Convex combinations associated with the curvature

of the space and their natures
HER 20 U CTRER S 15 ks & O 2B

BFRKRAE - B RN R4
Yasunori Kimura
Department of Information Science
Toho University
RFRRET: - BHEEMSERE {52 KRR
Kazuya Sasaki
Department of Information Science
Toho University

A/

Abstract

In this paper, we consider another type of convex combinations associated
with the curvature, and investigate their natures.

1 Introduction

A convex combination is one of the basic notion for the convex analysis, and its
definition is very simple. In a real vector space V', a convex combination of two points
x and y with a ratio a € [0, 1], which is usually denoted by ax+ (1—a)y, is a weighted
average of x and y for weights a« and 1 — «. The concept of convex combination is
defined not only for real vector spaces but also for geodesic spaces. A geodesic space
X is a metric space that any two points on X have the shortest path joining these
points. In a geodesic space X, a convex combination of two points x and y with a
ratio a € [0, 1] is generally defined as a point z satisfying d(z, z) = (1 — a)d(z,y) and
d(y,z) = ad(x,y). We usually write that point z as ax & (1 — a)y.
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In 2020, we defined a new breed of convex combination & and showed the following
theorem in the context of fixed point approximation on a complete CAT(1) space:

Theorem 1.1 ([3]). Let X be an admissible complete CAT(1) space such that
sup, wex d(s,s’) < w/2. Let S,T: X — X be strongly quasinonezpansive and
A-demiclosed mappings such that S and T have a common fixed point. Let
{an}, {7} C10,1] and suppose a,, = 0, > °° a2 = oo, and v, — v € ]0,1[. Take

1
v,w,x1 € X and generate a iterative sequence {x,} C X by s, = a,v® (1 —ay,)Sz,,



t, = apw 619 (1 — an)Txn, and Tpi1 = YnSn é (1 — yp)ty for n € N. Then {x,}
converges to a common fized point of S and T. Moreover, its limit is a mazximizer
of the function g: F' — ]0,1] defined by g(x) = vycosd(v,z) + (1 — 7) cosd(w, x) for
x € F, where F' is the set of all common fized points of S and T.
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In Theorem 1.1, we need to use a new convex combination & instead of the tradi-
tional convex combination @ for the limit of the sequence {z,} to be the maximizer

1
of the function g. Indeed, if we only use & instead of @, then we can verify that the
limit of {x, } may differ from the maximizer of g. This result suggests that the tradi-

1
tional convex combination is somewhat incompatible with CAT(1) spaces, and that ©
may be better adapted to CAT(1) spaces; note that the function g is well compatible
with CAT(1) spaces. Particularly, since the model space of CAT(1) spaces is the unit

1
sphere S?, it is expected that the new convex combination @ is adapted to a geodesic
space with the constant curvature 1. In this paper, we consider the natures of the

1
new convex combination & and investigate its behavior on the unit sphere on Hilbert

K
spaces, and its generalization &.

2 Preliminaries

Let A be a set and f: A — R. If f has the unique minimizer tgy, then we write to by
argmin, 4 f(t). Similarly, argmax,c 4 f(¢) denotes the unique maximizer of f.

Let X be a metric space. For z,y € X, a mapping : [0,1] — X is called a geodesic
joining z and y if v(0) = y, v(1) = x, and d(v(s),7(t)) = |s — t|d(x,y) hold for any
s,t € [0,1]. For D € ]0,00], X is called a uniquely D-geodesic space if a geodesic
joining = and y exists uniquely for any two points x,y € X with d(z,y) < D. In
particular, a uniquely oo-geodesic space is simply called a uniquely geodesic space.

Let X be a uniquely D-geodesic space and let z,y € X such that d(z,y) < D.
Then a point tz © (1 —t)y := y(¢) is called a conver combination of x and y, where
is the unique geodesic joining x and y. The set of all convex combinations of x and
y is denoted by [x,y], that is, [z,y] = {tz ® (1 —t)y | x,y € X, t € [0,1]}. Then we
get [z,y] = [y, x] obviously. We call [z,y] a geodesic segment (on X) joining x and y.
Furthermore, a subset C' C X is said to be convez if [z,y] C C for any z,y € C.

