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We use an operator called resolvent defined for an equilibrium problem, which is one
of the most common nonlinear problems. The resolvent of an equilibrium problem
is a fundamental concept since the solution to the problem coincides with the set of
fixed points of the resolvent. In this study, we prove an approximation theorem for
the solution to the equilibrium problem in CAT(1) space using the resolvent with the
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Introduction

CQ projection method.

Kimura and Kishi proposed the notion of resolvent for equilibrium problems in

Hadamard spaces as follows:

Theorem 1 (Kimura and Kishi [3]). Let X be a Hadamard space with the convex
hull finite property, and let K be a nonempty closed convex subset of X. Suppose that

f: K x K — R satisfies the following.

(E1) f(x,z) =0 for everyx € K;

(E2) f(z,y)+ f(y,x) <0 for every z,y € K;

(E3) for every x € K, f(x,-): K — R is lower semicontinuous and convez;
(E4) for everyy € K, f(-,y): K — R is upper hemicontinuous.



Define Jy: X — X by

fo:{ZEK

nf (f(z,y> b Ld(y) - %d(w)?) > o}

for x € X. Then,
(1) D(Jy) = X;

(11) Jy is single-valued and firmly nonexpansive;
(iii) F(Jg) = S(f);
(iv) S(f) is closed and convex.

Motivated by this result, the second author introduced a resolvent on CAT(1)
spaces.

Theorem 2 (Kimura [1]). Let X be an admissible complete CAT(1) space with the
convex hull finite property, and let K be a nonempty closed convex subset of X.
Suppose that f: KxK — R satisfies (E1)-(E4) in the theorem above. Define Tz C K
by

Tf.fl) :{ZEK

igﬁ((f(z, y) — logcosd(x,y) + logcosd(x, z)) > ()}
Yy

for x € X. Then,
(1) Ty is single-valued;
(i) Ty: X — K satisfies

cosd(xz,Try)  cosd(y,Tsx)
cosd(z,Tyx)  cosd(y,Try)

<2cosd(Tsx,Try)

forx,y € X;
(iir) F(Ty) = 5(f);
(iv) S(f) is closed and convez.

The CQ projection method for a nonexpansive mapping was firstly proposed by
Nakajo and Takahashi.

Theorem 3 (Nakajo and Takahashi [4]). Let H be a Hilbert space. Let T: H — H
be a nonexpansive mapping with F(T) # 0. For given v = x1 € H, C; = Q1 = H,
define {x,} by

Cnpr ={z€ H [ ||[Tzn — 2| < [lon — 2]},

Qni1={z€ H | (x, — 2z, — x,) > 0},

Tnt+1 = PCn+1ﬁQn+1x'

Then x,, — Pp(ryx, where Px: H — K s the metric projection of H onto a nonempty
closed convex subset K of H.



In this article, we apply the resolvent of the equilibrium problem in CAT(1) space
to the CQ projection method, which is a scheme for generating a sequence that
converges to a fixed point. We prove an approximation theorem of the solution to the
equilibrium problem.

2 Preliminaries

Let X be a metric space and T: X — X. Then, the set of all fixed points of T is
denoted by F(T'), that is,

FT)={z€e X |2z2=Tz}.

T is said to be quasinonexpansive, if F(T) # 0 and d(Tx,z) < d(z,z) for x € X and
z e F(T).

Let X be a metric space. For z,y € X, a mapping c: [0,d(z,y)] — X is called
a geodesic if ¢ satisfies ¢(0) = z, c(d(x,y)) = y, and d(c(s),c(t)) = |s — t| for every
s,t € [0,d(z,y)]. If for any x,y € X, there exists a unique geodesic with endpoints z
and y, then X is called a uniquely geodesic space. For a uniquely geodesic space X,
the image of the geodesic with endpoints z,y € X is denoted by [z,y]|. In this case,
there exists a unique z € [z, y] such that

d(z,z) = (1 —t)d(x,y) and d(z,y) = td(z,y).

We denote it by z = tx @ (1 — t)y and we call it a convex combination of x and y.

