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1 Introduction

The distributions of the number of the appearances of words (distributions of words for short) play
important role in statistics, DNA analysis, information theory, see Balakrishnan et.al [1], Jacquet
et.al [13], Lothire et.al [15], Robin et.al [21], Wald et.al [25], Waterman [26], and Zehavi et.al [27].

Generating functions of the distributions of words are given as rational functions, see Bassino
et.al [2], Berthe et.al [3], Blom et.al [4], Chrysaphinou et.al [5], Feller [6], Flajolet et.al [7], Goulden
et.al [10], Guibas et.al [11], and Régnier et.al [20]. From generating functions, we have approxima-
tions and recurrence formulae for the distributions of words. However except for simple cases, we
neither expand rational functions into power series nor obtain their coeflicients by differentiation,
see Chapter 11 Section 4 pp. 275 Feller [6]. In other words, we cannot obtain explicit formulae for
the distributions of words from rational generating functions in general.

In this article we show explicit formulae for 1. the joint distributions of nonoverlapping words
for independent and identically distributed (i.i.d.) finite alphabet random variables and 2. the
distributions of runs for i.i.d. binary random variables.

2 Joint distributions of nonoverlapping words

Let N(w1,...,w;; XT') be the number of the appearances of the words wi,...,w; in an arbitrary
position of X7, i.e.

n—|wi|+1 n—|w;|+1
N(wi,...,w5 XP) = ( D LX),y D Tw (X)),
i=1 =1

where X' = X --- X, and L, (X7") = 1if X; -+ Xjy ;-1 = wj else O for all 4, j.

For example N(10,11;1011101) = (2,2). A word z is called overlapping if there is a word z such
that z appears at least 2 times in z and |z| < 2|z| otherwise z is called nonoverlapping. A pair of
words z, y is called overlapping if there is a word z such that z and y appear in z and |z| < |z|+|y|.
A finite set of words S is called nonoverlapping if every pair (z,y) for z,y € S are not overlapping,
otherwise, S is called overlapping. For example, sets of words, {11}, {10,01}, and {00,11} are
overlapping, and {10} and {00111,00101} are nonoverlapping.

*Parts of the paper have been presented in [23,24].
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Theorem 2.1 Let X1 X5 X, be i.i.d. finite alphabet random variables. Let wq,...,w; be the set
of nonoverlapping words. Let m; = |w;| be the length of w; and P(w;) the probability of w; for
i=1,...,1. Let

Alkr, ... k) = (”_Z miki + 2, k)HPk

ki,..., kK
n
B(ky,... k) = P(Z IX?mi_lzwj =kj, j=1,...,0), (1)
Fa(z1,...,21) Z Alky, ... k)2 2R and
ki, ki
Fg(z1,...,z) = Y Blky,... . k)z" - 2M.
k1,...,k
Then
FA(Zl,ZQ,...,Zl):FB(21+1,22+1,...,ZI+1>,
and

P(N(w1y,...,w; X™) =(s1,...,81))

e ke ¢
_ Z (—1): kimsi (31 ” — > imiki+ > K ) H PFi(w;). (2)

S5, k1 —81,...kj—s
ki,..,ky: y Ol vl 1, l l i=1

81<k1,...,51<k;
> imiki<n

Proof) For simplicity, we prove the theorem for [ = 1. The proof of the general case is similar. Let
= |w|. Since w is nonoverlapping, the number of possible allocations such that w appears k-times

in the string of length n is
n—mk+k
f .

This is because if we replace each w with additional extra symbol « in the string of length n then
the problem reduces to choosing k o’s among the string of length n — mk + k. Let

aw = ("7 P, 3)

The function A is not the probability of k w’s occurrences in the string, since we allow any letters
in the remaining place except for the appearance of w. The function A may count the event that
w appears more than k times. Let B(¢) be the probability that w appears k times. We have the

following identity,
t
=3 m0(1)

k<t

Let Fa(2) := >, A(k)zF and Fp(z) := Y, B(k)z*. Then

=3 um0()

k<t



-3 503 (1)

k<t
—ZB z+1
:FB<Z—|—1>.
We have
Fp(z) = Fa(z—1)
mk<
n—mk+k\ (k _
v ( k )(t)zt<_1>k P
k,it: mk<n
t<k
B ¢ it (n—mk+k
SRS DI C i (i 10!
t k: mk<n
<k
and (2) . [

For the moments of the distributions of nonoverlapping word and the distributions of partial
nonoverlapping words, see [22].

