Balogh’s technique for constructing spaces

Makoto Kurosaki

1 Introduction

Recently, the author constructed a Katétov space that is not countably paracompact
[15]. The construction owes much to a technique of Z. Balogh. This technique is quite
flexible. Using the technique, Balogh constructed Q-set spaces [1],[4] and Dowker spaces
2],[3],[6] and proved Morita’s conjectures [5],[7]. It should also be added that the tech-
nique is based on ideas of M. E. Rudin [18]. The aim of this paper is to explain the
method for constructing spaces using the technique.

Notation and definitions. Throughout this paper an ordinal is the set of smaller
ordinals. Let A be a set and k be a cardinal. By P(A) we denote the collection of all
subsets of A. By [A]<" and [A]", we denote the collection of all subsets of A cardinality
< k and = g, respectively. By w, wi, and ¢, we denote the first infinite ordinal, the first
uncountable ordinal, and the first ordinal of the same cardinality as P(w), respectively.
By cf(k) we mean the first ordinal cofinal with .

A space X is called Dowker if X is normal but not countably paracompact. A regular
space X is called @-set space if for each Y C X, Y is a Gy set and X is not o-discrete. A
space X is called o-space if X has a o-locally finite network. A regular space is a o-space
if and only if it has a o-discrete network. A space X is called weakly submetacompact (or
weakly f-refinable) if every open cover of X has a refinement |, U, such that for each
x € X, there is n € w such that 1 < |{U € U,|z € U}| < w.

2 Bing's G

In this section, we show that Balogh’s technique can be thought of as an application
of Bing’s G [8]. First, we present Bing’s G, which is an example of a normal, not collec-
tionwise normal space. Example 2.1 is different from his original form. We referred to
[19].

Example 2.1. The set of points of X is wy UG, where G = {g|g : P(w1) — 2}. Let,
for cach @ € wy, h € [P(w1)]<¥, and J € [G]*, B(a,h,J) = {a} U{g € G|YY €



hiaw € Y < g(Y) = 1)} \ J. We consider a topology on X generated by the family
{B(a,h,J)|ov € wy,h € [P(w1)]=¥, J € [G]**} U{{g}|g € G}.

Proposition 2.2. X is normal.

Proof. Let H and K be disjoint closed sets. Since every point of G is isolated, we may
assume that H UK C wi. Uyey Bla, {H},0) and Uz, B(B, {H},0) separate H and
K. O

Since wy is closed discrete in X, it follows from the following proposition that X is not
collectionwise Hausdorft.

Proposition 2.3. For each h : wy — [P(wy)]< and J : wy — [G]<¥, there exist o < 3
such that B(a, h(a), J(a)) 0 B(B, h(B), J(B)) # 0.

Proof. Let M be a countable elementary submodel containing everything relevant and
take any 8 € w; \ M. There is @ € w; N M such that h(8) N M C h(«) and for each
Yeh(f)NM,acY ifand only if 5 € Y. Pick g € G\ (J(a) U J(B)) such that for each
Y € h(B), f €Y if and only if g(Y) = 1 and for each Y € h(a) \ h(8) N M, a € Y if and
only if g(Y) = 1. Then, g € B(«a, h(«), J(a)) N B(5,h(B), J(3)). O

Example 2.1 has the property that if o behaves the same way as [, then the neigh-
borhoods of o and [ cannot be separated. Advancing this idea, let us construct a space
having the property that if a behaves the same way as (5, then [ is an element of the
neighborhood of a. To construct such a space, we need to identify the parts of w; and G.
In order to do that, we equalize the sizes of them.

Example 2.4. The set of points of X is ¢ UG, where G = {(A4,B,g)|A € [¢]*,B €
[P(A)]“, g : B — 2}. Let, for each « € ¢ and h € [P(¢)]<%, B(a,h) = {a} U{(4,B,g) €
GIVYY e h[YNA € BA(a €Y < g(YNA) = 1)]}. We consider a topology on X generated
by the family {B(a,h)|la € ¢,h € [P(c)]~“} U {{(A, B,g)}|{A, B,g) € G}. (Since this

space satisfies (T7), J does not appear in the definition).

Proposition 2.5. For each h : ¢ — [P(c)|<¥, there exist a # [ such that B(a, h(a)) N
B(8,h(B)) # 0.

