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1 Introduction

On a filtered probability space (€2, F, (Fi)i>0,P) , we shall consider the following system of stochastic
differential equations for a pair (X%, X?) of N -dimensional stochastic processes:

t
x? = 9+/ Vo(s, X% Law(X%), X ds+2/ (s, X Law(X?), X,)dB’ (1)
0
for ¢ > 0 with the distributional constraint
(X0t >0] := Law(X?,t > 0) = Law(X;,t > 0) =: [X;,t > 0], 2)
where V; : [0,7] x RV x Po(RY) x RN — RN, 4 = 0,1,...,d are some smooth coefficients,
B := (B',---,B%) is the standard d-dimensional Brownian motion. We assume the initial value

0 € P2(RY) is independent of B and Xo,and X is independent of B. Here, Py(RY) is the set of
probability measures on R™ with finite second moments. We equip P»(R"Y) with the 2-Wasserstein
metric, W5 . For a general metric space (M,d), we define the 2-Wasserstein metric on P2(M) by
Walp,v) = infrep, , (fy;r @ (@, y)11(dz, dy))'/?, where P, denotes the class of probability
measures on M x M with marginals ; and v . Note that the law [X?] of X? depends on the law [X ]
of X. and they are the same marginal law. Setting BY = ¢, t > 0, the above equation is rewritten as

Xf:9+2/ Vi(s, X0, [X9),X)dB:; t>0, )
[X;,>0] = Law (X;,t>0) = Law (X/,t >0) = [X/,t >0].
We call the system (1) with the constraint (2) the system of directed chain stochastic differential equation.

For example, with N = 1, u € [0, 1], and some smooth functions boi : Ry x RxR — R, for
i = 0,1,...,d, we define the coefficients

Vi(t,z, p,y) ==ubgi(t,z,y) + (1 — u)/ bo,i(t, x, 2)dp(z)
R

as a linear combination of two terms. When u = 0, the equation becomes a McKean-Vlasov equation;
When u = 1, there is no contribution from the distribution [X].

Proposition 1 (Uniqueness of weak solution). Let p1g € P2(RY) be a fixed reference measure. Suppose
that Vi, © = 0,1,...,d are Lipschitz continuous and grow at most linearly in the sense that for every
T > 0, there exists a constant cp such that for every 0 < t < T, x1,y1, 2,y € RN, ui,pup €
Po(RY),

sup|Vi(t, z1, p1,y1) — Vi(t, o2, pa, y2)| < er(lzn — 22| + |1 — ya| + Wa(p, p2) “)
(]
sup sup [Vi(t, z, 1, y)| < er(L+ 2|+ [y| + Wa (g, to)) - (5)
i 0<t<T

Then there exists a unique weak solution (X%, X.,B) (Q,F,(F:),P) to the system (1) of stochastic
differential equations with the distributional constraint (2).
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The analysis of the special case with N = d = 1, V4 = 1 is considered in [DFI]. The name,
directed chain, is coined from the fact that the joint distribution of (X i X .) in (1) can be approxi-
mated by the limit of the joint distribution of (X!, X?2) from a finite particle system on the vertexes
i = 1,...,n, where the process X’ at vertex i depends on X’*! at vertex i + 1 via the equation
dX} = Vo(t, X}, 7y, X;T1)dt + dB(t) with the empirical measure 7, := n~' > 7" | dx; of the par-
ticle system for i = 1,...,n—1 and dX} = Vy(t, X', 1i;, X} )dt +dB"™(t), t > 0. Here, §, is the
Dirac measure at the point . Under some reasonable assumptions, the joint distribution of (X1, X?)

converges weakly to that of (X% X.) in (1), as n — occ.

The motivation of studying (1) comes from the interacting particles of sparse network [2], [10], [16]
as well as the mean field games [5], [7], [11], [13], [18], particularly on the infinite random graph. In this
short note, we discuss the smoothness of the joint distribution. Smoothness of solution to MCKEAN-
VLASOV equation has been studied by [1], [8], [9].