3 Runs

Words that consists of the same letter are called run. For example 111 and 00 are runs. In the
following, we consider the distributions of runs of Os for independent and identically distributed
(ii.d.) binary trials.

Let n be the sample size. Fu et.al [8] showed the distributions of the following five statistics of
runs by Markov imbedding method.
For x € {0,1}", let
(i) Epm(zx), the number of 0™ of size exactly m in 2 (Mood [17]),
(ii) Gpm(x), the number of 0 of size greater than or equal to m in x (Makri et.al [16]),
(iii) Np (), the number of nonoverlapping 0™ in x (Feller [6], Godbole [9], Hirano [12], Muselli [18],
and Phillipou et.al [19]),
(iv) My m(x), the number of overlapping 0™ in z (Ling [14]), and
(v) Ly(z), the size of the longest run of Os in « (Makri et.al [16]).

For example, consider a run 00 in z = 0010000100. Then n = 10,m = 2 and Eig2(z) = 2,
Gl()’g(:t) = 3, N1072<£L‘) = 4, M1072([E> = 57 and Ll()(:t) =4.

An explicit formula for the distribution of L,, is given by that of G and

P(L, =1t) = P(Gpt+1 =0) — P(Gp; = 0),

see [8]. For other studies on runs see [1] and the references therein. In particular, explicit formulae
for the distributions of E,, ,,(x) were not known before except for those given by Markov imbedding
method [8]. In this article, we show new simple explicit formulae for the distributions of statistics
(i)—(iv) by a unified manner.



3.1 Explicit formulae for the distributions of runs

Let {0,1}* be the set of finite binary strings and A the empty word. Let Z = 1w for # = 01w where
w € {0,1}" and ¢ is a non-negative integer. If z = 0" for some n then = A. For z € {0,1}", define
Epm(2) = Ejz|;m(Z), Grm(®) = Gz m(T), Nom(2) := Nizg|m(Z), and My m(z) := Mz, (Z). For
example, T = 10000100 if z = 0010000100 and Eip2(z) = 1, Gioz2(z) = 2, Nig2(z) = 3, and
M1072(£IJ) =4. o _

To prove Theorem 3.1, we first enumerate E,G, N, and M by inclusion-exclusion principles
(Lemma 3.2) then we enumerate runs E, G, N, and M (Lemma 3.3).

Theorem 3.1 Let X1, Xo,..., be i.i.d. binary random wvariables from P(X; = 1) = P(1) and
P(X; =0) = P(0) for alli. Let X{' = Xy --- Xy, for all n. Then for all t,
(1)
_ — ki — 2)ko + k1 + k
PEan(Xp)=t)= Y (cppr(tT U ek
’ k1, k2
k1,ka:
(m41)k14+(m+2)ka<n,
t<ki+ks

ki + &
x ( 1? 2>P’ﬂ(10’”)13’“2(107”“) and

P(Bnm(XT) = t) = (P(Ent1m(XTH) = ) = PO)P(Epm(XT) = 1)) /P(1),

) PCunxt) =0 = 3 (T o) o
k: t<k,(m+1)k<n ’

P(Gnn(XT) = t) = (P(Grorm(X7FY) = 1) = PO)P(Grm(XT) = 1))/ P(1),

(iii) Let T be the maximum integer such that Tm + 1 < n.Then

_ n cfmn=>(mi+ Dk + > ki (>, ki
P =n= X (TS Rk
rki,... kr: 1y« ’n—m
S (mitki<n, 0<r<3, k;
t:Zi iki—’l‘

T
X HPk"(loim) and
i=1



Y 1 (=S (A D)k S kN (S ks
P =n= Y (TR
T7k17'-'7kn77n: Lyewesy m—m
S i(mti)ki<n, 0<r<X, k;
X H P (10741 and
i=1

P(Mym(XT) = 1) = (P(Mps1,m(X7H) = 1) = P(O)P(Mpm(XT) = 1)) P7H(1).

