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ABSTRACT. We discuss H-basis in geometric structures with a dense/codense
independent subset, and algebraic n-gons in geometric structures to calculate
the ranks of H-structures in trivial/non-trivial independence of base geometric
structures.

1. NOTATIONS AND ALGEBRAIC DIMENSION

Let T be a complete L-theory and let M be a sufficiently saturated model of T'.
a,b,c, ... denote elements of M. @,b,¢,... denote finite tuples of M. A, B,C de-
note small subsets of M. We write a € acl(A) if [{o(a) : 0 € Aut(M/A)}| is finite.
The algebraic closure of A.

Let i(> 1) be a natural number. We put a<; := @1,...,8;. G<i = G1,...,0i—1-
d<1 = (Z)
We say that a<, = ai,a2,...,a, is algebraically independent over B if a; &

acl(Ba;) for each i < n.
We say that (M,acl(x)) has Steinitz exchange property if a € acl(Bb) \ acl(B)
implies b € acl(Ba).
We say that (M, acl(x)) is geometric if it has Steinitz exhchange property and
eliminates 3°°.

Assume that (M, acl(x)) has Steinitz exchange property. Then for any a<, =
ai,as,...,a, and B, after renumbering indices, there exists unique m(< n) such
that

a; ¢ acl(Bac;) for each i <m
a; € acl(Ba<,,) for each j > m

We write m = dim(a<,/B), the dimension of a<,, over B.
Basic properties on dimension
(1) If A C B, then dim(a/A4) > dim(a/B).
(2) Transitivity: If A € B C C, then dim(a/A) = dim(a/C) iff dim(a/A) =
dim(a/B) and dim(a/B) = dim(a/C)
(3) Sub-additivity: dim(ab/A) = dim(a/A) + dim(b/Aa).
(4) Finite coding: There exists a finite tuple b C B such that dim(a/B) =
dim(a/b).
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The independence relation by dimension
We write @ \Lgim ¢ if dim(a/b) = dim(a/be).

_ dim _ . . — dim _
Symmetry: @ | ;¢ implies ¢ | ;" a.
Proof. By using sub-additivity, we have dim(¢/ab) + dim(a/l;)_ = dim(&é[l;) =
dim(a/be) + dim(é/b). So dim(a/be) = dim(a/b) implies dim(¢/ab) = dim(¢/b).

Monotonicity: if a J/gim ¢ and ag C a, then ag J/gim z
Proof. By symmetry ¢ | 9™ a. By transitivity ¢ | §"™" ao. By symmetry again,

ao Lgim é.

Now we define A \L‘;m C if dim(a/B) = dim(a/BC) for any finite tuple a C A.
We intruduce the imaginarr element e € M if e = a/FE, where E(z,7) is an
()-definible equivalence relation with 1h(a) = Ih(Z) = lh(y) and some a C M.
For e € M®1 and A C M®? we write e € acl®¥(A) if [{o(e) : 0 € Aut(M®1/A)}]| is
finite.
The independence calculus: See [A].
A symmetric ternary relation * | * on M has the independence calculus if the
following 8 conditions hold:
(1) Normality: A | ,C implies A | , BC.
(2) Invariance: A | ,C and ABC = A'B'C" imply A" | ,, C'
(3) Monotonicity: A | ,C and Ag C A imply 4o | ,C
(4) Transitivity : If B C C C D, then
Al ,DifA| ;Cand A | . D
(5) Extention: There exists A’ =p A such that A" | ,C.
(6) Finite character: If @ | , C for any finite tuple @ C A, then A | , C.
(7) Local character: For any a, A C M, there exists A9 C A such that |Ag| <
|T| and @ \LAO A.
(8) Anti-reflexivity: a | , @ implies a € acl®i(A).

symmetricetransitiveslocal character holds modulo other properties of the in-
dependence calculus. We have the following: stable=-simple=-rosy(i.e.having the
independence calculus)<o-minimal

superstable(U < oo)=rsupersimple(SU < oco) =superrosy(UP < o0).

strongly minimal(0 < U < RM = 1,deggy = 1)= SU = 1 = UP = 1 <o-minimal.

2. NON-TRIVIALITY AND ALGEBRAIC n-GONS
Assume that (M, acl(x)) has Steinitz exchange property and put | = J/dim.
We say that a € M is non-trivial if there exists ag, az, ¢ such that a J/E as,a J/a as, as \Lé as
and a \’J//a as,as. Then we say that a, as, as is an algebraic triangle over b.