Proof. Let M be a countable elementary submodel containing everything relevant. Let
A=c¢nNMand B ={YNMY € P(c)nM}. Take any v € ¢\ M. There are
a # B € ¢nN M such that h(a) Nh(B) = h(y) N M and for each Y € h(y)NM, v €Y
if and only if @ € Y if and only if § € Y. Since h(a) U h(B8) C M, we have that
Y #Y’ € h(a)Uh(f) implies YNA # Y'NA. Pick g € G such that for each Y € h(~y)NM,
v €Y if and only if g(Y N A) = 1, for each Y € h(5) \ h(y) N M, g € Y if and only if
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g(YNA) =1, and for each Y € h(a) \ h(B) N M, o € Y if and only if g(Y N A) = 1.
Then, (A, B, g) € B(a, h(a)) N B(3, h(B)). m

Now, we give a basic space for constructing various spaces.

Example 2.6. The set of points of X is ¢. Let G = {(A,B,C,g)|A € [¢]¥, B,C €
[P(A)*,BNC =10, g: C — 2} and fix a bijection ¢ : ¢ — G. Let, for each o € ¢ and
h e [P()]=,

B(a,h) ={8 €| ifq(B) = (A, B,C,g),then VY € h[Y N A€ BUCA
YNAeB— (aeY & BeY)A
YNAeC — (aeY < g(YNA) =1}

Topologize X by declaring a set U to be open if and only if for every o« € U, there is
h € [P(c)]= such that B(a,h) C U.

Proposition 2.7. X is normal.

Proof. Let H and K be disjoint closed sets. By induction on n, we define H, and
K,. Let Hy = H and Ky = K. Pick, for each a € X, h, € [P(c)]<¥ such that
a ¢ H implies B(a,hy) N H = () and o ¢ K implies B(a, hy) N K = (). Let, for each
n € w, Hypyr = Uyey, Bla,ho U{Ho, -+, Hy, Ko, -+, Kn}), Knpr = Uger, Bl ha U
{Ho, -+ ,H,, Ko, -+, K,}). Then |J _ H, and |J _ K, separate H and K. O

new new

Proposition 2.8. For each h : ¢ — [P(¢)|<% and n : ¢ — w, there exist o # [ such that
B € B(a, h(a)) and n(a) = n(p).

Let M € N be countable elementary submodels containing everything relevant. Let
A=cnNN,B={YNN|Y €eP(¢c)NM},and C={Y NN|Y € P(c) NN\ M}.

In the proof of Proposition 2.3, we can pick an element of GG after taking § and a.
However, since we identify ¢ with G in this space, we need to pick an element of G first.
By the following lemma, roughly speaking, we have that there is a ¢ € G such that for
each f € X \ N and set in N whose elements behave the same way as 3, there is « in the
set such that g is an element of the neighborhood of «.

Lemma 2.9. There ezists a function g satisfying that (A, B, C, g) € G such that whenever
v ¢ = Unepopan<e “2 s an infinite partial function, v € N, and {dom(v(a))|a €
dom(v)} are pairwise disjoint, then there exists o € dom(v) such that {(Y N A,i)|(Y,i) €
v(a)} Cg.

Proof. Let (v;);e, enumerate all functions v € N as in Lemma 2.9. By induction on j
pick distinct {o;|j € w} € X NN such that j # j" implies dom(v(c;)) Ndom(v(aj)) = 0.
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It follows from elementarity of N that {{Y N A|Y € dom(v;(«;))}|j € w} are pairwise
disjoint and {Y N A]Y € dom(v;(«;))} N B =0 for all j € w. Take g € G satisfying that
{(YnA,i): (Y,i) € vj(ey)} Cgforall j €w. Then gis as desired. O

Take § € X satisfying that ¢(8) = (A, B,C,g). Note that 5 ¢ N. We obtain the
following lemma by taking a set whose elements behave the same way as (3.

Lemma 2.10. There exists E € [X]** NN such that,
(a) {h(a)|a € E} is a A-system with root h(3) N M,
(b) for each v € E andY € h(B) N M, o €Y if and only if B € Y,
(c) for each a € E, (h(a) \ (h(B) N M))N M = (),
(d) for each oo € E, n(a) = n(B).

