(v;d) :=inf{t e R|v € td— C}

where C' is a convex cone in a real topological vector space and d € C.

In general, composition is an operator analyzed a function from the results
of another function. Several mathematical properties of each nested function are
usually preserved by a composite operation. A continuous map composition, for
example, is continuous on topological spaces. Under certain assumptions, we
may characterize solutions for multicriteria questions using scalarization based
on this attribute. This prompts us to explore how composite functions involving
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a set-valued map and a scalarization function convey continuity of primary set-
valued mappings via various scalarization for sets.

Continuity notions of set-valued maps are significant in many branches of
mathematics, including nonlinear functional analysis, optimization theory, and
convex analysis. Cone-continuity is studied in several direction (see [16] and [9]).

Recently, Ike, Liu, Ogata and Tanaka [6] show certain results on the inheri-
tance property of some kinds of continuity of set-valued maps via scalarization
functions for sets: if a set-valued map has a kind of continuity (lower continu-
ity or upper continuity; see [4]) then the composition of its set-valued map and
a certain scalarization function assures a similar semicontinuity to that of its
scalarization function defined on the family of nonempty subsets of a real topo-
logical vector space. Their results are generalizations of results in earlier study
by Kuwano, Tanaka and Yamada [15].

The aim of this paper is to propose some idea how to obtain and apply the
generalization in [1] by Dechboon and Tanaka of the inheritance property which
is introduced by [6].

2 Basic Notations

Throughout the paper, let X be a topological space and Y a real topological
vector space. Let #y be the zero vector in Y and P(Y) denote the set of all
nonempty subsets of Y. The topological interior, topological closure, convex
hull, and complement of a set A € P(Y) are denoted by int A, cl A, co A, and
A€ respectively. Furthermore, we assume that C' is a convex cone in Y with
intC' # () and 6y € C. Then, C + C = C holds, and int C' and clC' are also
convex cones. Accordingly, we can define a preoder <5 on Y induced by C' as
follows:

def
for yi,yo €Y, 91 <cyp <= 12—y €C.
This preorder is compatible with the linear structure of Y:

for all y1, 0,3 €Y, w1 <cyp = y1 +y3 <cy2 +ys; (1)

for all y1, 0 € Yand t >0, 1y <cys = ty; <ctys. (2)

When C'is pointed (i.e., C N (=C) = {by}), <¢ is antisymmetric and then a
partial order.

Proposition 1. Let C', C'" be convex cones in' Y and d € Y. Assume that
C + (0,400)d C C'. Then, for any vi,vy €Y and t,t’ € R witht > ¢,

v +td <cvy = v + t'd <gr Us.



As generalizations of partial orderings for vectors, we give a definition of
certain binary relations between sets in Y, called set relations. This is a modified
version of the original one proposed in [12].

Definition 2 (set relations, [12]). For A, B € P(Y), we define the following
eight types of binary relations on P(Y).

() A< B &% Vaec A, VheB, a<cb «= AC(\epzlb—0)

— B C(eala+0);
(i) A<GY B &5 Jae Ast.Wbe B, a<cb <= AN(Nepb—C)) # 0;
(i) A<C B &5 FBeBst.Vac A a<cb < (N,eqla+C))NB #0;

(iv) A< B & A<8 Band A<V B «—= AN (N,p(b—C)) #0
and (N,eala+C)) N B #0;

(v) A<BP B &L whe B JaecAst.a<cb < BC A+C;
(vi)Ag<3UB<d:ef>vaeA BeBst.a<chb « ACB-C;

(vii) A<P'B & A<BY Band A <P B «= B c A+Cand A Cc B—C;
(viii) A<W B &L Juc A, FBeBst.a<ch — AN(B-C)#0
— (A+C)NB#0D.

In the above definition, the letters L and U stand for “lower” and “upper,”
respectively. Each relation S(c]) is transitive for j = 1,2L,2U,3L,3U and not
transitive for j = 4. Since 0y € C, S(Cj) is reflexive for j = 3L,3U,4 and
hence a preorder for j = 3L,3U. Besides, for each j = 1,2L,2U,3L,3U, 4, the

relation S(CJ) satisfies certain similar properties to conditions (1) and (2) for all
A, BeP(Y),

(i) A<YB = A+y<¥B+y for yev:
()A< 'B :>tA< )tB for t> 0.

Also, we easily obtain the following implications:

A<IB — A4<PB — A<BB — A<YB;
A<<”B:>A<(2UB:>A§(§UB:>AgC B; (3)
A<YB — A<YB — A4<¥B — A<WB

for A,B e P(Y).