We say that a<, = a1, -, a, is an algebraic n-gon over A if dim(a<,/A) =n—1
and dim(a<y, \ {a;}/A) =n—1foreach 1 <i <n.

Then a;, a;, ai, is an algebraic triangle over Aa<y\{a;, a;j, ax}, because a; \’J//Aa< \fas aj, .
<n\{ai,

aj,ak}
so any point of n-gon is non-trivial.
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Fact 2.1. If a € M is non-trivial, then for each n < w, there exists b<,,—1, A such
that ab<p_1 is an algebraic n-gon over A.

Proof. The case n = 3 is clear. By induction hypothesis, assume that ab<,—_; is
an algebraic n-gon over A. As b, _1 is non-trivial, there exist b,,, b,1, ¢ such that
by—1b,bn+1 is an algebraic triangle over ¢. By an automorphism fixing b,_1, we
may assume that b,b,1C J/b B b<n—2A.
CLAIM: ab<,—2bnbn11 is an algebraic (n + 1)-gon over Ag.
Subclaim 1: dim(ab<,—2b,bp+1/AE) = n.

Asb,41 € acl(b,—1b,¢) and b, € acl(ab<,,—2A), we have b, 41 € acl(ab<,,—2b, AC).
On the other hand, we have b,¢c J/b B b<n—2A4, by J/Ebn_l and a € acl(b<,—14),
we have b, J/a ab<n_2A. As¢ J/b . ab<n_2Aand ¢ | b,_1, wehave e J/A ab<p—2.
Therefore dim(ab<y—2bpbpt1/AC) = n.

Subclaim 2: ab<,—2b, is independent over Ac. Similarly for ab<,,—2by41.
By b, ¢ acl(by,—1¢) and bpb,41C \Lb . b<n—2A4, we have b, ¢ acl(b<,_14¢) =

acl(ab<,—2A¢) as ab<,_1 is an algebraic n-gons over A.

We use the following : We have b,,b,,11 J/aA by b,bn11C J/b B Aandb,—1 | A.
Note that b, J/Aa brt1-

Subclaim 3: b<,_2b,b, 11 is independent over Ac.
Since bn_lbnbn+17is an algebraic triangle over ¢ and b,, \Lb%]E b<n_2A, we see that
by, \Lé b<p—2A. S0 b<y—2by, is independent over A¢. By byb,41¢ J/bnq b<n—24 and
bn_1 \|-/A bgn_g, we have bnbn+1bn_16 \|-/A bgn_g. If we had bn+1 S &Cl(bnbgn_gAE),
we would have b, 1 € acl(b, A¢). As we have b,b,, 11 J/EA, bnt1 € acl(b,e) follows,
a contradiction to b, J/a bt

Subclaim 4: ab<,,—2b,bp41 \ {b;} is independent over A¢ for each 1 < j <n—2.
Asb,_1 J/A abgn_g\{bj} and b, by, 41C \|-’b",1 abgn_gA, we have b,,b,,+1b,_1C \|-/A abgn_g\
{b;}. So ab<n—2\ {b;}by is independent over A¢. If we had b,,11 € acl(byab<p—2\

{b;}), we would have b,,11 € acl(b,Ac), a contradiction. O

3. H-STRUCTURE

Let M be a sufficiently saturated model of a complete L-theory T'. Suppose that
(M, acl(x)) has Steinitz exchange property. We add a unary predicate H(z) for a
dense/codense independent subset. Ly denotes L U {H}.

Definition 3.1. We say that (M, H(M)) is an H-structure if
(1) H(M) is independent: If ay,--- ,a, € H(M) are distinct, they are inde-
pendent over ().
(2) density: If A C M is finite dimentional and p(z) is a unary non-algebraic
L-type over A, then there exists a € H(M) such that a = p(z).
(3) codensity: If A C M is finite dimentional and ¢(x) is a unary non-algebraic
L-type over A, then there exists b & acl(AH (M)) such that b |= q(x).
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For A € M we say A is H-independent in M if A J/H(A) H(M), where H(A) =
H(M) N A. Note that if A is H-independent, then acl(A4) is also H-independent.
tp denotes L-type and tpy denotes Lp-type.

Fact 3.2. (1) For any (M,H(M)), there exists a sufficiently saturated H -
structure (M, H(M)) C (M, H(M)) with M is H-independent in M.