Proof. Let r = h(8) N M and n = n(f). Define, for each Y € r, iy € 2 by setting iy = 1
if and only if 3 € Y. Let ¢(G) be the statement “{h(«a)|a € G} is a A-system with root
r, for each @ € G, n(a) = n, and for each « € Gand Y € r, iy = 1 if and only if & € Y.
By Zorn’s Lemma, there is a maximal F' such that ¢(F) holds. Since all parameters of
¢(G) are in M, we may assume that F' € M. Suppose indirectly that F' is countable;
then FF C M. Since FU{B} # F and ¢(F U{fA}) holds, it is a contradiction. Hence F is
uncountable; there is F € [F]*! such that, for each o € E, (h(a) \ (h(8) N M)) N M = 0.
Since h, F', and M are in N, we may assume E € N. O

Now, we complete our proof of Proposition 2.8. Define v : £ — UQG[P(C)\M]@ *2 by
setting v(a) = {(Y.iay)|Y € h(a) \ (h(B) N M)}, where iny = 1 if and only if a € Y.
Note that v € N. By Lemma 2.9, we have that there is o« € FE such that for each
Y eh(a)\ (h(B)NM), g(Y NA) =1if and only if & € Y. Hence 5 € B(a, h(a)).

3 Applications

Applying the basic space, we give a Dowker space, a Q-set space, and a metalindelof,
not weakly submetacompact space.

Example 3.1. The set of points of X is ¢ x w. Let G = {(A, B,C,g)|A € [¢]*, B,C €
[P(A)]Y,BNC =10, g:C — 2} and fix a bijection ¢ : ¢ = G. Let, for each a € ¢, n € w,
and h € [P(c)]<¥,

B(a,n+1,h) = {(B,n) € e xwl|if ¢(f) = (A, B,C,g),then VY € h[Y N A€ BUCA
YNAeB— (aceY &< FeY)A
YNAeC - (aeY < g(YNA) =1}



Topologize X by declaring a set U to be open if and only if for every (a,n + 1) € U,
there is h € [P(c)]<¥ such that B(a,n+ 1,h) C U.

Proposition 3.2. X is normal.

Proof. Let H and K be disjoint closed sets. It is not difficult to prove that for each
n€w, HN (¢ x {n}) and H°N (¢ x {n}) can be separated and that for each m < n € w,
HN(cx{n})and KN (cx{m}) can be separated. Hence for each n € w, H N (¢ x {n})
and K (and H and K N (¢ x {n})) can be separated. By the shoestring argument, we can
separate H and K. O

Proposition 3.3. X is not countably paracompact.

Proof. Suppose indirectly that X is countably paracompact. Then, {¢x (n+1)|n € w} has
a one-to-one locally finite open refinement {U,|n € w}. We can take h : ¢ x (w\ {0}) —
[P(¢)]<“ satisfying that (v, i) € U, implies B(a, i, h(c,i)) C U,. Let M € N be countable
elementary submodels containing everything relevant. Take 8 € ¢ similarly in the basic
space. To get a contradiction, we show that for each n € w, there is m > n such that
(6,0) € Up,. Fixn € w. Since U,, C ¢ x (n+ 1), there is m > n such that (8, n+1) € U,,.
By induction on k from n+1 to 0, we show that (53, k) € U,,. Suppose that (58, k+1) € U,,.
By taking a set whose elements behave the same way as /5 including that (8, k+ 1) € U,,,
we can show that there is a # [ € ¢ such that (5,k) € B(a,k + 1,h(a, k + 1)) and
(a, k + 1) € U,,. The proof of this is similar to the proof of Proposition 2.8. By our way
of taking h, we have that (3, k) € U,,. O

Example 3.4. The set of points of X is ¢. Let G = {(A,B,C,g)|A € [¢]¥, B,C €
[P(A)), BNC =0, g:C — 2xw} and take a ¢ : ¢ — G satisfying that for each
(A, B,C,g) € G, there is € ¢ such that ¢(5) = (A, B,C, g) and sup(A) < . Let, for
each Y € P(c) and k € w,

Y ={8€ifq(B) =(A B,C,g),thenYNAecCATie€2dIm>k(g(YNA) = (i,m))}.
For each av € ¢, h € [P(¢)]<¥, and n € w,

B(a,h,n) ={p € c|if¢(B) = (A,B,C,g),then VY € h[Y N A € BUCA
YNAeB— (aeY < feYAVEecw(aeY, < YA
YNAeC—=3m>n(lacY - gYNA)=(1ImAa¢Y —g(Y NA) = (0,m))}.

Topologize X by declaring a set U to be open if and only if for every o € U, there are
h € [P(¢)]<* and n € w such that B(a, h,n) C U.