Proposition 3 ([6]). Let C" and C' be two nonempty conver cones in'Y and
deY. Assume that C'+ (0,400)d C C. Then, for each j =1,2L,3L,2U,3U, 4,
any A,B € P(Y), s,s € R with s’ < s and t,t' € R witht <t/,
A< B+sd — A<Y B+sd,
and A+td<¥)B — A+td<Y B

3 Unification of Scalarizing Functions

Now, we recall the scalarization scheme [13] for sets in a real vector space related
to the set relations, which are certain generalizations as unification of several
nonlinear scalarizations proposed in [5].

Definition 4 ([7, 13]). For each j =1,2L,3L,2U, 3U, 4, we define

19(A;V,d) == inf{t GR‘A <) (V+td)}, (4)
) 4. . ()
S/ (A;V,d) :=supqt e R|(V +td) <A ¢, (5)

for any A,V e P(Y)anddeY.

The idea of these scalarization functions is introduced in [13], which originates
from the idea of Gerstewitz’s (Tammer’s) sublinear scalarizing functional in [2];
see [4, 7]. This type of scalarization measures how far a given reference set needs
to be moved toward a specific direction to fulfill each set relation between a
target set and its moved reference set. Note that V' and d in (4) and (5) are
index parameters for scalarization which play key roles as a reference set and a
reference direction, respectively.

Proposition 5 ([7]). Let C' be a convex cone in V. The following inequalities
hold between each scalarizing function for sets:

167 (AW d) < 1§ (A Wd) < 167 (AW, d) < Ig) (AW, d);
I8 (A W) < 1687 (AW d) < I8 (AW, d) < I (AW, d)
10 (AW, d) < I8 (A W.d) < IE (AW, d) < 16 <A'Wvd>;
S (AW, d) < SV (A W,d) < S5 (AW, d) < 58 (AW, d)
S (AW, d) < SE (AW, d) < S8V (AW, d) < S (A W.d);
Se) (AW, d) < S& (AW, d) < S5 (AW, d) < SE (AW, d)

for AW € P(V)\ {0} and d € C.

Proposition 6 ([7]). Let C be a convex cone in V. There are certain relations
among the scalarizations of types (2L), (2U), (2) as well as (3L), (3U), (3):
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(i) 1S (A; W, d) = max { ICY (A, W, d) , 15V (A: W, d)

{1 )}
(i) I (A; W, d) = maX{J3L (A: W, d) I(3U)AWd}
(iii) S( )(A W,d) = mln{S(2L) (A; W, d) S(2U) (A; Wd}

)}

(iv) & (A; W, d) zmin{SgL) (A; W, d), SE (A, W, d
for AW e P(V)\{0} and d € C.

Proposition 7 ([6]). Let A,V € P(Y) andd € Y. Then the following statements
hold

I (-4 -V,d) = SG(A;V,d),
—IE(—A;-vid) = SEV(A V),
—IEP(-A;-v,d) = SEV(A;V,d),
I8V (—A; =V, d) SEP AV, d),

I§(=A;-vid) = SEP(A;V,d),

IP(=4;-V,d) = S9(4;v,d).

For each j without j = 4, scalarizing functions I ) (-;W,d) and Sg ) (-; W, d)
with a nonempty reference set W and a direction d have the followmg mono-

tonicity with respect to <( , which is referred to as “j-monotonicity” in [10]:
A<UB = 19 (A4 W,d) < 1Y (B; W, d); )
A<9B — 9 (AW, d) < SY (B;W,d).

4 Generalized cone-continuity

Let N'(z) and < be a neighborhood system of a point 2z € X and a binary relation
on P(Y), respectively.
Definition 8 (Definition 12 in [1]). Let F' : X — P(Y), 29 € X, < a binary
relation on P(Y) and C' C Y a convex cone. We say that F'is (<, C')-continuous
at xg if

VIV CY,W open ,W < F(x¢),3V € Nx(xg) s.t. W+ C g F(zx),Vax € V.

As special cases, for A, B € P(Y'), we consider binary relations int AN B # ()
and B C intA by A <7 B and A <, B, respectively. Accordingly, (x1,C)-
continuity and (<, C')-continuity coincide with “C-lower continuity” and “C-
upper continuity” for set-valued maps, respectively. Indeed, F' : X — P(Y) is
(<1, C)-continuous at x, if and only if

VIV . C Y, W open , WNF(xo) # 0,3V € Nx(xo) s.t. (W + C)NF(z) # 0,V €V,

bt



that is, F' is C-lower continuous at xy. Similarly, F'is (2, C)-continuous at xg
if and only if

VW CY,W open , F(xy) C W,3V € Nx(xo) s.t. F(z) CW +C,Vx €V,
that is, F' is C-upper continuous at xg; see Definition 2.5.16 of [4].