2  Smoothness

2.1 LION’s derivatives in the Wasserstein space P»
Let us recall the Wasserstein distance between two measures p, v € Pa(R) is written as
Walp,v) = inf{[|X =Yl : [X]=p,[Y] = v}.
For a function u : P, — R, we denote by U “extension” (or lift) to L2(Q), 7', ') defined by
U(X)=ulLaw(X)), Law(X)=[X]=pu.

Here, (€, F',]P") is an atomless Polish space. Following [6], we say w is differentiable at [X] € P, if
there exists X’ such that [X'] = [X] and the lift U is Fréchet differentiable at X’ .
For example, when u : Po(RY) — R is given by

uw:ﬂ@mmm>

for some smooth functions ¢; € C2°(RY), then U(X) and its gradient DU (X) are given by

n n

UX) = [[Ele:i(X)]; [X] = p. DUX) = > ([]Elei(X)])Dei(X),

i=1 i=1  j#i

and hence, for every v € RV, W e PQ(IRN ),

DMMU@)=§i<I14W¢N@®N@)D%@%

i=1  j#i

which does not depend on the random vector X .

2.2  Smoothness of coefficients

We say V : Ry x RV x Po(RY) x RV — R belongs to C;’Lli’;, if each component V¢ of V =
(V1,..., V) has bounded, Lipschitz continuous derivatives 0,V?, dV' in the second and fourth
variables, respectively, in the sense of P.L. LIONS [6] with at most linear growth property, i.e., there
exists a constant ¢ > 0 such that

0.V (8,2, 1,9, 0)] + [V (E. 2, g, 0) | + 10,V (E 2, oy, )| < e,
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|a,uvi(t7 T, Uy Y, U) - auvi(t7$,7 Nl>y,av)| S C(|$ - 33‘,| + |y - y/| + |U - U,| + WQ(M? :u,))

for (t,z, p,y,v),(t, 2", 1,y ,v") € [0,T] x RN x Po(RN) x RY . Moreover, we say V belongs to
Cf Lklk if it has bounded, Lipschitz, k£ times derivatives o705 aaw in multi-indexes («, 3,7,7),
la| + |8] + |7 + 3| < k with at most linear growth property.

Now we consider the pathwise-unique, strong solution to auxiliary stochastic equation

d t ~ .
PAL o /0 Vi(s, X=0 [X9), X,)dB! (6)
=0

(4

given the solution pair (X' ,)N( .) in (1). More specifically, we set Xo =: 6 and

B d t ~ - .
X7 — 5 3 [ Vil X309, (X0, Ko)aB). @
. 0

(61,6

Then by the pathwise uniqueness, we have Xy le—p = Xs‘g; 0<s<T.

2.3 Flow property

For different initial points z, 2’ € R" , the corresponding solutions X*[?-¢ and X 21010 in (7) satisfy
that for every 1" > 0, there exists a constant ¢y > 0 such that

E[ sup ‘X:m[t‘}]ﬁ_ Xx’,[@],g‘Z] < CT‘{L' _x/’2
t<s<T

by Lipschitz continuity and Burkholder-Davis-Gundy inequality. With a shghtly abuse of notation, we
write X108 for the process X’ L8 ith Xt 100 — 4 and (X.w Xte) for the process (X X
with (Xtt’e, Xtt 9) = («9,«9) , we have the flow property

t,2,[0],0 [ -t,01 >t,0 0 ~  Tt,0 ~. 7
(Xﬁ’Xs X7, X s ,Xﬁ’XS ,Xﬁ’XS ) — (Xﬁ,%,[m,e ’Xt,e 7Xt,0); 0 S t S s S r S T.

