An approximation theorem to a solution to an equilibrium
problem in complete CAT(1) spaces
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1 Introduction

Let K be a nonempty set and f: K x K — R a function. Equilibrium problems are
defined as follows: Find zy € K such that

f(Z()ay) >0

for all y € K.

In 1994, Blum and Oecttli defined a mapping called resolvent for equilibrium prob-
lems on Banach spaces. In 2005, Combettes and Hirstoaga showed many important
properties about resolvents of equilibrium problems in Hilbert spaces and made con-
tribution to the development of the approximation methods for equilibrium problem.
The following is one of the most important theorems.

Theorem 1 (Combettes—Hirstoaga [?]). Let H be a Hilbert space, and K a nonempty,
closed conver subset of H. Suppose that f: K x K — R satisfies the conditions (E1)-

(E4).

(E1) f(x,z) =0 for allz € K;

(E2) f(z,y)+ f(y,z) <0 for all x,y € K;

(E3) f(x,): K — R is lower semicontinuous and convex for all v € K;
(E4) f(,y): K — R is upper hemicontinuous for all y € K.
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The set of solutions to the equilibrium problem is denoted by Equil f, that is,

Equil f = {xGK

inf f(z,y) 2 o} .

Define the resolvent Jy by

fo:{zeK

inf (f(59)+ (2 =0y —2)) 2 o}

for x € H. Then Js has the following properties:

1. The domain of J; is H;
2. Jy is single-valued and firmly nonexpansive;
3. the set of all fixed points of J; coincides with Equil f and it is closed and convez.

A basic approach to solving fixed point problems in general normed spaces is Mann’s
type iteration.

Further in 2018, Kimura and Kishi proposed the resolvent of CAT(0) space. One
the other hand, in 2012, He, Fang, Lopez and Li showed a convergence theorem to a
fixed point of a nonexpansive mapping in a CAT (k) spaces with Mann’s type iteration.

In this paper, we obtain a convergence theorem of an iterative sequence to a solution
of an equilibrium problem on a CAT(1) space. We use Mann’s type iterative method
to generate the approximate sequence.

2 Preliminaries

Let z,y € X and ~ a mapping of [0,d(z,y)] into X. A mapping ~ is called a geodesic
with endpoints z and y if v(0) = z, v(d(z,y)) = vy, d(v(u),y(v)) = |u — v| for all
u,v € [0,d(z,y)]. X is called a uniquely m-geodesic space if for any =,y € X with
d(z,y) < 7, a geodesic with endpoints = and y exists uniquely. For z,y € X and
t € [0, 1], there exists z € [z,y] such that d(z,z) = (1—t)d(x,y) and d(z,y) = td(z,y)
which is denoted by tx @ (1 — t)y. X is called a CAT(1) space if cosd(tx & (1 —
t)y, z)sind(z,y) > cosd(x, z) sintd(x,y)+cos d(y, z) sin(1—t)d(x,y) forall z,y, z € X
and t € [0,1]. A CAT(1) space X is said to be admissible if d(u,v) < m/2 for any
u,v € X.

Let X be a metric space and T: X — X. We call x € X a fixed point of T if
x = Tz, and denote the set of all fixed points of T" by F(T'). An admissible complete
CAT(1) space X has the convex hull finite property if every continuous selfmapping
on clco E has a fixed point for every finite subset E of X, where clco F is the closure
of the convex hull of X.

Theorem 2.1 (Kimura [?]). Let X be an admissible complete CAT(1) space having
the convex hull finite property and K C X a nonempty closed convex set. Suppose
that f: K x K — R satisfies the conditions (E1)-(E4). Define the resolvent Ry of f



by
Ryx = {ZGK

iglff(f(z,y) —logcosd(z,y) + logcosd(x, z)) > 0}
y

for all x € X. Then the following hold:

1. Ry: X — K is defined as a single-valued mapping;
2. Ry satisfies the following inequality for any x,y € X:

cosd(z, Rsy) , cos d(y, Rsx)

<2 d .
cosd(xz,Ryx)  cosd(y, Rsy) — cosd(Rysz, Rry);

3. F(Ry) = Equil f and it is closed and convex.

Let X be CAT(1) space and {z,} C X a sequence. An asymptotic center AC({x,,})
of {x,} is defined by

inf limsup d(z, x,,) = lim sup d(z,xn)}
z€X nooo n—00

AC({z,}) = {z eX

A sequence {z,} C X is said to be A-convergent to xg € X if AC({z,,}) = {zo} for

all subsequences {x,,} of {z,}. It is denoted by z, A 1.

3 Main result
We begin with the basic result of the resolvent on CAT(1) spaces.

Theorem 3.1 (Kimura [?]). Let X be an admissible complete CAT(1) space having
the convex hull finite property. Let K is nonempty closed convex subset of X, suppose
that f: K x K — R satisfies (E1)-(E4). Let Ry: X — K be the resolvent of f. Then
the following the inequality

cosd(v, Ryru) cosd(u, R, 5v)
cosd(v, R, fv) Heos d(u, Rysu)

< (A + p) cosd(Ragu, Ry yv)

holds for all A, € ]0,00] and u,v € X.

Lemma 3.1. Let X be an admissible complete CAT(1) space having the convex hull
finite property. Let K is nonempty closed convex subset of X, suppose that f: K X
K — R satisfies (E1) (E4). Let {\,} C ]0,00[ and {x,,} C X be sequences satisfying

inf, A\, >0, =, Axo and d(xyn, R, fxn) — 0. Then, x¢ € Equil f.