Remark 9. If C' = {0} then (%, C)-continuity for set-valued maps becomes <-
continuity in Definition 3.2 in [6]. Moreover, <;-continuity and =<»-continuity
coincide with the classical notions of lower continuity and upper continuity for
set-valued maps, respectively.

Definition 10 (Definition 14 in [1]). Let ¢ : P(Y) = RU {00}, Ay € P(Y),
< a binary relation on P(Y'), and C' a convex cone in Y with C' # Y. Then, we
say that ¢ is

(i) (=, C)-lower semicontinuous at Ay if Vrr < ¢ (Ag),IW € P(Y), W open,
st. WxAgand r < ¢ (A),VAc UW + C,X);

(i) (%, C)-upper semicontinuous at Ay if Vrr > ¢ (Ay),3IW € P(Y), W open,
st. WxAgand r > ¢ (A),VAc UW +C,=x),

where U(V, %) ={AePY)|V g A}

Remark 11. When C' = {0}, (x,C)-lower and (x,C)-upper semicontinuities
are coincident with <-lower and <-upper semicontinuities, respectively, which are
introduced in Definition 3.3 of [6]. In Definition 10, we adopt that if ¢ (A4y) = —o0
(resp. +00) then ¢ is (5, C)-lower (resp. upper) semicontinuous at Ay.

Therefore, we can easily show the following results as generalizations of The-
orems 3.1 and 3.2 in [6].

Theorem 12 (Theorem 16 in [1]). Let F': X — P(Y), ¢ : P(Y) —» RU{£o0},
zo € X, % a binary relation on P(Y'), and C CY a convex cone. If F is (X,C)-
continuous at xoy and ¢ is (X, C)-lower semicontinuous at F(xy), then p o F is
lower semicontinuous at xg.

Theorem 13 (Theorem 17 in [1]). Let F: X — P(Y), ¢ : P(Y) - RU{£o0},
zo € X, < a binary relation on P(Y), and C C Y a convex cone. If F is (%,C)-
continuous at xy and ¢ is (X, C)-upper semicontinuous at F(zy), then p o F is
upper semicontinuous at xg.

5 Continuity of Scalarization and Consequences

Proposition 14. Let Ay, V € P(Y), C'" and C two nonempty convexr cones in
Y such that C" C C #Y, d € intC. Then, the following statements hold:
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(i) Ig)(-; V.d) is (1, C")-lower semicontinuous at Ay for j =1,3U.
(ii) Sg)(-; V,d) is (=1, C")-upper semicontinuous at Ay for j =1,3L.
(iii) Ig)(-; V.d) is (51, —C")-upper semicontinuous at Ay for j = 2L, 4.
(iv) Sg)(-; V,d) is (=1, —C")-lower semicontinuous at Ay for j = 2U, 4.
(v) Ig)(-; V,d) is (X2, —C")-upper semicontinuous at Ay for j =1,3U.
(vi) Sg)(-; V,d) is (%2, —C")-lower semicontinuous at Ay for j =1,3L.

(vii) Ig)(-; V,d) is (X2, C")-lower semicontinuous at Ay for j = 2L, 4.
(viii) Sg)(-; V,d) is (%2, C")-upper semicontinuous at Agy for j = 2U, 4.

The following examples determine that I(Cj )(-;V,d) and S(Cj)(-;V,d) do not
satisfy continuity for some j.

Example 15. Let Y =R? C =R%, 4y = {(z,y) : 2 +y =12 and 2 < z < 10},
V={(z,y) :z4+y=6and 1 <z <5}and d=(1,1).

Then Ié? L)(-; V.,d) is not (%1, C")-lower semicontinuous at Ay. Additionally,
this example can illustrate that I é:‘ L)(-; V., d) is not (51, —C")-lower semicontinu-
ous at Ay. Besides, Sg U)(-; —V,d) is neither (=1, C’)-upper semicontinuous nor
(%1, —C")-upper semicontinuous at — A,.

Moreover, we have Ig’ L)(-; V,d) is not (1, C’)-upper semicontinuous at Ay.
Additionally, this example can illustrate that I (03 L)(-; V,d) is not (<1, —C")-upper
semicontinuous at Ay. Besides, Sg’ U)(-; —V,d) is neither (=, C")-lower semicon-
tinuous nor (<1, —C")-lower semicontinuous at —A,.

Example 16. Let Y =R?, C =R3, 4g = {(z,y) :x +y =12 and 4 < z < 8},
V={(z,y):o+y=6and 1 <z <5}and d=(1,1).
Therefore I, (02 U)(-; V,d) is not (<1, C’)-lower semicontinuous at Ay. Addition-

ally, this example can illustrate that Iéz v

(+;V,d) is not (=1, —C")-lower semicon-
tinuous at Ay. Besides, Sg L)(-; —V,d) is neither (<1, C’)-upper semicontinuous

nor (1, —C’)-upper semicontinuous at — Ay.