In the same way as the proof of Proposition 2.7, we have that X is normal.
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Proposition 3.5. For allY C X, Y is a Gs set.

Proof. Let, for each n,k € w, ;) =Y and Y ! = (J,y» B(o, {Y'},n). Note that for
cach n € w, Uy, Y, is open. Since (), (Y UY,) =Y, Proposition 3.5 follows from the

following claim.
Claim 3.6. For each n,k € w, YF CY UY,,.

Proof of Claim 3.6. Fix n € w. We prove by induction on k € w. Take any € V¥,
By induction hypothesis, there is « € Y UY,, such that 5 € B(a,{Y},n). If ¢(8) =
(A,B,C,g), then YN A€ BUC. Andif YN A € B, then « € Y if and only if 5 € Y
and a € Y, if and only if § € Y,,. Since « € Y UY,,, we have f € Y UY,,. f Y NA€C,
then there is m > n such that @ € Y implies g(Y N A) = (1,m) and o ¢ Y implies
g(YNA)=(0,m). Hence § €Y. O

Proposition 3.7. X is not o-discrete.

Proof. Take any f: X - w, h: X — [P(X)]¥, and n : X — w. We can show that there
are o < [ such that f(a) = f(f8) and 5 € B(a, h(a),n(«)). The proof of this is similar
to the proof of Proposition 2.8. Hence X cannot be o-discrete. O

As mentioned in [1], X can be made left-separated easily. Then, by Proposition 3.9, X
answers the question B16 in [16].

Question 3.8. (H. Junnila [13]) Does there exist, in ZFC, a set X and two topologies 7
and 7 on X such that 7 C m, every m-open set is an F,, set with respect to 7, the space
(X, m) is metrizable but the space (X, 7) is not a o-space?

Proposition 3.9. X is not a o-space.

Proof. Suppose indirectly that X has a o-discrete network [ J,.,, B;. Since for each o € X,
[, ¢) is open, there are i, € w and B, € B;, such that « € B, C [a,¢). We can take
h:X — [P(X)]* and n : X — w satisfying that for each o € X, B(a, h(a),n(a)) N
(UB;, \ Ba) = 0. We can show that there are o < 8 such that 5 € B(a, h(a),n(«))
and i, = ig. Since o ¢ [5,¢), we have B, # Bg. By our way of taking h and n,
B(a, h(a),n(a)) N Bg = (). This is a contradiction. O

Example 3.10. The set of points of X is ¢. Let {L|e € wy} be a partition of ¢ such that
for every € € wy, L, is of size ¢. Let G = {(4,B,C,g)|A € [¢]“, B,C € [P(A)]*,BNC =
0, g: C — 2} and take a ¢ : ¢ — G satisfying that for each (A, B,C,g) € G and € € wy,
there is 5 € L. such that ¢(8) = (A4, B,C,g) and sup(A) < . Let, for each a € L, and



h e [P()]=,

B(a,h) = {8 € | J Lulif q(B) = (A, B,C,g),thena € ANBAVY €AY NA€ BUCA

u<e

YNAeB—= (aceY & BeY)A
YNAeC — (aeY < g(YNA) =1}

Topologize X by declaring a set U to be open if and only if for every o € U, there is
h € [P(c)]< such that B(a,h) C U.

Proposition 3.11. X is metalindelof.

Proof. Take any open cover U of X. Pick, for each o € ¢, U, € U such that a € U,. Let
us take a point-countable open refinement {V,|a € ¢} of {U,|a € ¢}. Fix a € ¢. Take,
for each 8 € U,, hg € [P(¢)]~ such that B(8,hg) C U,. Let V¥ = {a}, for each n € w,
V' = Useyn B(B, hg), and Vi = U, V" To show that {V,|a € ¢} is point-countable,
we define a set Dg C ¢, inductively, by setting Ds = {8} U UaeAﬂmﬁ D,. Here, Ag is the
first term of ¢(f3). Note that for each 8 € ¢, Dg is countable. By the construction of V,,
we have that § € V,, implies @ € Dg. Hence {V,|a € ¢} is point-countable. O

Proposition 3.12. X is not weakly submetacompact.

