GENERIC EXPANSIONS OF NATP THEORIES

HYOYOON LEE DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY

ABSTRACT. We show that adding a generic predicate P to an NATP theory preserves NATP, with the assumption of modular pregeometry and elimination of quantifiers and \exists^{∞} .

1. Preliminaries

Notation 1.1. Let κ and λ be cardinals.

- (i) By κ^{λ} , we mean the set of all functions from λ to κ .
- (ii) By $\kappa^{<\lambda}$, we mean $\bigcup_{\alpha<\lambda}\kappa^{\alpha}$ and call it a tree. If $\kappa=2$, we call it a binary tree. If $\kappa\geq\omega$, then we call it an infinite tree.
- (iii) By \emptyset or $\langle \rangle$, we mean the empty string in $\kappa^{<\lambda}$, which means the empty set. Let $\eta, \nu \in \kappa^{<\lambda}$.
- (iv) By $\eta \leq \nu$, we mean $\eta \subseteq \nu$. If $\eta \leq \nu$ or $\nu \leq \eta$, then we say η and ν are comparable.
- (v) By $\eta \perp \nu$, we mean that $\eta \not \leq \nu$ and $\nu \not \leq \eta$. We say η and ν are *incomparable* if $\eta \perp \nu$.
- (vi) By $\eta \wedge \nu$, we mean the maximal $\xi \in \kappa^{<\lambda}$ such that $\xi \leq \eta$ and $\xi \leq \nu$.
- (vii) By $l(\eta)$, we mean the domain of η .
- (viii) By $\eta <_{lex} \nu$, we mean that either $\eta \leq \nu$, or $\eta \perp \nu$ and $\eta(l(\eta \wedge \nu)) < \nu(l(\eta \wedge \nu))$.
- (ix) By $\eta \cap \nu$, we mean $\eta \cup \{(i + l(\eta), \nu(i)) : i < l(\nu)\}$. Let $X \subseteq \kappa^{<\lambda}$.
- (x) By $\eta \cap X$ and $X \cap \eta$, we mean $\{\eta \cap x : x \in X\}$ and $\{x \cap \eta : x \in X\}$ respectively. Let $\eta_0, \dots, \eta_n \in \kappa^{<\lambda}$.
- (xi) We say a subset X of $\kappa^{<\lambda}$ is an *antichain* if the elements of X are pairwise incomparable, *i.e.*, $\eta \perp \nu$ for all $\eta, \nu \in X$).

Let $\mathcal{L}_0 = \{ \leq, <_{lex}, \land \}$ be a language where \leq , $<_{lex}$ are binary relation symbols and \land is a binary function symbol. Then for cardinals $\kappa > 1$ and λ , a tree $\kappa^{<\lambda}$ can be regarded as an \mathcal{L}_0 -structure whose interpretations of \leq , $<_{lex}, \land$ follow Notation 1.1.

Definition 1.2. Let $\overline{\eta} = (\eta_0, \dots, \eta_n)$ and $\overline{\nu} = (\nu_0, \dots, \nu_n)$ be finite tuples of $\kappa^{<\lambda}$.

- (i) By $\operatorname{qftp}_0(\overline{\eta})$, we mean the set of quantifier-free \mathcal{L}_0 -formulas $\varphi(\overline{x})$ such that $\kappa^{<\lambda} \models \varphi(\overline{\eta})$.
- (ii) By $\overline{\eta} \sim_0 \overline{\nu}$, we mean $qftp_0(\overline{\eta}) = qftp_0(\overline{\nu})$ and say they are strongly isomorphic.