(2) Suppose that (M, H(M)) and (N, H(N)) are H-structures. If H-independent
tuples a C M,b C N with tp(a, H(a)) = tp(b, H(b)), then tpy(a) =
tpg (b). In particular, all H-structures are elementarily equivalent, let T""¢
be the common theory. If T eliminates 3%, then T"? is axiomatizable such
that all |T|*-saturated model of T are H -structures.

The following theories eliminate 3°°: strongly minimal theories, SU = 1 theories,
dense o-minimal theories and the p-adics in a single sort.

Let T be the theory of infinite dimensional countable vector space V over a
finite field. Put H(V) := {v; : i < w} a basis of V. Then (V, H(V)) is a model
of T but not H-structure because it does not satisfy codense property. Put
H;(V) :={v; : i > j}. Then (V,H;(V)) is a model of T but not H-structure
and (V, H;(V)) is not isomorphic to (V, Hy(V)) for j # k < w, so T is not w-
categorical. Put Hepen (V) = {ve; : i <w}. Then (V, Hepen (V) is an H-structure.

4. H-BASIS

~ Let A C M be H-independent. For any a C M we can take a finite tuple
h C H(M) such that a | ,; H(M) and ANh = (. Suppose that h is minimal

length. We show the uniqueness of h up to permutation.

Take such another A’ and let hi :zﬁ AR, h=hihs and B = BliLIQ.iAS H(M)
is an independent subset and hN A =h'N A =0, we have hy | hy. As Ais
H-independent, Ah; \LH(A)EI hohly, we have ho \LAE] Rl

Let @ = @1ao be such that a1 | AH(M) and as € acl(ai AH(M)). Note that
ay € acl(aiAhihy) \ acl(ay Ahy) and ay € acl(aiAhihj) \ acl(a;Ahy) by minimal-
ity of h and A'. Note that h) J/@Aﬁl he witnessed by ay. By a; | CH(M),
X_?Ve have (_llm(iL/Q/AiLlilg) = dlm(ﬁé/alAiLlﬁg) < dlm(ﬁé/&lAﬁl) = dlm(ﬁé/AiLl),
hy L 45, he2, a contradiction to the independency of H(M).

We write HB(a/A) := h, which is called H-basis of tp(a/A), where A is H-
independent. Note that HB(a/A) € acly(a, A) and HB(a/A) = HB(a/acl(4)).

Fact 4.1. (1) HB(ab/A) = HB(a/A)HB(b/AaH B(a/A)) for any H-independent
set A.
(2) If AC B are H-independent, then HB(a/A) C HB(a/B)H(B).
Proof. (1): Put hy := HB(a/A),hy = HB(b/aAhy) and h = HB(ab/A).
Asa J/AEI H(M), aAh, is H-independent, so we can consider hy = HB(b/aAhq).
Claim 1: B - iLliLQ. B B
Asa J/AE_I I}T(M)_ and b J«aAhleQ H(M), we have ab J/AEJIQ H(M) as desired.
Clauy 2: hlhg g h. _ B
Asab | . H(M), we have a | ,. H(M), so hy C h follows. On the other hand,
4
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we have EJ/&AE H(M), so BJ/&A}LB H(M), hy C h follows.

(2): Put h = HB(a/B). As a | .. H(M), we have aB | . H(M). As B is
H-ind?pendent, Bh J/H(B)E H(M). Sowegeta | H(M). So HB(a/A) C
H(B)h = H(B)HB(a/B). D

Question 4.2. If A C B are H-independent, then HB(a/B) C HB(a/A)?

Fact 4.3. Let (M, H(M)) be an H-structure.

(1) Suppose that A is H-independent, then acl(A) = acly(A).
(2) acl(AHB(A)) = aclg(A) for any A C M.

Proof. (1): acl(A) C acly(A) is clear.

We show that a & acl(A) implies a & acly (A).

The case that a € acl(AH(M)): Asa | , H(M) and A is H-independent, we see
that Aa is H-independent. By extension property take (a; : i < w) realizations of
tp(a/A) which are acl-independent over AH(M). As A is H-independent, we see
that Aa; is H-independent. By Fact 3.2 (2), we see that tpg(a;/A) = tpy(a/A) as
desired.

The case that a € acl(AH(M)): Take b € H(M) such that a € acl(Ab). By coheir
property take (b; : i < w) acl-independent realizations in H(M) of tp(b/A). Let
a; be such that a;b; = tp(ab/A). As Ab; is H-independent and Aa;b; C acl(Ab;),
Aa;b; is H-independent. By Fact 3.2 (2), tpy(a;b;/A) = tpy(ab/A) follows, as
desierd.