s s

2.4 Partial Malliavin Calculus

Let us consider the Malliavin derivative operator D and its adjoint operator §. Let o be the N X d
matrix with columns Vj,...,V,. If there is no interaction with the neighborhood process X., the
McKean-Vlasov equation in (6) has the derivative

axxf’["} = DTXf’[e}aT(JUT)_l(r, Xﬁ“[e], [Xf] )azXff?w] ;o r<t,
however, because of the interaction with X, , in general,
0, X5 £ D X067 (60T (e, x21 [X0], X, )0, X200, <t

To overcome this difficulty, we shall apply the following partial Malliavin derivatives from [15], [19].
Let us take the rational numbers Q7 := QN[0, 7] in [0, 7] and define the o -field G := o({X;,t €
Qr}) (countably generated) and the family of subspaces defined by the orthogonal complement

K(w) = (DX;(w),t € Q)"



to the subspace generated by {DX,(w),t € Qr}. Then the family H := {K(w),w € Q} hasa
measurable projection. We define the partial derivative operator D™ : D12 — L2(Q,H), namely, for
F € DY?, D"F = Proj, (DF) = Proj ., (DF)(w) with associated norm

k
1E e = (E[E] + > E[IDHOFRE),
j=1

where DU) is the j-th order derivative and D™U)F := Proj, (DY F) = Proj s (DY F)(w).
Similar to the Malliavin calculus, there is an adjoint operator dz(u) = &(Projy(u)) of D* if
Proj,,u € Dom(§), as well as the integration by parts formula E[(u, D?F)] = E[(Proj,u, DF)] =
E[F §yu] for any u € Dom(dy), F € D12,
Let E be a separable Hilbert space. For r € R,q, M € N let us define the family K#(E, M) of
processes W : [0, 7] x RN x Py(RN) — DM:>°(E) satisfying the following:

w)

(t,z,[0]) = 0]05050(t,x,[0],v) € LP(R)

exists and continuous for all p > 1 and multi-indexes («, 8,v) with |a| + 8] + || < M, and

sup  sup

1
1830505 (t, 2, 0], v) |l ey < C(1+ ||+ [|0]]2)
ve(RN)E8 te[0,T] H

/2 -
for every p > 1, m € N and multi-indexes («, 8,v) with |a| + |3| + |y| + m < M. This is a
modification of K{ in [9] for the smoothness of the density function of X 0]

Proposition 2. Assume V; € C’; fi}jl(}RJr x RN x Py(RY) x RN RN). There exists a modification of

[60]

X% such that the map x — th " is almost surely differentiable, and for t > 0,

d + _ ‘
0. X80 = tdy + 3 / aVi(s, X210 [x9), X,)9, X=la B
i=0 70

[6]

The maps 6 — X7, 0 — X, are Fréchet differentiable in L?($2) with gradients DX, 17 and

DX/ 101 satisfying

d t _ _ 4
DXy = 30 / VDX 4+ GVDX,(7) + DV (DX’(7)))dB!
1=0
d t _ _ 4
DXIy) =7+ / OV:DX!(y) + DV:DX,(7) + DV (DX’ (1)) dB:,
i=0 0

for v € L*(Q), t>0.

Moreover, the map [0] — X, 10

is differentiable with the derivative 0, X ; 10] satisfying

d + _
9, %7 (w) =3 /0 {aw (s, X710, [X7], X,) 0, X ) (w)
=0
+ Vi (s, X2 [X9), X) 8, X4 (v)

+E [M(s, X210, [x0), X, (X;*W])’)ax(xg’[@])']

tE [%(s, X210, [x7], X, <X£’>’)au<XS’M>'<v>] }dBé ’
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where (X?') is a copy of X7, 8x(X;J’[6]) is a copy of 0, Xy’ 1% and 9 (X [6]) OM(XSI’[Q]);ZG,
on a probability space with DXf’M (v) = E'[0, X" [0 }(9’) '] . Furthermore, X, w[0 },Xt € DY, and
DZ{X:C’M = (DZ{J (Xx’[a])i)lgjgj\],lgigd satisﬁes, for 0 <r<t

DX — o (r, X210, X +Z / (av s, X210 [x?), X )D,ﬁxgﬁv[@l)ng,

where 0’(7’, Xf’[e], [Xf],)?r) is the N x d matrix with columns V7, ..., Vy.