Proof. Let {n;} C N be an increasing sequence and z € X. Since

d

<
< (Zaxni) + Qd(RAnifxm)a



we get
limsup d(z,z,,) = limsupd(z, Ry, Zn,)
1—>00 1—>00 !
We first suppose that sup, ey An < 0o. There exists {A,;} C {A,} such that \,, —
Ao € [infpen An,sup,en An). Fix j € N. Then,
An; cos d(xo, R)\njfxnj) +cosd(xy,;, Rfro) < (An,; +1)cos d(R,\njfxnj s Ryxo).

Letting 5 — 0o, we have
Ao liminf cos d(zg, R, f2n,) + liminf cos d(z,,, Ryxo)
J—00 J Jj—00
< liminf(A,, + 1) cos d(R,\njfxnj ,Ryxo)

j—o0
and hence
Ag COS hI.ILSUP d(zg, R,\nj fTn,) + cos li;ri)sup d(Zn,, Rywo)
J—r00 J—00

< (Ao + 1) coslimsup d(R,\nj FTn,, Ryro).

j—o0
Thus,
Ao coslimsup d(zg, xp;) + coslimsup d(x,,, Ryxo)
Jj—o0 j—oo
< (Mo + 1) coslimsup d(wzn;, Rfxo).
j—o0

and therefore

cos lim sup d(zo, T,,;) < coslimsup d(zn;, Ryo).
Jj—o0 j—o0

Consequently, we have

lim sup d(x¢, ;) > limsup d(z,,, Ryxo).

j—o0 j—o0

Since {zo} = AC({xn, }), we have 29 = R;xo. It means that z¢ € Equil f.
We next suppose that sup, .y An = 0o. Then, there exists {\,,} C {\,} such that
An; — 00. Fix j € N. Then,

An; cos d(xo, Rxnjf%’nj) +cosd(xy,;, Rfrg) < (An,; +1)cos d(R,\njfxnj s Rrxo).
and thus

cosd(zn,, Ryxg)
A,

1
cos d(zo, R,\njf:cnj) + < (1 + X ) cos d(R,\njf:cnj,Rf:co).



Letting 5 — oo, we get

lim inf d cos d(x, RAnj fZn,) < liminf dcosd(Ryxo, RAnj FTn;)

j—o0 j—o0
and hence

limsup d(xo, Ry, Tn;) > limsupd(Rfzo, Ry, fTn,).
j—oo J j—o0 J
It implies that
limsup d(zo, y,) > limsup d(Ryxo, Tn,).
Jj—»o0 Jj—o0
Since {zo} = AC({Xy, }), we have x¢g = Ryxo. Therefore zy € Equil f. O

Theorem 3.2. Let X be an admissible complete CAT(1) space having the convez hull
finite property and K C X a nonempty closed convex set. Suppose that f: K x K — R
satisfies the conditions (E1)—-(E4), and Equil f # @.

Let {\,} C ]0,00] and {ayn} C [0,1] be sequences satisfying inf, A, > 0 and
sup, an, < 1. Let Ry, ;: X — K be the resolvent of \,f for each n € N. Let
{z,} be a sequence defined by z1 € X, and

Tng1 = Ty D (1 — ap)Ry, fTp

for each n € N.Then, x, Axo € Equil f.
Proof. Since Equil f # @, let u € Equil f. From Theorem 77,

cosd(u, Ry, fxn) = cosd(zy, Ry, fu)
cosd(u, Ry, fu)  cosd(xn, Ry, txn)

<2cosd(Ry, u, R, fTn).

Since u € Equil f, we have d(u, Ry, fu) = 0 and thus

cos d(xy,, u)

cosd(u, Ry, f&n) + < 2cosd(u, Ry, rxy).

cosd(xy, Ry, n)

It implies that cosd(u, Ry, fxy)cosd(x,, Ry, tx,) > cosd(zy,u) and hence
d(u, Ry, fxn) < d(u,zy). From the parallelogram law, we get

cosd(u, Tny1) > o cosd(u, ) + (1 — o) cosd(u, Ry, pxr) > cosd(u, zp)

and hence
d(u, zpi1) < d(u, ) < d(u,z1) < g

Therefore {z,} is spherically bounded and d(u,z,) — ¢ € [0, 5.



Further, we have

cosd(u, Tp41) > a cosd(u, x,) + (1 — o) cosd(u, Ry, f2n)

cos d(u, p,)

> ay cosd(u, vp) + (1 — an)cos d(Rx, fn, Tn)

1
= cosd(u,z,) + (1 — ) cosd(u, x,,) (COSd(R)\ . — 1) )

which implies that

— 1.

1 Cos d(U,.I'n+1)
< 1 - tn — 1 <~ ° 7
05l =en) (COSd(R/\nfﬂUmCCn) ) cos d(u, )

Since d(u,x,) — ¢ € [0, 5[ and sup,cyan < 1, we know d(Rx, s, z,) — 0. Since
{z,} is spherically bounded, any subsequence {z,,} is spherically bounded. Let
{zo} = AC({z,}) and {wo} = AC({zy,}). We can take a subsequence {:z:nij} such

that Tn,, Azo € X. From Lemma ?? and since d(Rj, Fng, > T, ) — 0, we obtain
20 € Equll f. Further, we have

limsup d(z, z9) = limsup d Tn, % 20)
n—00 j—o0

< lim sup d(zn, , W)
j—o0
1—>00

< limsup d(zn,, o)
1 —»00

(
(
< limsup d(zp,, wo)
(
(

< limsup d(z,, xo) < limsup d(z,, 2o).
n—oo n— oo
Therefore xg = wy = zg and thus we get {xg} = AC({z,,}) for all {z,,} C {z,}.
Consequently, ., Axo € Equil f. O
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