(2): aclg(A) C aclg(AHB(A)) is clear. By (1) and H-independence of AHB(A),
we have acly(AHB(A)) = acl(AHB(A)). As we have HB(A) € acly(A), we see
acl(AHB(A)) C acly(4). O

Proposition 4.4. Letb € acl(hq,--- , h, A) where A is H-independent, h=hi,- ,hy, C
H(M) and n is minimal. Then acly(bA) = acly (hA).

Proof. 'We have acly(bA) = acl(bAHB(bA)) by 4.3 (2). By 4.1 (1), HB(Ab) =
HB(A)HB(b/AHB(A)) follows. Since A is H-independent, we see acl(HB(A)) =
acl(H(A)). On the other hand we have b | ,. H(M). By minimality of &, h

Vi

HB(b/A) follows. Thus acl(H B(Ab)) = acl(H(A)HB(b/acl(A))) = acl(H(,/_l

So we have acly (bA) = acl(bAh) = acl(Ah). As Ah is H-indepedent, acl(Ah)
acly (Ah) follows. Therefore we have acly (bA) = acly (hA). O

H(B)hA

>

5. RANK IN (M, H(M)), WHERE M IS STRONGLY MINIMAL

Let Xy be an Lpy-definable set over A. We say that Xy is small if X C
acl(AH(M)). Otherwise, we say that Xy is large.
Let X be an L-definable set over A. By codensity of H, X is infinite iff X is large.
Clearly H(x) is small.

Fact 5.1. In a sufficiently saturated H-structure (M, H(M)), let Xg be an Ly-
definable set in M. Then there exists an L-definable set X in M such that Xy A X
is small.

Recall that X AZ C (X AY)U(Y A Z).

The case that the base theory is strongly minimal
(1) large Ly-type is unique: If Xy, Yy be large Ly-definable, then Xy A Yy is
5




small. (Because there exist infinite L-definable sets X,Y in M such that Xy A
X, Yy AY are small and X AY is finite.) This argument holds if there exists the
unique non-algebraic 1-type in geometric L-structures.

(2) H(x) has the unique non-algebraic type over H-independent set A: Suppose
that b,b’ € H(M) such that tpy (b/A), tpy (b'/A) are non-algebraic. Clearly b,b’ ¢
acl(A). As tp(AbH(AD)) = tp(AY H(AV')) (by strong minimality) and Ab, AV’ are
H-independent, we have tpy (Ab) = tpy (AY).

(3) It is shown that (M, H(M)) is w-stable by counting of types over countable
sets. By (2) RMy(H(z)) = 1.

The case that the base theory is strongly minimal and trivial
(1) Suppose that b € acl(AH(M)). Then by triviality either b € acl(A) or b €
acl(h) \ acl(A) for some h € H(M). So we see that RMpy(b/A) = RMy(h/A) =
RMpg(h) = 1. So RMpy(small type)< 1. As any large type has the unique large
extension, RMpy (large type)< 2.
(2) If acl(a) \ acl(D) is finite for all non-algebraic a € M, RMy(x = z) = 1.
(3) If acl(a) \ acl(() is infinite for all non-algebraic a € M , RMy(x = x) = 2.

The case that the base theory is strongly minimal and non-trivial
(1) Suppose that b € acl(AH(M)), where A is H-independent. Take
h C H(M) be minimal length such that b € acl(Ah). Then acly(Ab) = acly (Ah).
So RMg(b/A) = |h|.
(2) Let a<, be an algebraic n-gon over H-independent set A. By density, we
may assume that a<,—1 € H(M). Then a, ¢ H(M) follows. Then we see that
HB(a,/A) = a<p—1 and acly(Aa,) = acl(Aa<,—1) by Proposition 4.4. So we see
that RMpy(a,/A) =n — 1.
(3) Suppose that b ¢ acl(AH(M)). If b € acl(BH(M)), then RMy(b/B) < w.
Large extension of tp(b/A) over B is unique, we see that RMy(b/A) = w.

6. AMPLENESS AND TRIVIALITY

C_LSZ' denotes C_LQ, C_Ll, cee ,C_Li, C_L<7; denotes C_Lo, C_Ll, cee ,C_Li_l and C_L<0 = @
We say that (M, | ) is n-ample over ¢ if there exist ¢, a<, such that for any
0<i1<n

(1) a1 |, <
(2) acl®Y(Cac;a; 1) Nacl®d(cac;a;) = acl®d(Ca;)
(3) an L a0
If (M, | ) has weak canonical bases and a<pn+1 = Go, a1, ,an41 1S (n + 1)-
ample over ¢, then @y, -+ ,d,+1 is n-ample over ¢ag, so (n + 1)-ampleness implies
n-ampleness.
n-dimesional free pseudospace ((n+1)-many sorts and n-many incident relations)
is n-ample but not (n + 1)-ample. we have one-basedness<non-1-ampleness and
CM-triviality<>non-2-ampleness.