2.5 Characterization of the auxiliary process

Assume V; € C{j]ﬁj([o T] x RN x Py(RY) x RN;RY) for i = 1,...,d. Then the map satisfies
(t,, [0]) = X7 € KRN k).

If, in addition, V; are uniformly bounded, then (¢, z,[0]) — X 1 ¢ KY(RY, k) . Proof is based on the
first order derivatives (cf. [9]).

Now we define operators I(]Z,) .7 =1,2,3, I(li) , I?i) on ¥ € K{(R,n) with a = (i), (t,z,[0]) €
[0, 7] x RN x Py(RN),

I{ (0)(t,, [0]) = %59{ (r = W(t,z,[6) (0 (o0 ") " (r, X, [X]], X0) 0 X);)
N
Ty (D)t 2, [0]) ==Y I(;)((0aX7"); 1 U (t,, [6]))),
7j=1
I3 (0)(t, 2, [0]) =1L (9)(t,x, [0]) + Vi0 U (t, x, [0]) ®

I(lz) (\IJ)(t7 €z, [9] ) Ul)

%IH

o < = (o (o0 ") 0, X7 [XT), X))
0. XPI(0, X 10, X 01)) W (1, 1, [9])> ,
I3 (0) (¢, , 6], 01) =T (0)(t, 2, (6], v1) + VEH(B,L)i(t, x, [6],v1)

2.6 Integration-by-parts formulae

Assume V; € C’I]f fl; ([0, 7] x RN x Po(RN) x RY; RY) and also the uniform ellipticity of the diffusion

coefficients. For f € C3°(RN,R), ¥ € K¥(R,n), we have
o If || <nAk,then

E[02 (f(X7) Wt o, [0))] =t V2E[ £ (X 1L (W) (2,2, [0))] 5
o If |a| <n A (k—2),then
E[(0°f) (XY w(t 2, [0))] = ¢~ PE[F (X 12 () (2,2, [0))]
o If |a| < nAk,then
LE[F (X7 w(t,x, 0)] = t7112E[£ (X)) B (w) (t, 2, 0])]
o If |a| +|8] < nA(k—2),then

OCE[(0° 1) (X)W (t, x, [0])] = ¢~ (HEDRR] (X 13 (139)) (8, 2, [6])] -
5



For f € C°(RY,R) and ¥ € K¥(R,n), we have
o If |B] <nA(k—2),then

E[0] (F (X)) ) w(t,a, 10)] = ¢ PR (X7 ) Zh(w) (¢, 2, 6], 0)] ;
o If 3] <nA(k—2),then
OPE[f (X7 ) w(t,z, [0))] (v) = t 1R £ (X7 N ZE (W) (1, 2, [0],0)] ;

o If |o| + [B] < nA(k—2),then
TE[(0 AN, x, 0))] (v) = ¢~ (el+I8D/2E f(va["])zg (I2(0)) (t, z, 0], )] -

Forevery f € C°(RY;R), multi-index « on {1,...,N} with |a| <k —2,

1

Yo% :)3,51 _
OFE[f(X;™)] = Tl

E[f(X;*) - Ja(D)(t @)
where 6, is a Dirac point mass at € RY , and
Jo)(@)(t,z) = I0y(®)(t,@,0,) + T3 (t,%,0,); t>0
with Jo(®) = Jy, 0Ja, , 00 Jy, (P). Particularly, there exists a constant ¢ > 0 such that

(1 + | )

OSELFXT N < el flloo - ——ar72

for 0 <t < T, z€RY. Moreover, with |a| + 8] < k — 2,
. 1 .
B[O 1) (X7*)) = g B () BUD) 1. 2)]
2

and IE(JO,(l)) € Ké‘alHIﬁI(R,k —2—|a| —|8]). Thus, X;* = X?|y—, has a probability density

function p(t,z, z) such that (z,z) — 0292 p(t, x, ) exists and is continuous.