Proof. Suppose indirectly that X is weakly submetacompact. Then, {{J, . L.le € w1}
has an open refinement | J, ., U, satisfying that for each « € ¢, there is n, € w such that
1 < {U € Uy |aa € U}| < w. We can take h : ¢ — [P(c)]< satisfying that for each
a € ¢, Bla,h(a)) C (U € U, | € U}. Let M € N be countable elementary submodels

containing everything relevant. Take 5 € L, ~y with sup(¢ N V) < [ similarly in the

p<e

basic space. We obtain the following lemma by taking a set whose elements behave the
same way as 3. The proof of Lemma 3.13 is similar to the proof of Lemma 2.10.

Lemma 3.13. There exists E € [¢]** NN such that

(a) {h(a)|a € E} is a A-system with root h(B) N M,

(b) for each € E andY € h(B)NM, a €Y if and only if B € Y,

(c) for each a € E, (h(a) \ (h(B) N M))N M = (),

(d) {e € wi|EN L. # 0} is unbounded in wy,

(e) for each o € E, n, = ng.

Inductively, let us take a set {o;|i € w} C E N N satisfying that for each i € w,
B € B(aj, h(cy)) and for each j > i and U € U,,, a; € U implies o; ¢ U. Suppose we
have taken {ax|k < i} C ENN. Since e, Un < {U,<. Lule € w1}, we have that there
is 0 € w; NN such that for each k <7 and U € Un,, a € U implies U C ng L,,. Define



v ENOUss Lu = Useppienan<e 2 by setting v(a) = {(Yiay)[Y € h(e) \ (R(8) N M)},
where i,y = 1 if and only if & € Y. Note that v € N. By Lemma 2.9, we have that
there is a; € EN,.5 L, NN such that 8 € B(ay, h(ci)). Since a; € o5 Ly, we have
that for each k < i and U € U,,, o, € U implies o; ¢ U. Hence ¢ is as desired. By our
way of taking h, we have that for each i € w and U € Uy, a; € U implies 5 € U. Hence
{U €U,,|p € U} is infinite. This is a contradiction. O

Example 3.10 can be made collectionwise normal (see §4) and perfectly normal (see
Example 3.4). To our knowledge, the first discovery of a metalindeldf, not weakly sub-
metacompact space in ZFC is due to G. Gruenhage in [11].

4 Complete neighborhoods

Applying the basic space, let us construct a collectionwise normal space. First, we
consider the following example.

Example 4.1. The set of points of X is ¢. Let
I ={(F,)pec € “P(c)|{F,}rec : pairwise disjoint A (p # o A F,, F, #0) — F, # F,}.

Let, for each F = (F,)pec € land A € [¢]*, F [ A= (F,NA)jcaand [ [ A={F | A|F €
I}. Let G = {{A,B,C,g)|A € [c]*, B,C e[l | A, BNC =0, g:C —cU{-1}} and
fix a bijection g : ¢ — G. Let, for each a € ¢ and h € [I|¥,

B(a,h) ={B e «|ifq(B) = (A, B,C,g),then VF = (F,),ec € h|[F | A€ BUCA
FlAeB—(a¢|JFoB¢|JFraeF, & BeF,)A
FlAeC—(a¢|JFogF1A)=-1nacF,<gF A=yl

Topologize X by declaring a set U to be open if and only if for every o € U, there is
h € [I]<% such that B(a, h) C U.

Example 4.1 is collectionwise normal. However, the proof of Proposition 2.8 for this
space does not work. The reason why is that if F = (F,),ec € M, € F,, and p ¢ M,
then o and 8 are not elements of the same F,. By using Balogh’s great idea, complete
neighborhoods, we can have that if 7 € M and 8 € F),, then p € M, so a and 3 are
elements of the same F),.

Example 4.2. The set of points of X is ¢. Let (F¢)eeoe list all terms of I mentioning
each 2°¢ times. Let, for each ¢ € 2°, F¢ = <F§>p€c. Inductively, we define H C 2° and, for
every £ € 2, a topology 7. on X. Suppose § € 2%, and for every n < &, we have decided
whether n € H. The topology 7¢ is defined by declaring a set U to be open if and only
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if for every « € U, there are h € [H N &)< and J € [X]|<¥ such that B(a,h)\ J C U.
This B(«, h) is defined in the same way as Example 4.1. Suppose {F§|p € ¢} is a discrete
family of closed sets in 7¢, and there is no n € H N ¢ such that {F}|p € ¢} = {F§|p € c}.
Then, let £ € H. The topology 7 is defined by declaring a set U to be open if and only if
for every o € U, there are h € [H]<* and J € [X]|<¥ such that B(a,h)\ J C U.

Proposition 4.3. 7 is collectionwise normal.