Let (X, d) be a uniquely geodesic space. The triangle A(x,y, z) formed by z,y, z €
X satisfying d(x,y) +d(y, z) +d(z,z) < 27 is called a geodesic triangle. Consider the
two-dimensional unit sphere S? as a model space of X. Then for a point z,y,z € X
satisfying d(x,y) +d(y, z)+d(z,z) < 27, a comparison triangle A(Z,7,%) of A(x,y, 2)
is defined as a triangle on S? such that d(z,y) = ds2 (%, %), d(y, 2) = ds= (7, 2),d(z,x) =
ds2(Z,%). A comparison point of p = ta®(1—t)y € [z,y] is defined by p = tTH(1—t)y €
[Z,7]. If X satisfies that

for any A(x,y,z2), p,q € A(z,y,2) and p,q € A(T,7,Z), then it is called a CAT(1)
space and this inequality is called the CAT(1) inequality.

Theorem 2.1. Let X be a CAT(1) space. Then
cosd(tx @ (1 —t)y, z)sind(x,y) > cosd(z, z) sintd(z,y) + cosd(y, z) sin(1 — t)d(z,y)
for z,y,z € X such that d(x,y) + d(y, z) + d(z,z) < 27, and t € [0, 1].

Corollary 2.1. Let X be a CAT(1) space. Suppose d(x,y) + d(y,z) + d(z,z) < 27
forx,y,z € X. Then

cosd(tr © (1 —t)y,z) > tcosd(zx,z) + (1 —t)cosd(y, z)
fort € 10,1].



Let X be a CAT(1) space. X is said to be admissible if d(u,v) < 7/2 for any
u,v € X.

Let X be an admissible complete CAT(1) space. Let C' C X be a nonempty closed
convex set. Then, there exists a unique y, € C satisfying

d(z,yz) = ylgg d(z,y)

for x € X. We define Po: X — C by Pocx = y, for x € X. We call it the metric
projection onto C.

Let X be a CAT(1) space. The set AC({x,,}) of all asymptotic conters of a bounded
sequence {x,} is defined by

inf limsupd(z,z,) = limsup d(z,mn)}
r€X n—oo n—o00

AC({zn)) = {z €X

Let X be a CAT(1) space and {x,} C X. If AC({z,, }) = {x0} for all subsequence

{zn, } of {z,}, then we say {x,} is A-convergent to xg, and we denote it by x,, A zo.
The point zg is called a A-limit of {x,,}.
Let X be a CAT(1) space. A sequence {z,} C X is said to be spherically bounded
if
inf 1i d(z,z,) <
nf 171Ln_>solip (z, )

ol 3

holds.

3 Approximation of a solution to a equilibrium problem

Let X be an admissible complete CAT(1) space. Let K C X be a nonempty set. An
equilibrium problem for f: K x K — R is the problem of finding zy € K such that
f(z0,y) > 0 for all y € K. The solution set S(f) is defined by

S(f):{zeK

inf f(z0) 2 o} .

We suppose the four conditions for f as follows:

(E1) f(x,z) =0 for all x € K;

(E2) f(z,y)+ f(y,x) <0 for all x,y € K;

(E3) f(z,:): K — R is lower semicontinuous and convex for every = € K;
(E4) f(-,y): K — R is upper hemicontinuous for every y € K.

Theorem 3.1 (Kimura [2]). Let X be an admissible complete CAT(1) space with the
convex hull finite property and let K C X be a nonempty closed convex set. Suppose
that f: K x K — R satisfies (E1)-(E4). Define Thy: X — K by

T,\f.CC: {ZEK

léllf{ (M (z,y) — logcosd(y, x) + log cosd(z,x)) > O}
y
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for x € X. Then

cosd(T),5v,u) cosd(T, fu,v)

A d(Tyru, T > A
(A + ) cosd(Tyyu, Ty pv) > cosd(Thfu, ) MCOSd(Tu.fU’U)

for A, >0 and u,v € X.

Theorem 3.2. Let X be an admissible complete CAT(1) space with the convex hull
finite property. Suppose that X satisfies the following:

o {z€ X |d(u,z) <d(v,z)} is convex for u,v € X;
e {z € X | cosd(u,v)cosd(v,z) > cosd(u, z)} is convex for u,v € X.

Let K C X be a nonempty cloded conver set. Suppose that f: K x K — R satisfies
(E1)-(E4) and S(f) # 0. Define Ty: X — K by

fo:{zEK

iglf((f(z,y) —logcosd(z,y) + logcosd(x, z)) > O}
y

for every x € X. Let {\,} C [a,00] and 0 < a < co. Generate {z,} by 1 € X,C; =
Q1 =X, and

Cri1 ={z€ X | d(T), sxn, z) < d(zp, 2)},
Qni1 ={z € X | cosd(z,x,) cosd(zy, z) > cosd(z,z)},
Tn+1 = Pcn+lan+1x

forn € N. Then x, — Pspw € K.