2.7 Smoothness of the joint density

Proposition 3. Ler «, 3 be multi-indices on {1,...,N} and k > |a| + |B| + N + 2. Under these
assumptions of the uniform ellipticity of o and the smoothness of coefficients V; € C’f Lk;pk the solution
X! to the directed chain SDE (1) with § = x € RN at time t > 0 has a density p(t,z,-) such that

(x,2) — 8%8? p(t,x, z) exist and is continuous. Moreover, there exists a constant C' which depends
on T, N and bounds on the coefficients, such that

10908p(t, 2, 2)| < C(1 + |z|)elF3IBH3N y—(N+lal+]5]) /2 ©)

for t € (0,T], x,z € RN . Furthermore, if V;, i = 0,...,d are bounded, then

(10)

2
020%p(t, 2, 9] < CHOCHOHAD /2 ey M)

t
for t € (0,T], z,z € RV,



The above existence and smoothness results on the marginal density p(t,z,z) of a single particle
can be extended to the joint distribution of adjacent particles. That is, We extend the pair (XY, o X ) to

consider the system (X LD I ,X ™), such that the joint distribution of adjacent pair is determined
by the directed chain stochastic differential equation 1, namely, [X*~! X*] = [X? X] for k =
1,...,m.

Corollary. Under the same assumptions on the coefficients, the joint density of (Xt ,Xt e ,)A(;tm)

exists and is continuous for t > 0. Particularly, the joint density of (X", 0 X .) exists and is continuous.

The applications of the smoothness of the joint distribution are the recursive factorization of the first
order Markov random field [16], some connection to a class of non-linear partial differential equations,
smoothness of the filtering equation and the analysis of master equation of the mean-field game and the
mean-field control problems on the directed chain graph.

2.8 Relation to PDE

Let us consider time-homogeneous coefficients. For the function U(t,z,[0]) := E[g(X} ’[9], xX)],
t €10,T], = € RN, by the flow property, we have

Ut +h,a,[0) = Elg(X7W 1X0D] = EU@ X0 x0)]

for t >0, 0 <t <T — h.Then we come up with a PDE of the form
(0 — L)U(t,z,[0]) = 0, (t,z,[0]) € (0,T] x RY x Py(RY),

U(O,IL’, [9]) = g($7 [9])7 ($7 [9]) GRN XPZ(RN)a

for some function g : RY x Py(RY) — R, where the operator £ acts on smooth enough functions
F:RY x Po(RY) x RV defined by

N

N
£ (o) =B | SV 0 0000, 0) 5 3 o 00, D), P, 0
i=1 ij=1
N i | X i
B V01000, w01, 0) + 5 Y- loa” (0,101 0)),0,, 0, (2,100
i=1 ij=1

(11)

cf. [4], [9] for MCKEAN-VLASOV SDE.

2.9 Relation to Mimicking problem

The mimicking problem is to obtain the marginal distribution of some non-Markovian process by a
unique strong solution to the stochastic differential equation

dY; = bo(Yy)dt + by (Y,)dBY(t); t>0, Y :=¢ (12)

for Y with some smooth functions by : RV — RN b, : RN — RNXN  BY is the n -dimensional
standard Brownian motion. cf. [3], [12], [17]. _

Conversely, it follows from the smoothness of the solution in Proposition 3 that there exist (X., X.)
and functions V;, i = 0, 1, such that (X, )N(o) are independent and



where the pair (X., X.) satisfies the directed chain equation
dX; = Vo(Xy, Xp)dt + Vi(Xy, X;)dB;; t>0, (13)

driven by another standard Brownian motion B independent of X.

Research supported in part by the National Science Foundation under grant DMS-20-08427. Part of research is
joint work [14] with M. MIN.
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