Proof. Let F be a discrete family of closed sets in 7. By the construction of 7, it follows
from [X| = ¢ < cf(2°) that 7 = [Jgcp 7e. Hence there is £ € 2¢ such that F is a discrete
family of closed sets in 7¢. Since each term of I is listed in (F¢)ecoc 2° times, there is
¢ € 2 such that {F5|p € ¢} = F and {F%|p € ¢} is a discrete family of closed sets in 7.
Let us take the smallest such &, then € € H. For each a € ¢, let us take h, € H and
Jo € [X]=¥ satisfying that for each p € ¢, a ¢ F§ implies (B(a, ha) \ Jo) N F5 = 0. Let
Fi={FsU UaeF§ (B(a,ho U{&}) \ Jo)lp € ¢}. Then F; is a discrete family of closed
sets. (Let, for each 8 € X, U) = {B}, U, = UweUf(B(% hyU{&) N\ J4)(i € w), and
U° =U;co UP. Then, {U?|3 € X} witnesses the fact that F; is a discrete family of closed
sets). Hence there is & € H such that {F5'|p € ¢} = F;. For each i > 1, we can define
Fi and take §;, similarly. Let, for each p € ¢, Uyo = F5, Upis1 = U, U Uacu, (Bl ho U
{6, &)\ Ja)(i €w), and U, = U,c, Upi- Then {U,|p € ¢} separate F. O

Let, for each £ € H,

Og:{X\UFg, if 5 ¢ UFe.
(X\UF)UFS, if g e F§.

Definition 4.4. Let us call a pair (h, J) € [H|~ x [X]|=¥ complete at 3 if for each £ € h,
B(8,hn¢€)\J C 05,

Lemma 4.5. If (h,J) € [H]< x [X]|¥ is not complete at (3, then there exist k' D h and
J' D J such that (K, J') is complete at [3.

Proof. let &, ; be the largest & € h with B(8,hN &)\ J ¢ Og. Since 2° is well-founded,
it suffices to prove that there exist A’ D h and J' D J such that (h',J’) is complete at
Bor &y g < Epy. Let np = &, 5. Since OZ is a 7,-open neighborhood of 3, there exist
h € [HNn<¥ and J € [X \ {8}]<¥ such that B(8,hN¢&)\ J C O} Then i’ = hUh and
J' = J U J are as desired. O

Proposition 4.6. For all h: X — [H|<¥, J: X — [X]*¥, and n : X — w, there exist
a # B such that 5 € B(a, h(«)) \ J(a) and n(a) = n(B).

Proof. We may assume that for all 5 € X, (h(8), J(B)) is complete at 5. Let M € N
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be countable elementary submodels containing everything relevant. Let A = ¢ N IV,
B={F A€ HNM}, and C = {F, | A|¢ € HN N\ M}. The proof of the following
lemma is similar to the proof of Lemma 2.9.

Lemma 4.7. There exists a function g satisfying that (A, B,C, g) € G such that whenever
v e = Uperpnan<e “(€U{=1}) ds an infinite partial function, v € N, and {dom(v(a))|a €
dom(v)} are pairwise disjoint, then there exists a € dom(v) such that {(F¢ | A, p)|(€, p) €
v(a)} Cg.

Take 5 € X satisfying that ¢(5) = (A, B,C,g). We obtain the following lemma by
taking a set whose elements behave the same way as 5. The proof of this is similar to the

proof of Lemma 2.10.

Lemma 4.8. There is E € [X]|** NN such that
(a) {h(a) : « € E} is a A-system with root h() N M;
(b) for alla € E, (h(a)\ (h(8) N M))N M = (;
(c) for allv € E and & € h(B) N M, o € |JFe if and only if § € U Fe;
(d) for all « € E, n(a) = n(pP).

Let, for each £ € H and o € X, peo = pif o € F§ and peo = —1if a ¢ [J F¢. Define
v E = Uuepman<e “(cU{—1}) by setting v(a) = {(£, pe.o)|€ € h(a) \ (R(B) N M)}. Note
that v € N. By Lemma 4.7, there exists o € dom(v) such that {(F¢ | A, pe.a) (€, pea) €
v(a)} C g. Let us show that 5 € B(a, h(a)) \ J(a) by induction on . Since J,a € N,
we have J(a) C N. Hence 5 € B(a,0) \ J(c). Suppose £ € h(a) and we have proved
B e Bla,h(a)NE)\ J(a).