For any sequence (a; : i € I), we write ax,; = (a; : j € I\ {i}).
We say that (a; : i € I) is independent over A if a; | , 4.
We say that (@; : i € I) is pairwise independent over Aifa; | ,a; foranyi# j € I.
6



We say that T is trivial if any pairwise independent sequence in M4 is independent.

We say that (M, acl(x)) is trivial if acl(A) = U acl({a}) for any A C M.
acA
If (M, acl(x)) is not trivial, there exists a,b, ¢, B C M such that a € acl(bcB) \
(acl(bB)Uacl(¢B)). (Take a minimal size A =: Be such that acl(A) = U acl({a})

and if b & acl(A), then () # acl(Ab)\ (acl(A)Uacl(b)). Take a € acl(Bcb)a\e(f;cl(Bc) U

acl(b)). As |A| = |Bb|, we have acl(Bb) = U acl({d}). Soa ¢ acl(Bb), as desired.)

deBb
The triviality of (M, acl(x)) coincides with the triviality of (M, | ).

7. A LOVELY PAIR AND AMPLENESS

Let Lp = LU{P(x)}, where P(z) is a new unary predicate. Let £ > |T|*
We say that (M, P(M)) is a x-lovely pair if
(1) PIM)<MET
(2) Coheir property: For any A C M with |A| < k and any fininary L-type
p(ZT) over A with @ J/P(A) A and @ | p(Z), then p(Z) is realized in P(M)
(3) Extension property: For any A C M with |A| < k and any fininary L-type
p(Z) over A there exists a |= p(z) such that a | , AP(M).

If (M, | ) has independence calculus, then a k-lovely pair exists.
k-lovely pairs are elementarily equivalent, Tp denotes the theory of lovely pair,
where T' = Th(M). Any |T|*-saturated model of Tp is a lovely pair.
If T is simple, Tp is axiomatizable iff T" is low and has weak non-finite cover property.
If T is simple and Tp is axiomatizable, then Tp is also simple. [B-YPiV].

Fact 7.1. (1) If T is simple, one-besed and Tp is axiomatizable, then Tp is
simple and one-based. [B-YPiV].
(2) If T is stable, trivial and does not have finite cover property, then T is
n-ample iff Tp is n-ample for any n > 1 assuming a nice characterization
of forking in Tp: In general for A, B,C C M, we have

P
A | Be AP | BP,Cb(AC/P) | Ch(BC/P).
c cpP Ch(C/P)

The nice characterization of forking in Tp is as follows: For any P-independent
subsets A, B, C,

P
A| Be AP | BP,AC | BC.
c cp c
[CM-PP].

(3) If T has SU-rank one with QF, then T is one-based iff acl = aclp in Tp iff
Tp has SU-rank< 2 iff Tp is model-complete iff (M,acl) is modular over
P(M). [V1].

(4) If T is geometric(=having Steinitz exchange property for acl and elimina-
tion of 3°°), then T is weakly locally modular iff (M, acl) is modular over
P(M) iff acl = aclp in Tp. [BV1].
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(5) If T eliminates 3° and UP(T) = 1, then U%(Tp) < w. [B].
Moreover if T is weakly local modular, then U%(Tp) < 2. [BV1].

Question 7.2. If T eliminates 3°°, UP(T) = 1 and T is weakly local modu-
lar, then is Tp weakly locally modular? There is a proof containing serious gaps

in [BB-WKAP]. (We do not know whether AJ/';C and AP \J—/pBP CP imply
Aig’p C or not. And we can not find the reason for a \J‘/szl’ C in the proof of
Theorem 4.2 in [BB-WKAP].)

8. A DENSE INDEPENDENT SUBSET IN SUPERSIMPLE STRUCTURES AND
AMPLENESS

This section is almost due to [BV4]. We assume that (M, | ) is supersimple
and Let T'= Th(M). Fix a partial unary type II(z) over ) and let H(z) be a new
predicate.