To prove the theorem, we need some definitions and lemmas.
Let
! . ny .__
N (wi,...,w; X7') = (s1 — 2,52 — 83, ..., 51)

where N(wy,...,w; X7) = (s1,..., ). For example N(100,1000;1010001) = (1,1) and
N’(100, 1000;1010001) = (0,1). Note that if wy is a prefix of we and (k1, ko) = N(w1, we; X7') then
k1 > k.

Lemma 3.2 Let X, Xo,..., be i.i.d. binary random variables from P(X; = 1) = P(1) and P(X; =
0) = P(0) for alli. Let wy C wy--- C wy be an increasing sequence of nonoverlapping words. Let

l
Aky,... k) = (” - 2imikit 2 k"') [T 2" w),

ki,...,k pale
B(ky,..., k) = P(N'(w1,...,w; X7") = (k1, ks, ..., k)),
Fu(z,..., k) = Z Alky, ... k)2 2R and
k‘17...7klt
Fp(z1,...,72) = Z B(kl,...,kl)zk1-~-zkl.
kl,...,kll
Then
FA(Zl,...,Zl) :FB(Zl—I—l,Zl+Z2—|—1,...,Zzi—|—1> and" (4)
FaY =1,(Y =1)Y,...,(Y =1D)Y" Y = F(y, Y2, ... Y. (5)

Proof) We show (4) for [ = 2. The proof of the general case is similar. Observe that

Ak k) = 3 B(tl,tg)CZ) 3 <t2;k2> (kltiS) (6)

ko<to, k1+ko<t1+to 0<s<ta—ko

1(4) is presented at Mathematical Society Japan, Okayama 2018.



Then

Fa(z1,2) = 22 > B(t1,t2) (,22) > <t2 . k2) (klti 5>

k1,k2 ko<ta, k1+ka<ti+t2 2 0<s<ta—ko

S (IR S A E

tr o ko<t N2 0<s<ta—ky, 0<ki—s<t;

= Z B(ty,t2) Z (;;22) z12€2 (z1 + 1)t1+t2—k2

t1,t2 ko<to
=3 Blt,t2) (21 + 1) (—2— 4 1)
P z1+1

=Fp(z1+ 1,21+ 22+ 1).
Next set 21 = X, 20 = X(X +1),...,20 = X(X + 1) in (4). Then
FA(X,X(X+1),.. . X(X+ 1) =Fp(X +1,(X + 1%, ..., (X +1)). (7)
By setting Y = X + 1 in (7), we have (5). [
Lemma 3.3 Let
Enmt={z € {0,1}" | Eym(z) =t} and Eppmy = {x € {0,1}" | Enm(z) = t}.

Then
P(EnJrl,m,t) = P(O)P(En,m,t) +P(1)P(En,m,t)- (8)

The sets (Gnm,t> Gnmit): (Nnmit> Nnmit), and (My i, My m ) are defined by similar manner and
(8) is true for them respectively.

Proof) Let EJ, ., = {0z € {0,1}"*! | E,y1,,(02) = t} and B}y, = {lz € {0,1}" |

Eyt1m(lz) =t}. Then
By = 102 € {0,110 | & € B} and By = {12 € {0,110 | 2 € By
Since Ept1mt = E2+Lm¢ U E711+1,m,t7 we have
P(Enti,mt) = P(Ep 1) + P(Epstmg) = PO)P(Enmi) + P(1)P(Epm.)-

The proof of the latter part is similar. ]
Proof of Theorem 3.1 (i). Let I = 2, w; = 10™, and wy = 10™*! in Lemma 3.2. By (4), we have

Fa(z1,22) = Fp(z1 + 1,21 + 22 + 1). (9)
Set z1 =x —1 and 22 =1 — z in (9). We have
Fy(x —1,1—2) = Fp(x,1)