Let M, be the complete simply connected 2-dimensional Riemannian manifold with

constant sectional curvature x € R and a metric p. It is equal to % S?, R?, A_H2if

J—r
k>0, k=0, k <0, respectively, where S? is the 2-dimensional unit sphere, and H? is
the 2-dimensional hyperbolic space. We define D, € |0, 0] by D, = 0o if K < 0, and
D, = w/y/k if k > 0, which means a diameter of M,,. M, is a uniquely D,-geodesic
space. In what follows, [u,v]ps, denotes a geodesic segment joining u,v € M.

For k € R, let X be a uniquely D,-geodesic space. For each x,y,z € X with
d(z,y) + d(y,z) + d(z,z) < 2D,, we define a geodesic triangle with vertices z,y, 2
by [z,y] U [y, 2] U [z, z], and write it by A(x,y,z). For each A(z,y, z), there exists
three points 7,7,z € M, such that d(z,y) = p(Z,7), d(y,2) = p(y,Zz), and d(z,x) =



p(Z, ). For these points T, ¥, Z, we define a comparison triangle (%, 7, Z) by [T, ] U
[U,Z)m,, U [Z,%)m,. For any A(z,y,2) and a point p € A(zx,y, z), there exists a point
p € A(Z,7,%) such that the distances from two adjacent vertices are identical. That
point p is called a comparison point of p.

Let k € R. A uniquely D,-geodesic space X is called a CAT (k) space if for any
A = A(z,y,2) and its comparison triangle A := A(Z,¥,%), and for any two points
p,q € A and these comparison points p,q € A, the inequality d(p,q) < p(p,q) holds.
A CAT (k) space X is said to be admissible if d(z,y) < D, /2 for every z,y € X. If
k < 0, then every CAT(k) space is admissible.

By the definition of CAT (k) spaces, the unit sphere S embedded in a Euclidean
space R?, a Hilbert space H, the hyperbolic space H? are a CAT(1) space, a CAT(0)
space, a CAT(—1) space, respectively. For more details, see [1].

3 Kk-convex combination

In this section, we introduce the definition of new convex combination which is called
the k-convex combination, and we investigate its nature.
For each k € R, define ¢,;: R — R by

(%(COSh (vV—rd)—1) (if K <0),

ck(d) = d? (if kK =0),

1
2
1

\ K(l—cos(\/zd)) (if K > 0)

for d € R. In particular, ¢_1(d) = coshd — 1 and ¢1(d) = 1 — cosd. Note that ¢, is
strictly convex and increasing on [0, D] for any x € R.

The first definition of k-convex combinations e’; for k = —1 and kK = 1 were given
by [2] and [3], respectively. Later, properties of the x-convex combination for general
k € R was shown in [4].

Let X be a uniquely D,-geodesic space. In [2], [3] and [4], the k-convex combination
of x and y is defined under the condition d(x,y) < D,;/2. Actually, we can weaken
the assumption to d(x,y) < D, when define the k-convex combination. In this paper,
we use the condition d(x,y) < D, to define the k-convex combination.

Theorem 3.1. Let kK € R and X a uniquely D,-geodesic space. Take x,y € X with
d(z,y) < Dy and « € [0,1]. Define g,,: X — R by

9r(2) = acx(d(z,2)) + (1 — a)exs(d(y, 2))

for z € X. Then the restriction g5, has the unique minimizer, where [x,y] is the
geodesic segment joining x and y.

Proof. 1f d(z,y) < D,/2, then we obtain the conclusion, see [2], [3] and [4]. Fur-
thermore, if k < 0, then we also have the conclusion, since D,, = oo = D, /2. Thus
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we only show the case where x > 0. It is sufficient to prove the case where k = 1,
henceforth we will assume x = 1.