Example 17. Let Y =R? C =R?, Ay = {(z,y) : 2+ y =12 and 2 < z < 5},
V={(z,y):x+y=6and 1 <z <5} and d = (1,1). Therefore IgU)(-; V,d)
is not (<1, C")-upper semicontinuous at A,. Additionally, this example can il-
lustrate that 1(02 U)(-; V., d) is not (1, —C")-upper semicontinuous at Ay. Besides,
S(CM)(-; —V, d) is neither (1, C")-lower semicontinuous nor (51, —C")-lower semi-
continuous at — Aj.



For 12U (V. d), S (-;V,d),I(CBL)(-;V,d) and SgU)(-;V,d), the continuity
properties are shown using the compactness assumptions.

Proposition 18. Let Ay, V € P(Y), C' and C' two nonempty convex cones such
that C' C C' #£Y and d € int C. Assume that Ay and V' are compact. Then, the
following statements hold:

IgU)(-; V,d) is (X2, —C")-upper semicontinuous at Ap.
S(C2L)(-; V,d) is (K2, —C")-lower semicontinuous at Ay.
IgL)(-; V.d) is (X2, C")-lower semicontinuous at Ay.
Sg’U)(-; V,d) is (K2, C")-upper semicontinuous at Ay.

By Theorems 12 and 13, the following results are obtained.

Theorem 19. Let F: X - P(Y), 20 € X,V € P(Y), C" and C two nonempty
convex cones in'Y such that C" C C #Y andd € int C. The following statements

hold:
(a) If F is (%1, C")-continuous at xq, then
(i) I(] (F(-);V,d) is lower semicontinuous at xq, for all j =1,3U,
(i) ST (F();
(b) If F is (=1, —C")-continuous at xg, then
(i) ](] (F(-); V,d) is upper semicontinuous at o, for all j = 2L, 4,
);

V., d) is upper semicontinuous at xq, for all j =1,3L.

(ii) S )(F( : V., d) is lower semicontinuous at xg, for all j = 2U, 4.

(c) If Fis (X2
(i) I(F

, —C")-continuous at o, then
(+); V,d) is upper semicontinuous at xo, for all j =1,3U,
(ii) S )(F( ); V. d) is lower semicontinuous at xq, for all j =1,3L.
(d) If F is (%2, C")-continuous at xg, then
(i) ](J (F(-); V,d) is lower semicontinuous at xq, for all j = 2L, 4,
);

(if) SE(F(-

Moreover, by Proposition 18, the consequent result can be implied by assum-
ing compactness.

V., d) is upper semicontinuous at o, for all j = 2U, 4.

Theorem 20. Let F: X - P(Y), z0€ X,V € P(Y), C" and C two nonempty
convex cones such that C' C C #Y and d € intC. Assume that F(xo) and V
are compact.

(a) If F is (K2, —C")-continuous at o, then
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(i) ](2U (F(-);V,d) is upper semicontinuous at ),

(i) S,

( (+1); V. d) is lower semicontinuous at xy,

(b) If F is (42, C")-continuous at xg, then

(i) I(C?’L)(F(-); V,d) is lower semicontinuous at x,

(i) S

(8U)
c

(F(-); V,d) is upper semicontinuous at .

Finally, from the Theorems 19 and 20 together with Remark 11, we can
summarize the previous results as follows.

Table 1: Continuity properties of the composite functions.

2 (<1, ) | (52, C) | (51, —C) | (X2, =€) Le. u.c.
-conti. -conti. -conti. -conti. | (C"={0}) | (C"={0})
Ig) oF lLs.c. - - u.s.c. ls.c. u.s.c.
IgL) oF - ls.c. u.s.c. - .8.C. ls.c.
Ig’L) oF - lLs.c. (%) - - - Ls.c. (%)
I((JQU) ol - - - w.s.c. () - u.s.c. (x)
Ig)U) oF lL.s.c. - - u.s.c. l.s.c. u.s.C.
Igl) oF - l.s.c u.s.c - u.s.C. l.s.c.
Sg) oF u.s.c. - - Ls.c. u.S.C. lLs.c.
S(CQL) oF - - - Ls.c. (*) - Ls.c. (*)
S(C?’L) F u.s.c. - - ls.c. u.s.c. ls.c.
S(CQU) oF - 1.8.C. l.s.c - ls.c. u.s.c.
S(C?’U) oF - u.s.c. (%) - - - u.s.c. (x)
Sg‘) oF - u.8.C. ls.c. - ls.c. u.s.c.

where () means the compactness assumptions are required and “l.c.” and “u.c
denote lower continuity and upper continuity of I, respectively.
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