Case 1. Suppose £ € h(a) N M. Note that F¢ | A € B. If o ¢ |JF, then by (c),
3 ¢ JFe Hence B € B(a,{€}). If there is p € ¢ such that a € F5, then by induction
hypothesis and completeness, § € B(a,h(a) N€)\ J(a) C Of. Hence, by (c), § € F§, so
8 € Bla, {&}).

Case 2. Suppose § € h(a) \ (h(8) N M). Note that F¢ | A € dom(g)(= C). Then by
the definition of p¢q, if @ € F§, then peo = p and if o ¢ |J Fe, then peo = —1. Hence

8 € B(a, {¢}). 0

5 CH constructions

In this section, we show that Balogh’s technique can be thought of as an application of
the HFC construction. First, we present two examples. The Kunen line [14] is an example
of a first countable S-space (hereditarily separable, not Lindel6f space). The HFC [12] is
an example of an L-space (hereditarily Lindelof, not separable space). These spaces are
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constructed under CH. Example 5.1 is a simpler version of the Kunen line (it is not first
countable).

Example 5.1. (CH) The set of points of X is R(= {z,]a € wi}). Let (My)aew, be a
continuous chain of countable elementary submodels. At a-th stage, let {A4,|n € w} be a
list of {A|z, € Clg(A), A € [{z5|8 < a}]¥ N M,} mentioning each infinite times. Take,
for each n € w, Y& € A, N B(z,, %) Topologize X by declaring a set U to be open if and
only if for every z, € U, there is J € [R]<¥ such that {y*|n € w}\ J C U.

Since for each o € wy, {zg|8 < a} is open, X is not Lindelof. Note that X refines the
usual topology on R. Since X has a base of R-closed sets, X is Tychonoff. Since for each
A € [R]¥, Clg(A) \ CI(A) is countable, X is hereditarily separable.

Example 5.2. (CH) We define X = {fu|a € w1} C “12. Let (M,)qew, be a continuous
chain of countable elementary submodels. At a-th stage, let {u,|n € w} be a list of {u :
W = U< 2|t € My, {dom(u(i))|i € w} are pairwise disjoint}. Take, for each n € w,
in € w such that {dom(u,(i,))|n € w} are pairwise disjoint. Define f, so fo D u,(i,) for
all n € w, folwi N M,) =1, and f,(8) =0 for all 8 > w; N M,.

Since for each a € wy, {f3|6 > a} is open, X is not separable.

Proposition 5.3. For allY € [wi]*" and neighborhood assignments h : Y — |
there exists v € wy such that {f3|B € Y} C Uyeyn, (@)

a2;

a€lwi|<w

Proof. Let M be a countable elementary submodel containing everything relevant. Then
v = wy N M is as desired. Take any 5 € Y \ M. By taking a set whose elements
behave the same way as 3, we have that there is {a,|n € w} € [Y]¥ N M such that
{dom(h(a,))In € w} is a A-system with root dom(h(5)) N M and that for each n € w
and € € dom(h(B)) N M, h(an)(e) = h(B)(€). Define u : w — U,e(y, < “2 by setting
u(n) = h(ay) | dom(h(ay,)) \ (dom(h(5)) N M). Since u € M, we have u € M,y C Msp.
By the construction of fz, there is n € w such that fs € [h(a,)]. O

These two constructions are basically the same except that the objects of the diagonal
arguments are different. We can apply these constructions in ZFC by listing countable
subsets of the objects length ¢. Van Douwen’s space [9] is an application of the Kunen
line in ZFC. We give a simpler version.

Example 5.4. The set of points of X is R(= {z,]a € ¢}). Let (As)aec be a list of
[[R]“]* satisfying that for each uncountable R-closed set K and A € [[R]“]¥, there are
uncountable o € ¢ such that z, € K, A, = A, and sup({f € c|lzs € JA.}) < a.
At a-th stage, let {A,|n € w} be a list of {A|z, € Clg(A),A € [{z5]8 < a}]* N A.}
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mentioning each infinite times. Take, for each n € w, y¢ € A, N B(x,, %) Topologize X
by declaring a set U to be open if and only if for every z, € U, there is J € [R]<¥ such
that {yX|n e w}\ J CU.

It follows that X is normal and countably paracompact from the following proposition.

See [9].

Proposition 5.5. If (F, : n € w) is any sequence of closed subsets in X such that
|Muew Ful < w, then [, Cle ()] < w.