Let z,y € X, a € [0,1] and put D = d(z,y). If D = 0, then we obtain the desired
result obviously. Suppose that 0 < D < w. Then we have

gtred(1—t)y) =1—(acos((1 —t)D)+ (1 —a)costD)

for any t € [0, 1]. Define f: [0,1] = R by f(t) = acos ((1 —t)D) + (1 — «) costD for
t € [0,1]. Then f'(t)/D = asin((1 —t)D) — (1 — a)sintD holds for each ¢ € [0, 1].
Let tan=': R — [0,7[\ {7/2} be the inverse of the trigonometric tangent function.
Then putting

P Ltan_l asin D
°—D 1—a+acosD’

we get to € [0,1] and f/(t9) = 0. Take ¢ € [0, 1] arbitrarily. If ¢ < ¢y, then we obtain
f'(t)/D = asin((1 —t)D) — (1 — a)sintD > asin ((1 — t9)D) — (1 — a)sintyD = 0.

Similarly, if ¢ > to, then f'(t)/D < 0. It concludes t( is the unique maximizer of f,
and hence toz & (1 — to)y = argmin,c, 1 91(2). O

Let k € R and X a uniquely D,-geodesic space. Let o € [0,1] and z,y € X
such that d(z,y) < D,. Suppose that d(x,y) < D.. Then the unique minimizer of
9x|[z,y) in Theorem 3.1 is called a x-convex combination of x and y, and we write it by
az @ (1 —a)y. That is, ax & (1 — @)y = argmin, ¢, ,; 9x(2). Note that ax & (1—-a)y
can be expressed by using a traditional convex combination ¢tz @ (1 — t)y. In fact,
define t € [0, 1] by

s s
V—rd(z,y) 1 —a+acosh (v=rd(z,y))

(if Kk < 0 and z = y);

=9 (if k =0o0r z=y);
! o osin(VRd(z,y)) |
L . |
| VEd(z,y) tan 1 —a+acos(yrd(r,y)) (if £ > 0 and z = y)
Then we get
¢ 1 1 (1 —a)sinh (\/—fi d(z, y)) .
Vordy) " £ 5 < 0 and ;
—rd(z,y)  a+ (1 a)eosh (V=rd(z,y)) (if £ <0 and z % y)
1—t=<1—-q (if k=0orz=y);
__t tan~! (1 — a)sin (Ve d(z,y)) (if Kk > 0 and z = y)

| Vedr.y) M e (1 a)cos(Vrd(r,y))

and az © (1 —a)y =tz ® (1 — t)y, where tanh™': [0,1] — [0, 00[ is the inverse of
the hyperbolic tangent function, and tan=': R — [0, 7|\ {7/2} is the inverse of the
trigonometric tangent function.



For k € R, let X be a uniquely D,-geodesic space. Then, the following properties
hold for any k € R, a € [0,1], and =,y € X with d(z,y) < D,.

(a) 1xéOy:x and Oxély:y.
(b) az® (1 - a)z = 1.
(c) 328 3y =32 ® 3.
These properties (a), (b) and (c¢) are obtained directly from the definition of k-convex

combination.

0
Theorem 3.2. The 0-convex combination @© is identical with the traditional convex
combination P.

Proof. For D € ]0,0¢0], let X be a uniquely D-geodesic space and take z,y € X with
0
d(z,y) < D. Then we show ax ® (1 — a)y = ax ® (1 — «)y for any « € [0,1]. Since
0
ar @ (1 —a)y € [z,y], we get

0
ar @ (1 — a)y = argmin (ad(z,2)* + (1 — a)d(y, 2)?) =z ® (1 — ')y,

z€[z,y]
where
o = argmin (a((1 — t)d(z,y))* + (1 — @) (td(z,y))?) = a.
te0,1]
Thus we get the conclusion. U

Lemma 3.3. Let k € R and X a uniquely D, -geodesic space. Take x,y € X with
d(xz,y) < Dy and « € [0,1]. Define g.: X — R by gx(2) = ace(d(z,2)) + (1 —
a)ex(d(y, 2)) for z € X. Let C be a subset of X such that d(u,v) < D, for any

u,v € C and ax & (1—a)yeC. Then ax & (1 - o)y = argmin, o gx(2).