Proof. First, we prove {z,} is well-defined by induction. C; = @7 = X is a closed
convex set and S(f) C C; N Q. For k € N, assume that Cy, Q) are closed convex
sets and they satisfy S(f) C Cp N Qk. Since {z € X | d(Ttx,2) < d(zi,2)} is
convex by assumption, we know that Cj4; is closed and convex. Similarly, since
{z € X | cosd(z,zy)cosd(z,z) > cosd(z,z)} is convex by assumption, we also
know that Q11 is closed and convex. Next, we prove S(f) C Cri1 N Q11 Let
z € S(f) = F(Ty). Since T} is quasinonexpansive, d(Trxy, z) < d(xy,2) holds, and
we obtain z € Cj41. This implies S(f) C Ck41. Moreover, we can show S(f) C Qp+1-
Since S(f) € Ck N Qf from the assumption of induction, it is sufficient to show
Cr NQr C Qrs1. Fix z € Cp N Q. arbitrarily. Then,

tzd (1 —t)ry =tz (1 —t)Poynoe® € Cr N Q
for ¢ €]0,1[. Therefore,

2 cos d(x, zx) cos ((1 - g) d(ack,z)> sin (%d(mk,z)>

= cosd(z,xy)(sind(zy, z) — sin((1 — t)d(zk, 2)))
= cosd(z, Pc,ng, ) sind(zk, 2) — cosd(z, ) sin((1 — t)d(xg, 2))
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> cosd(x,tz @ (1 —t)xy) sind(xg, 2) — cosd(z, x) sin((1 — t)d(xg, 2))
= cosd(x, z) sin(td(xg, 2))

= 2cosd(zx, z) cos <%d(xk, z)) sin <%d(xk, z)) :
When z # xy, dividing by 2sin(td(zk, 2)/2) and letting ¢ — 0, we have

cosd(zx,xk) cosd(xy, z) > cosd(x, z).

From the definition of Qx11, we have z € Qry1. If 2 = x, then obviously z € Q1.
Therefore, we get Cr, N Qx C Qx+1. Hence we have Ci 1 and Qx11 are closed convex
sets and S(f) C Cr+1 N Qkr1- Since the intersection of closed convex sets is a closed
convex set, there exists the metric projection to Cyy1NQr41 and w11 = Poy 1 nQuii @
can be defined. Therefore {x,} is well-defined. It is also shown that Pgpyz € S(f) C
C,NQy, and C, NQ, C Qpt1, for arbitrary n € N.

Next, we prove d(Tx, fZn,2,) — 0. For arbitrary n € N, since Pgpz € S(f) C
Cr N Q,, from the definition of the metric projection, we get

d(z,x,) = d(z, Po,nq,r) < d(x, Pg(pr) < g

Therefore, sup,,cn d(z,2,) < d(x, Pg(pyw) < /2. Fix z € Q, arbitrarily. From the
definition of @),,, we have

cosd(x,xy,) cosd(xy,, z) > cosd(x, 2)

and then,
cosd(x,xy) > cosd(z, z).

It follows that
inf d(x,y) <d(z,z,) < d(z,z).
YEQn
It implies that d(x,x,) = infycq, d(x,y). Therefore, we have Py, oz = z, =
FPc,ng,x € C,, NQpn C Qny1. Thus, we obtain
d(xz,xy) = d(x, Pc,nq,x) = d(z, Pg, x)
> d(.’E, PQn-s-lx) = d(.’E, PCn+lan+1x) = d(:l), xn-l-l)a

for n € N. This implies that {d(z,z,)} is a decreasing sequence. Thus, {cosd(z,z,)}
is increasing and bounded above, so we get

. s
c¢= lim cosd(x,z,) > cos - = 0.
n—00 2

Also, since 11 € Cp11 N Qpy1 C Qni1, we have

cosd(x, xy) coSd(Ty, Tny1) > cosd(x, Tpi)
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for n € N. Letting n — 0o, we have

climinf cosd(xy,, Tpy1) > c.
n—oo

Thus, dividing by ¢ > 0, we get

lim inf cos d(xy, p41) > 1,

n—oo
and since
1 <liminf cosd(xy, pt1) < limsup cosd(xy,, Tni1) < 1,

n—oo n—00

we get lim,,_, o cosd(xy, Tpy1) = 1. This implies lim,,_, o d(xy,, z,11) = 0. Further-
more, since Tp41 € Cpi1 NQpy1 C Cpy1, we have d(T, sy, Tni1) < d(zp, Tp41) for
n € N. Thus we get,

0< d(T)\nf.CCn,fEn) < d(T)\nfxnaxn—l—l) + d(xn—l—l;xn) < 2d(xn>xn+1) — 0.