Let \mathcal{L} be a language, T a complete \mathcal{L} -theory, \mathbb{M} a monster model of T and $(a_{\eta})_{\eta \in \kappa^{<\lambda}}$, $(b_{\eta})_{\eta \in \kappa^{<\lambda}}$ be tree-indexed sets of tuples from \mathbb{M} . For $\overline{\eta} = (\eta_0, \dots, \eta_n)$, denote $(a_{\eta_0}, \dots, a_{\eta_n})$ by $\overline{a}_{\overline{\eta}}$. By $\overline{a}_{\overline{\eta}} \equiv_{\Delta, A} \overline{b}_{\overline{\nu}}$ (or $\operatorname{tp}_{\Delta}(\overline{a}_{\overline{\eta}}/A) = \operatorname{tp}_{\Delta}(\overline{b}_{\overline{\nu}}/A)$), we mean that for any \mathcal{L}_A -formula $\varphi(\overline{x}) \in \Delta$ where $\overline{x} = x_0 \cdots x_n$, $\overline{a}_{\overline{\eta}} \models \varphi(\overline{x})$ if and only if $\overline{b}_{\overline{\nu}} \models \varphi(\overline{x})$.

(iii) We say $(a_{\eta})_{\eta \in \kappa^{<\lambda}}$ is strongly indiscernible over A if $\operatorname{tp}(\overline{a_{\overline{\eta}}}/A) = \operatorname{tp}(\overline{a_{\overline{\nu}}}/A)$ for any $\overline{\eta}$ and $\overline{\nu}$ such that $\operatorname{qftp}_0(\overline{\eta}) = \operatorname{qftp}_0(\overline{\nu})$.

- (iv) We say $(b_{\eta})_{\eta \in \kappa^{<\lambda}}$ is strongly based on $(a_{\eta})_{\eta \in \kappa^{<\lambda}}$ over A if for all $\overline{\eta}$ and a finite set of \mathcal{L}_A -formulas Δ , there is $\overline{\nu}$ such that $\overline{\eta} \sim_0 \overline{\nu}$ and $\overline{b}_{\overline{\eta}} \equiv_{\Delta,A} \overline{a}_{\overline{\nu}}$.
- **Fact 1.3.** Let $(a_{\eta})_{\eta \in \omega^{<\omega}}$ be a tree-indexed set. Then there is a strongly indiscernible sequence $(b_{\eta})_{\eta \in \omega^{<\omega}}$ which is strongly based on $(a_{\eta})_{\eta \in \omega^{<\omega}}$.

The proof of the above fact can be found in [KK11], [KKS14] and [TT12]. It is called the *modeling property* of strong indiscernibility (in short, we write it the *strong modeling property*).

Definition 1.4. Let T be a first-order complete \mathcal{L} -theory. We say a formula $\varphi(x,y) \in \mathcal{L}$ has (or is) k-antichain tree property (k-ATP) if for any monster model \mathbb{M} , there exists a tree indexed set of parameters $(a_n)_{n \in 2^{<\omega}}$ such that

- (i) for any antichain X in $2^{<\omega}$, the set $\{\varphi(x,a_{\eta}):\eta\in X\}$ is consistent and
- (ii) for any pairwise comparable distinct elements $\eta_0, \dots, \eta_{k-1} \in 2^{<\omega}$, $\{\varphi(x; a_{\eta_i}) : i < k\}$ is inconsistent.

We say T has k-ATP if there exists a formula $\varphi(x,y)$ having k-ATP and

- If k = 2, we omit k and simply write ATP.
- If T does not have ATP, then we say T has (or is) NATP.
- ullet If T is not complete, then saying 'T is NATP' means that any completion of T is NATP.

Remark/Definition 1.5.