Proof. Put v = ax & (1 —a)y = argmin,c|, , 9x(2) € C. If z = y, then we obtain
v = = argmin, - ¢, (d(z, 2)) = argmin, - g (%), which is the conclusion. Suppose
that x 3 y and take w € C'\ {v} arbitrarily. Put ¢t = d(y,w)/(d(z,w) + d(y,w)) and
v =tx® (1 —1t)y. Then d(z,v") : d(y,v") = d(z,w) : d(y,w). Moreover, we obtain
9r(v) < gk (v'), notably we get g, (v) < g (V') if v % V'.

Suppose that v = v’. Then we get w % v’ and hence w & [z,y]. Thus we have
d(z,v") +d(y,v") = d(z,y) < d(z,w) + d(y,w). It implies that d(x,v") < d(x,w) and
d(y,v") < d(y,w). Therefore we get g, (v") < g, (w) and it follows that g, (v) < g.(w).

Next we assume v = v'. Then we have d(z,v") < d(z,w) and d(y,v") < d(y,w), and
hence g, (v') < gx(w). It implies g, (v) < gx(w) and thus we get the conclusion. [

Corollary 3.4. Let k € R and X a uniquely geodesic space such that d(u,v) < D,
for any u,v € X. Take x,y € X, o € [0,1] and define g.: X — R by gu(z) =

ack(d(z,2)) + (1 — a)eu(d(y, 2)) for z € X. Then ax EHB (1 —a)y = argmin, . x g,(2).



4 1-convex combination

The k-convex combination is not defined only in geodesic manifolds with a curvature
k. For instance, we can define x-convex combinations on an Euclidean space R"
for any k € R. However, not all of k-convex combinations have good properties
on R™. In fact, it is obvious that the most useful k-convex combination on R" is
the 0-convex combination. We consider that the k-convex combination defined on
a geodesic manifold with a curvature exactly x should play a beneficial role, that is
implied by previous studies [2, 3, 4].

In this section, we investigate properties of the 1-convex combination on geodesic
spaces. Additionally, we confirm that the 1-convex combination has good behavior
on the unit sphere in an Hilbert space, especially the 2-dimensional unit sphere S2.

4.1 1-convex combination on geodesic spaces

For D €]0,7], let X be a uniquely D-geodesic space. Then the 1-convex combination
of z,y € X is defined by
1
az @ (1 — a)y = argmin (acy (d(z, 2)) + (1 — a)er (d(y, 2)))
zeX
= argmax (acosd(x, z) + (1 — o) cos d(y, 2))
z€[z,y]
for each v € [0, 1], where d(x,y) < D.

Lemma 4.1. For D € |0,7|, let X be a uniquely D-geodesic space. Let x,y € X
such that 0 < d(x,y) < D, and put dy = d(z,y). Then for any « € [0, 1],

1
ar® (1 —a)y
A asin dg 1. 4 (I1-a)sindg
- <d0 tan l—c)z—l-ozcosdo>ggEE (do tan a+ (1 —«a)cosdy Y.
Proof. The proof of Theorem 3.1 exactly implies the conclusion. O

Let X be a CAT(1) space, and take A(z,y,2) C X and « € [0, 1] arbitrarily. Then
cosd(axr @ (1 — a)y, z)sin D > sin(aD) cos d(x, z) + sin((1 — a) D) cosd(y, z) (i)

holds, where D = d(x,y). This inequality is often called the parallelogram law on
CAT(1) spaces. In an admissible subspace S of the unit sphere S?, the inequality (i)
holds as the equation. On the other hand, for any A(x,y,z) C X and « € [0, 1],

1 ycosd 1—« d
cosd(az d (1—a)y,2) > acosd(x,z) 4+ (1 — ) cosd(y, 2)
Va?+2a(l —a)cos D+ (1 —a)?
holds. Incidentally, we know that two inequalities are equivalent, which can be proved
from Lemma 4.1, see [3]. Therefore, in S, the inequality (ii) also holds as the equation.