We say that (M, H(M)) is H-structure associated to IT if
(1) If h € H(M), then = II(R).
(2) hy, -+, hy, € H(M) are distinct, then {hy, - ,hy,} is | -independent.
(3) Density: Let b C M and let II(z) C p(x) be a complete type over b such that
if a = p(x) then a | b. Then there exists h € H(M) such that h = p(z).
(4) Codensity: Let b C M and let p(z) be a complete type over b. Then there
exists a € M such that a |= p(x) and a | ; H(M).

An H-structure associated to II(z) exists. H-structures associated to II(x) are
elementarily equivalent, 73*¢ denotes the common theory of H-structure associated
to I(z). Tind is axiomatizable if T has two conditions (1) (2):

(1) For each formula ¢(x,§) there exists a formula ¢ (7)such that (there exists
a such that a |= p(z,b) and a | b) iff b |= (7).

(2) Let o(Z,y) and ¥(g, Z) be formulas. The following condition on ¢ is type-
definable: For any b |= ¢(7, ) there exists a = ¢(7, b) we have a L. b.

Any |T|*-saturated model of T{"? is a H-structure associated to II(z).
If T is supersimple and Tﬁ"d is axiomatizable, then Tﬁ”d is supersimple.

Fact 8.1. (1) [BV4] Let (M, H(M)) be an H-structure associated to II(x),
where M is supersimple. Then
aliBea L asoagy BH(M), HB(a/A) = HB(a/B).
(2) [BV3] Let (M, H(M)) be an H-structure, where SU(M) = 1. Suppose that
A =acly(A).
(a) a € Aiff SUg(a/A) =0

(b) a € acl(AH(M))\ A iff acly(ad) = acl(AHB(a/A)) iff SUg(a/A) =
|HB(a/A)|.

(¢) If a is trivial over A, then a € acl(AH(M)) \ A then SUg(a/A) = 1.
(d) If a is trivial over A and a & acl(AH(M)) then SUg(a/A) = 1.
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(e) If a is non-trivial over A, then a ¢ acl(AH(M)) iff SUg(a/A) = w.

Proof. (c) : By triviality there exists h € H(M) such that HB(a/A) = h. The
conclusion follows from (b).

(d) : If a ] B with B = acly(B), by HB(a/B) C HB(a/A) = 0, we have
a J//AH(M) BH(M). So a € acl(BH(M)). By triviality and a ¢ acl(AH(M)) we
have a € acl(B) \ acl(AH(M)). So SUg(a/B) = 0 follows by (a). Therefore we
have SUg(a/A) =1. O

Fact 8.2. (1) [BV3] There exists a non-trivial one-based strongly minimal the-
ory T whose T is not one-based. (V,+,0,H) be a vector space over
Q, where H(V) = {v; € V : i < w}. Then (V,+,0,H) &= T™. Let
u € V\N\HV). Putt = u+wv,t! = u+ve. Then HB(tt') = vive
because acly (tt') = acl(vivat’) as t —t' = vy — vy and tt/ J“sz H(V)
and tt" f H(V). We have tj/f ut’ as vy \Lfvg. If T was one-
based and acly (t) Nacly (ut’) = acly (0), then t | jut’. On the other hand
RMpy(t/ut’) = RMy(vi/ut’) <1 and RMg(t/t') = RMpy(viva/t') = 2. So
t j/fut’, a contradiction.
(2) If T is one-based and T"% is aziomatizable, then T is trivial iff Ti"d is
one-based.
(3) For any partial type T(x) over 0, if Tf{ég) s axiomatizable, T is n-ample iff
Tf{ég) is n-ample for any n > 2.
Let SU(T) = w®. Let cl(A) := {z € M : SU(z/A) < w*}. We say that cl(x) is
trivial if cl(A) = |, 4 cl({a}) for any A C M.
Fact 8.3. Suppose that SU-rank is continuous. Let II(z) be the union of all the

types over ) of SU = w®. Assume that Ti* is aziomatizable and T is one-based.
Then cl(x) on M is trivial iff T is one-based.

a€A

9. TRIVIALITY AND 7"
This section is due to [BV3].

Fact 9.1. (1) If T is strongly minimal and trivial, then RM g (T™4) < 2.
(2) If T is strongly minimal and non-trivial, then RM g (T"%) = w.
(3) If SU(T) = 1 and trivial, then SUy (T"?) = 1.
(4) If SU(T) = 1 and non-trivial, then SUg(T"?) = w.
(5) If UP(T) = 1 and trivial, then U, (T™4) = 1.
(6) If UP(T) = 1 and non-trivial, then U (T"4) = w.
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