Finally, we show x, — Pg(s)x. Since sup,,cy d(x, ) < 7/2, {z,} is a spherically
bounded sequence. Fix {z,,} C {z,} arbitrarily. There are {/\nij} C {An,} and

{aznij} C {xpn,} such that )‘nij — Ao € [a, 00| and Tn,, é\wo. Suppose )\nij — 00. For
any y € X, we have
d(TAnij Fng > Y) < d(TAnij Fng > Tng, )+ d(@n, 5 y)
< Qd(T)\nij fTni, s Tng, ) + d(T)\nij fTng s y)'

Then,
linsup d(Th,, g, y) = limsupd(en, .y).
ij

Jj—00 j—oo
We also have

(An;, +1)cos d(T,\nij fn,;» Trwo)

cosd(Trwo, Tn, ) COS d(T,\ni fTng s wo)
J J

Lz

~ cos d(TAnij Fng, > T, ) i cosd(Trwo,wop)

Thus,

cosd(Th, FTni, Trwo)
i

1 cos d(Trwo, xnij) An;, €08 d(T)\nij FTni, s wo)

>
~ An,, +1cos d(T,\ni_fxnij,xnij) + An,, +1  cos d(T 'y, wo)
J

N\, cosd(Tx, ¢xn, ,wo)
’Lj 7«j J

>
" Ap,, +1 0 cos d(Tywo, wo)




It follows that

cosd(Th, Fni, wo)
ij

lim inf cos d(T: T, ,Trwg) > liminf
j—ro0 ( Angy om0 0) = j—oo  cosd(Trwo,wp)

and .
cos lim supj_mo d(,l Ans fxnij ) wO)
‘3

cos d(T'rwo, fwo)

coslimsupd(Ty, fxn, ,Trwo) >
j—o0 ‘i J

Therefore .
cos limsup;_, ., d(xnij , Wo)

li d " ’T >
cos leILSolip (z i ywo) = cos d(Two, wo)

On the other hand since wy € AC({xnij }), we have
cos lim sup d(x,, ,wo) > coslimsup d(zy, ,Trwo).
j—00 J j—00 J

Thus,
cos limsup;_, . d(ﬂﬁnij , Wo)

coslimsupd(x,,, ,wy) >
j—)oop ( " 0) - COSd(wa(),wO)

which implies
cos d(Trwo, wp) > 1.

Therefore, we get wo € F(Tf) = S(f).
Next, suppose /\mj — Aog. We also have

()\nij +Xo) cos d(T,\nij Fn, T/\ofxm-j )

cos d(T,\Of:cnij s Tn, ) cos d(T/\nij FTni; s Tn,, )

+ Ao

" cos d(TAnij FTn s Tny, ) COS(TAOf:ij s T, )

> 2, /An, Ao

Thus,

2. /0. Ao D)
\/ 24/ A
1> cos d(T,\ni.f:cnij,T,\oxnij) > AR 0 _ 1.

T, Ao 20

Then we have,
d(T)\"ij fl‘m.j , TAofxnij ) — 0.

Since d(T,\Ofxmj,T,\nijfasnij) — 0 and d(xmj,T)\nijf@"nij) — 0, we have

d(T,\Ofxnij ,xnij) — 0. Also, since Awo, d(xnij,T,\Ofxnij) — 0, and Ty,
is A-demiclosed, we get wo € F(Thf) = S(f).
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Then we have

d(z, Ps(yr) < d(z,wo) < liminf d(x, z,, )
J—>00 J
< limsupd(z,x,, )
j—o0 J
< sup d(z, zn)
neN

Thus, d(x, Ps(s)r) = d(x,wp), and hence wg = Pg(y)x. We also have lim;_, o, d(x, xmj) =
d(z, Ps(y)r), and then Tn,, — Pg(pyx. Consequently, we have

Tn — Ps(f)x,
which is the desired result. O
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