(i)

6



Lemma 4.2. Let d € |0,7/2] and define f:]0,1] — R by f(t) = (sintd)/t for
t €10,1[. Then f is strictly decreasing.

Lemma 4.3. Let d € ]0,7/2[, a €]0,1[ and put

1 1 asind
7= dtan 1—a+ acosd €10,1

Then the following hold:

o If < 1/2, then a> o;
o if a=1/2, then a =o0;
o if a>1/2, then a < o.

Proof. The case where o = 1/2 is obviously true. It is enough to prove only the case
where a < 1/2 by the symmetric property.

Suppose that a < 1/2, and define a strictly concave function g: [0,1] — R by
g(t) = acos((1 —t)d) + (1 — ) costd for t € [0,1]. Then o is a unique maximizer of
g. In addition, we obtain

g (a) = adsin ((1 — a)d) — (1 — a)dsinad

(1 — ). (sin((l—a)d) B sinad) <0

11—« I

from Lemma 4.2. It implies o > ¢ and thus we get the conclusion. U
Corollary 4.4. For D € ]0,7], let X be a uniquely D-geodesic space, and take

1
z,y € X such that 0 < d(z,y) < R. Let o € ]0,1[. Then az®(l—a)y = ax®(l—a)y
holds if and only if o =1/2.

Proof. Lemma 4.3 implies the conclusion. U

Corollary 4.5. For D €0, 7], let X be a uniquely D-geodesic space, and take x,y €

1
X such that 0 < d(z,y) < R. Let a €]0,1[\ {1/2}. Then a point u; = ax @ (1 —a)y
is farther from the midpoint %x @ %y than up = az O (1 — a)y.

Proof. Put cx® (1—0)y == uy. If @ < 1/2, then we have 1/2 > o > o by Lemma 4.3.
Otherwise, we get 1/2 < o < 0. Therefore u; is farther from the midpoint %x D %y
than ug in both cases. O

Lemma 4.6. Let d € |0,7/2], and define a function f:[0,1] — [0,1] by

1 asind
flo) = d tan 1—a+ acosd

for a €[0,1]. Then f is continuous, strictly increasing, and bijective.

Proof. By basic calculations, we get f’(«) > 0 for any a € [0, 1]. Since f(0) = 0 and
f(1) =1, we get the conclusion. O



Corollary 4.7. For D € |0,7], let X be a uniquely D-geodesic space, and take
1

x,y € X such that 0 < d(x,y) < D. Then [z,y] = {tz® (1 —t)y |t € [0,1]}.

Proof. Define a function f: [0,1] — [0,1] by

1 asinD
1—a+acosD

fla) = % tan

1
for o € [0,1]. Then we have {tz@&(1—t)y |t € [0,1]} = {f(t)z®(1—f(t))y |t € [0, 1]}
by Lemma 4.1, thus we get the conclusion by bijectivity of f. U

Corollary 4.8. For D € |0,7|, let X be a uniquely D-geodesic space, and take
x,y € X such that 0 < d(x,y) < D. Put dy = d(z,y). Then for any o € [0,1],

sin (odp) . é sin ((1 — o)dp) y
sin (ody) + sin ((1 — o)dy) sin (ody) + sin ((1 — o)dy) 7"

ox®(1—o0)y=

1
Proof. Take o € [0,1]. Then there exists a € [0,1] such that az @& (1 — o)y =
ox @ (1 — o)y by Corollary 4.7. Thus, using Lemma 4.1, we obtain

1 1 asin dy
o= — tan ,
do 1—a+ acosdy
which is equivalent to
sin (ody)

~ sin(ody) +sin ((1 — o)dy)
Consequently we obtain the conclusion. O

Lemma 4.9. Fora,b,c,d € R,

sin ((a +b)(c —d))sin((a —b)(c+ d)) —sin ((a + b)(c + d)) sin ((a — b)(c — d))
= — sin 2acsin 2bd + sin 2ad sin 2bc.