= Z P(N/(wl,wg) = (k‘l,k'g))l‘kl
ki,k2:(m+1)k1+(m+2)ka<n

6



- Z Z P(N/(wl,wQ) = (lﬁ, kz))xkl

k1 ko:(m4+1)k1+(m+2)ka<n

=" P(Ep = kr)z". (10)
k1
On the other hand,
— Dk — 2
Fa(z —1,1—z) = Z n= (ma Dk = (m o+ 2)ks + ka+ ko PR (w1) P™ (ws)
kla k'2
kl,kzt
(m+1)k1+(m+2)ka<n
X (z—1)" (1 —z)*
k1, ko
kl,kzt
(m4+1)k1+(m+2)ka<n

% (SL’ _ 1>k1+k2

_ 3 (= 1)1 2kt (n = (m+ Dk — (m;2)ka + ki + kg) (kl + kg)

i k1, ko t
(m4+1)k14+(m+2)ka<n
t<ki+kz

x PR (wy) P*2 (wy)at. (11)

By (10) and (11), we have the first part of (i). The latter part of (i) follows from Lemma 3.3.
Proof of Theorem 3.1 (ii). Let I =1, w; = 10™ in Lemma 3.2. Then F4(2) = Fp(z +1).

Fp(z) = Fa(z—1)
k<n

k:(m+1)

S T el [ IEE

k,t:(m+1)k<n,t<k
D e (”_ (m+1>k+k>Pk(w)zt.
k,t:(m+1)k<n,t<k k-t

On the other hand, F(2) = >, P(Gpnm = k)z* and we have the first part of (ii). The latter part
of (ii) follows from Lemma 3.3.

Proof of Theorem 3.1 (iii). Let w; = 10™,wy = 10°™,... ,wp = 107™ where T is the maximum
integer such that |wr| =Tm + 1 < n in Lemma 3.2. Since
Fp(y,Y? . .. vT)= > Blky,... kr)Y=t
kl,...,kTZ
> (mi+1)ki<n

7



P(Nym =t) = P(3_ik; = t) is the coefficient of Y in Fp. On the other hand, by expanding the
left-hand-side of (5), we have

Fa(Y —1,(Y =1)Y,..., (Y =1)Yh
_ Z n— 3 |wilki + 3 kl) (Y — 1)2& H y (i=Dki pki (w;)

o ki,... ki

_ n_2|wl|kl+zk’b k; ) Zk’b _1\ry o iki—r

_kzk( ok >HP (wi) Y )Y . (12)
155K T

By setting [ = T and |w;| = mi+1for i =1,...,T in (12), we have the first part of (iii). The latter
part of (iii) follows from Lemma 3.3.

Proof of Theorem 3.1 (iv). Let wy = 10™,ws = 10™H, ... w,_pm = 107! in Lemma 3.2. Since
Fe(Y,Y?, .Y = > Bk, ... .kn_m)Y ="
k17'-'7kn77n:
2i(m+i)ki<n

P(Mym =t) = P(Y_ik; = t) is the coefficient of Y in Fp. By setting | =n —m and |w;| = m +i
for i = 1,...,n —m in (12), we have the first part of (iv). The latter part of (iv) follows from
Lemma 3.3. [ ]

Remark 3.4 In theorem 3.1 (ii), P(G,m = t) is an explicit formula for the distribution of nonover-
lapping word 10", which is a special case given in [22].

Remark 3.5 It is straightforward to extend Theorem 3.1 to i.i.d. random variables that take in-
finitely many values. Let pj, j = 0,1,... be a sequence of non-negative reals such that ) ipj =
1. Let Y1,Ys,...Y, € {0,1,2,...} be iid. trials from Q(Y; = j) = p; for all ¢,j. Then the
distributions of runs of zeros for infinitely many alphabets are given by Q(E,,(Y") = t) =
P(En,m<X{L> = t)v Q(Gn,m(yln> = t) = P(Gn,m(X?) = t)a Q(Nn,m<}/in) = t) = P(Nn,m<X?) = )7
and Q(M,, ., (Y]") =t) = P(Mym(XT) = t) for all ¢, where X;,..., X, are binary i.i.d. trials with
P(X;=1)=1-—po andP(X; = 0) = po for all i and P(E, ), P(Gnm), P(Nnm), and P(Mym)
are given by Theorem 3.1 with P.
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