Proof. Suppose indirectly that (), Clg(#,) is uncountable. Let M be a countable ele-
mentary submodel containing everything relevant. Since R is hereditarily separable, for
each n € w, there is D, € [F,]* N M such that F, C Clg(D,). By our way of list-
ing, there are uncountable o € ¢ such that z, € (., Clr(f), As = [R]* N M, and
sup({f|zs € |JAa}) < a. By the construction, for such a, x4 € (), Cl(Dy) C N, ew Fr-
This is a contradiction. O

In the same way as constructing van Douwen’s space from the Kunen line, we can
construct { fo|a € ¢} C 2 from the HFC satisfying that for all neighborhood assignments
hie = Uyeg<w *2, there are o # 3 behaving in the same way such that § € [h(a)]. By
using elementarity with respect to ‘#’, we obtain the following example.

Example 5.6. We define {f.|Ja € ¢} C P2, Let, for each A € [c]*, Uy = {u|u :
w = Unerp(ay<e *2, {dom(u(i))|i € w} : pairwise disjoint}. Let (Aq, Va)aec be a list of
{{A V) A € [(]9,V € [Ua]“}. At a-th stage, let {u,|n € w} be a list of V,. Take, for
each n € w, i, € w such that {dom(u,(i,))|n € w} are pairwise disjoint. Define, for all
Y € P(c), if Y N A, € dom(uy,(iy)) for some n, then f(Y) = u,(i,)(Y N Aqa).

Proposition 5.7. For all neighborhood assignments h : ¢ — UQG[P(C)}@ 2andm:c— w,
there exist o # 8 such that fz € [h(a)] and m(a) = m(p).

Proof. Let M be a countable elementary submodel containing everything relevant. Let
A=["NMand V = {u € Us|Fv € M(v : w = Uuep(<- 2 A Vn € w(u(n) =
{{Y nAu(n)(Y))|Y € dom(v(n))})}. By elementarity of M, we have that V € [Ua]“.
Pick § € ¢ such that (Ag, Vs) = (A, V). By taking a set whose elements behave the same
way as (3, we have that there is {ay,|n € w} € [¢]* N M such that {dom(h(a,))|n € w}
is a A-system with root dom(h(5)) N M, for each n € w, m(a,) = m(f), and for each
n € wand Y € dom(h(3)) N M, h(a,)(Y) = h(B)(Y). Define v : w = U,ep(<w “2 by
setting v(k) = h(an) | dom(h(an)) \ (dom(h(B)) N M) and u : w — Uyeppray<- ‘2 by
setting u(n) = {(Y N Ag,v(n)(Y))|Y € dom(v(n))}. Since v € M, we have u € V3. By
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the construction of fj, there is n € w such that f5 € [h(w,)]. O

Next, we present the HFD [12], which is an example of an S-space.

Example 5.8. (CH) We define X = {fa|oo € wi} C “*2. Let (M,)qew, be a continuous
chain of countable elementary submodels. At a-th stage, let {(A,,i,)|n € w} be a list of
{(4,i) € [a]* x2|A € M,} mentioning each infinite times. Take, for each n € w, v, € A,
with all v, distinct. Define f, (o) =14, for all n € w, fo(a) =1, and fg(a) = 0 for all
8> a.

Since for each a € wy, {fs|5 < a} is open, X is not Lindeldf.
Proposition 5.9. X is hereditarily separable.

Proof. Take any Y € [X]*'. Let M be a countable elementary submodel containing
everything relevant. Take any fz € Y\ M and o € Uae[wﬂ@,
of fs. Let dom(o) = {70, * , ¥, 00, ,0m} (0 < -+ < Y <wi NM < < -+ <
dm). By taking a set whose elements behave the same way as /3, we have that there is
A € [Y]¥ N M such that for all f, € A, fa(7) = 0(70), -, fa(7m) = o(7). Note that
A € M,,nm C Ms,. By the construction at do-th stage, there is Ay € [A]* such that for
all fo € Ao, fa(do) = 0(dp). By elementarity of M, 1, we may assume that Ay € Ms, 1.

?2 as a basic neighborhood

Hence Ay € M;,. Repeating this argument m times, we get A,,. Since A,, C [o], we have
fs € Cl(Y N M). O

The chain is essentially used in the HF'D construction. Hence we cannot apply the HFD
construction in ZFC in the same way as the Kunen line and the HFC.

Question 5.10. Can we apply the HFD construction in ZFC?
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