Lemma 4.10. Let k € ]0,1[ and define f:]0,7[ — R by f(x) = (sinkx)/sinx for
x €10, w[. Then f is strictly increasing.
Theorem 4.11. Let o € ]0,1], and define a function f:]0,7/2[ —]0,1[ by

1 asind
1—a+acosd

fld) = % tan

for d €0,7/2[. Then the following hold:

e limy o f(d) = «;
o if a <1/2, then f is strictly decreasing;
o if a>1/2, then f is strictly increasing.



Proof. The equation limg_,o f(d) = « can be verified easily, thus we prove the other
properties. It suffices to show the case where @ < 1/2. Let a € ]0,1/2[, dy,dy €
10,7/2[ and suppose dy < dy. Put o0y = f(dy) and o9 = f(d2). Then we obtain
01 < 1/2 and 03 < 1/2 by Lemma 4.3. Moreover, using the equation oo = f(d3), we
get
o= sin (O'ng) (lll)
sin (Ugdg) + sin ((1 — UQ)dQ) ’

Define a strictly concave function g: [0,1] — R by
g(t) = acos ((1 —t)dy) + (1 — «) cos tdy
for ¢t € [0,1]. Then o7 is a unique maximizer of g. By the formula (iii), we obtain

sin (o2dg) cos ((1 — t)dy) + sin ((1 — o2)d2) costd;
sin (O’ng) + sin ((1 — O'Q)dg)

g(t) =
for any t € [0, 1] and hence

dy (sin (o2ds) sin ((1 — t)dy) — sin ((1 — o2)ds) sintdy)
sin (O'ng) + sin ((1 — UQ)dQ)

g'(t) =
for any ¢ € [0, 1]. Put

dq
sin (O'ng) + sin ((1 — Ug)dg) '

Then we get C' > 0 and

1 . . . .
69/(02) = sin (oads) sin ((1 — 02)dy) — sin ((1 — 02)ds) sin (o2dy) .
Put p = (d1 +d2)/2, g = (d2 — d1)/2, and k = 1 — 205. Then using Lemma 4.9, we
have
Lo — s LW an (L L
glon) =sin((0+a) (5 - g+))sin (0 -0 (5 + 3%))
. 1 1 . 1 1
—sin(+ (5 o+ 5k))sin (0 -a(3 - 5+))
= —sin kpsinq + sin kgsinp
sinkg  sin k:p)

sin q sin p

= sinpsing (

Since0 < g <p<7/2and 0 < k < 1, we get ¢’(03) > 0 from Lemma 4.10. Therefore
we obtain o1 > 05 and it implies f(dy) > f(d2). O
Theorem 4.11 implies that the greater the distance between two points x and v,

1
the further the point cr @ (1 — o)y is from the midpoint of x and y as a ratio than
the point ax & (1 — )y.



4.2 1-convex combination on unit spheres

Next, we observe the nature of the 1-convex combination on a unit sphere of a Hilbert

space to know a relation between @& and 6}9 Hereafter, we consider Sy the unit sphere
embedded in a Hilbert space H, that is, Sy = {« € H | ||z|| = 1}. Suppose that a
metric d: Sy — [0, 7] is defined by d(x,y) = cos !(z,y) for each z,y € Sy, where
cos™t: [=1,1] — [0, 7] is the inverse of the trigonometric cosine function. Then Sy is
a complete CAT(1) space. If H = R3, then Sy becomes a model of the unit sphere
S?, which has a constant curvature 1.

In what follows, [x,y] denotes a geodesic segment on Sy joining x,y € Sy, and
[z, y] g denotes a geodesic segment on H joining x,y € H. Furthermore, we write Oy
for the origin of H.

Theorem 4.12. Let x,y € Sy such that 0 < d(x,y) < w. Then a convex combination
tex ® (1 —t)y € Sy is expressed by

sin(td(z,y)) -~ sin((1 — t)d(z,y))
sind(z,y) sind(z,y)

tr®(1—t)y =

for any t € [0,1].

Theorem 4.13. Let z,y € Sy such that d(x,y) < m. Then a 1-convexr combination
1

tr ® (1 —t)y € Sy is expressed by

tr+ (1 —t)y

1
O =0y = T r @yl

for any t € [0,1].
Proof. By the definition of 1-convex combination, we have
1

tr & (1 —t)y = argmax (t cosd(zx, z) + (1 —t) cos d(y, z))
z€ Sy

= argmax (tx + (1 — t)y, 2) .
z€ Sy

Put p =tz + (1 —t)y and w = p/||p||. Then for any z € Sy, we obtain

(tr + (1 —t)y,w) — (tx+ (1 —t)y, 2) = [|p|| — (p, 2) = [Iplllz]] — (p,2) = 0.
1
Thus we get tx @ (1 — t)y = w, which is the desired result. O

Corollary 4.14. Take z,y € Sy with d(z,y) < 7. For « € [0,1], take u = ax +

1
(1—a)y € H and put v=ax© (1 —a)y € [x,y]. Then three points u, v, and Oy are
on a straight line.

10



Proof. Since v = u/||u||, we get the conclusion. O
1
Theorem 4.13 implies that ax @ (1 — )y € Sy is a projection of az + (1 —a)y € H
into the unit sphere Sy.

Lemma 4.15. Take z,y € Sy with d(z,y) < 7. Let k,l € ]0,1] and put z' = kx,
= ly. Then the geodesic segment [x,y] C Sy is expressed by

ol = { e (e | £ 00f = { gy [p e

1
Proof. Take u € [x,y] arbitrarily. Then there exists ¢ € [0, 1] such that u = tz®(1—t)y
by Corollary 4.7. Thus, putting ¢’ = tl/(tl + (1 — t)k), we get

ot + (1 -ty  t+(1-t)yY
A =tyll [+ (=)
On the other hand, take s € [0,1] and put v’ = (sz’ + (1 — s)y')/||sz’ + (1 — s)y’|.
Then putting s’ = sk/(sk + (1 — s)l), we obtain

r_ sx’ + (1 — S)y’ B s’z 4+ (1 B Sl)y o -
L sy e vy Py s e A A R LA S
which implies the conclusion. O

Lemma 4.15 yields the following two corollaries.

Corollary 4.16. Take x,y € Sy arbitrarily. Let k,l € |0,1] and put ' = kz,
y' =ly. Then v/||v| € [x,y] holds for any v € [2',y'] 1.

Corollary 4.17. Take z,y € Sy arbitrarily. Let k,l € ]0,1] and put ' = kz,
=ly. Then for any u € [z,y], there exists v € [x',y'|g such that u = v/|v|.

Fact 4.18 (Ceva’s theorem in plane geometry). Let V be a real vector space and
x,y,z € V. For a,B,7 € |0,1], take p = (1 —a)z + ay, ¢ = (1 = B)y + Bz and

=(1—7v)z+~z. Put [u,v]y = {tu+ (1 —t)v |t € [0,1]} for each u,v € V. Suppose
that [x,ylv Ny, 2]y N[z, 2]y = &. Then [x,qly N[y, r]v N [z,plv = & if and only if

a B v _y
l—a 1-8 1-~

Using the 1-convex combination and the fact above, we get the following theorem
which can be said to be Ceva’s theorem on the unit sphere.

Theorem 4.19. Let S be a nonempty convex subspace of Sy such that d(u,v) < @ for
any u,v € S, and N(x,y, z) a geodesic triangle on S such that [z, y]N[y, z]N[z, x] = &

1 1 1
For a, 8,7 €10,1[, take p=(1—a)zday, = (1—-B)y@ Bz and r = (1 — )z & yz.
Then [z,q] N [y,r] N [z,p] = @ if and only if

a B v _y
l—a 1—-p 1—9v ’
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Proof. Let Ap(x,y,2) = [z,y]lg Uy, z]g U [z, ]z be a geodesic triangle on H. Put
p=0{0-ax+ay, = (1-p)y+ Pz and ¥ = (1 — )z + vyr. Then we have
p= p/||]_)||7 q= a/H(_]Ha r= F/HTHa and p,q,T € AH(J;7y>Z>' By Fact 4.18, we obtain
[, 9]y N [y,7]g N [2,p]g = @ holds if and only if aBv/((1 —a)(1 - B)(1 —~)) = 1.
Furthermore, Corollaries 4.16 and 4.17 imply that [z,q]g N [y,T]g N [2,D]lg = @ if
and only if [z,q]| N [y,r] N[z, p] = &. O

5 Balanced 1-convex combination

In a Hilbert space H, let x1,x9,...,2,; € H and a1, 9,...,a, € [0,1] such that
>, a; =1. Then

m m

Zaixi = a,rgminZaiHa:i — z||?

i=1 Z€H o

holds. Based on this fact, we generalize the 1-convex combination to be defined for
a finite number of points. Let S be a nonempty convex subspace of Sy such that
d(u,v) < 7 for any u,v € S. For x1,2z2,...,2, € S and oy, s, ...,a, € [0,1] with
Yo a; =1, we define B({z1,...,Zm}, {a1,...,an}) €S by

B({z1,...,zm} {a1,...,an}) = argmaxz a;cosd(z;, z).
zeS

We often write this point simply as B({z;},{a;}). We call the point B({z;},{a;}) a
balanced 1-convex combination of x1,x2,...,2,, on S. The 1-convex combination is
the case where m = 2 for the balanced 1-convex combination.

Theorem 5.1. Let S be a nonempty convex subspace of Sy such that d(u,v) < 7
for any u,v € S, and take x1,x2,...,2, € S arbitrarily. Then a balanced 1-convex
combination B({x;},{a;}) € S is well-defined, and it is expressed by

B({z:},{a;}) = Zaﬂ?i/ Zoéifci

for any aq, s, ..., an € [0,1] such that Zzn:l o; = 1.
Proof. By the definition of B({z;},{a;}), we have

B({z;:},{ai}) = argmaxZai cosd(x;, z) = argmax <Z T, z> .

zeS 9 z€S i—1

Put p=>"1", a;x; and w = p/||p|| € S. Then for any z € S\ {p}, we obtain

<Z i, w> - <Z iy, Z> = llpll = {p, 2) = lIpllll2I] = {p,2) > O
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and hence we get the conclusion. U
Theorem 5.1 is a generalization of Theorem 4.13.

Theorem 5.2. Let S be a nonempty convex subspace of Sy such that d(u,v) < 7 for
any u,v € S, and let A(x,y,z) be a geodesic triangle on S. Take oy, a9, a3 €10, 1]
with a1 + ag + a3 =1 and let w= B({z,y,z},{a1,00,a3}). Put 8= as/(as + a3)

1
and let w= Py © (1 — B)z. Then u € [z, w].
Proof. Put p = By + (1 — 8)z and ¢ = aqx + asy + agz. Then, from Theorem 4.13
and Theorem 5.1, we obtain w = p/||p|| and u = ¢/||q||. Since 1 — a1 = as + as, we
also have ¢ = a1z + (1 — aq)p. Thus, putting v = a1 /(a1 + (1 — a1)|p||), we get
qg= (a1 + (1 —oaa)|pl)(vz+ (1 —y)w). It implies

q yr + (1 —vy)w 1
u = = =y (1l —vy)w e |z,w
Tl = The + @ =)w] (1=7we lzul

from Corollary 4.7. O

We consider that Theorem 5.2 is a crucial result that shows the suitability of the
1-convex combination on the unit sphere. Indeed, if we only use the traditional convex
combination ¢ on a unit sphere, then we do not obtain simple results like Theorem
5.2.
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