- (1) We say an antichain $X \subseteq \kappa^{<\lambda}$ is universal if for each finite antichain $Y \subseteq \kappa^{<\lambda}$, there exists $X_0 \subseteq X$ such that $Y \sim_0 X_0$. A typical example of a universal antichain is $\kappa^{\lambda'} \subseteq \kappa^{<\lambda}$ where $\kappa > 1$ and $\omega \leq \lambda' < \lambda$.
- (2) Let $\varphi(x;y)$ be a formula and $(a_{\eta})_{\eta \in \kappa^{<\lambda}}$ be a tree indexed set of parameters where $\kappa > 1$ and λ is infinite. We say $(\varphi(x;y),(a_{\eta})_{\eta \in \kappa^{<\lambda}})$ witnesses ATP if for any $X \subseteq \kappa^{<\lambda}$, the partial type $\{\varphi(x,a_{\eta})\}_{\eta \in X}$ is consistent if and only if X is pairwise incomparable. Note that T has ATP if and only if it has a witness for some $\kappa > 1$ and infinite λ by compactness.
- **Remark 1.6.** By [AK20, Corollary 4.9] and [AKL21, Remark 3.6], if $\varphi(x;y)$ has ATP, then there is a witness $(\varphi(x;y),(a_{\eta})_{\eta\in 2^{\leq \omega}})$ with strongly indiscernible $(a_{\eta})_{\eta\in 2^{\leq \omega}}$.
- **Fact 1.7.** [AKL21, Corollary 3.23(b)] Let κ and λ be infinite cardinals with $\lambda < cf(\kappa)$, $f: 2^{\kappa} \to X$ be an arbitrary function and $c: X \to \lambda$ be a coloring map. Then there is a monochromatic subset $S \subseteq 2^{\kappa}$ such that for any $k < \omega$, there is some tuple in S strongly isomorphic to the lexicographic enumeration of 2^k .
- **Fact 1.8.** [AKL21, Theorem 3.27] Let T be a complete theory and $2^{|T|} < \kappa < \kappa'$ with $cf(\kappa) = \kappa$. The following are equivalent.
 - (1) T is NATP.
 - (2) For any strongly indiscernible tree $(a_{\eta})_{\eta \in 2^{<\kappa'}}$ and a single element b, there are $\rho \in 2^{\kappa}$ and b' such that
 - (a) $(a_{\rho \frown 0^i})_{i < \kappa'}$ is indiscernible over b', (b) $b \equiv_{a_0} b'$.
- **Remark 1.9.** Let $\lambda = 2^{|T|} < \kappa < \kappa'$ with $cf(\kappa) = \kappa$ and $c: 2^{\kappa} \to \lambda$. If T is a complete NATP theory, by Fact 1.8, for any strongly indiscernible tree $(a_{\eta})_{\eta \in 2^{<\kappa'}}$ and a single element b, there are $\rho \in 2^{\kappa}$ and b' satisfying conditions (a) and (b) of Fact 1.8. On the other hand, by Fact 1.7, there is a universal antichain $S \subseteq 2^{\kappa}$ such that |c(S)| = 1.

Suppose that the length of each tuple a_{η} is finite. Then identifying λ with $S_x(b) =$ (the set of all complete types over b with $|x| = |a_{\eta}|$) and letting $c(\eta) = \operatorname{tp}(a_{\eta}/b)$ for each $\eta \in 2^{\kappa}$, we obtain $S \subseteq 2^{\kappa}$ such that for all $a_{\eta}, a_{\eta'} \in 2^{\kappa}$, $\operatorname{tp}(a_{\eta}/b) = \operatorname{tp}(a_{\eta'}/b)$. In fact, the proof of [AKL21, Theorem 3.27] shows that for any ρ in such S, there always exists b' satisfying (a), (b) of Fact 1.8.

Remark 1.10. Recall that if a complete theory T has ATP, then there are $\varphi(x;y) \in \mathcal{L}$ and a strongly indiscernible tree $(a_{\eta})_{\eta \in 2^{\leq \omega}}$ that witness ATP (Remark 1.6). For this witness, $\{\varphi(x, a_{\eta}) \mid \eta \in 2^{\omega}\}$ has infinitely many realizations.

Proof. Easy to verify using strong indiscernibility and compactness. \Box

Remark 1.11. Let T be a complete theory having NATP. Let $(a_{\eta})_{\eta \in 2^{\kappa'}}$ be a strongly indiscernible sequence over \emptyset and let $(b_i)_{i \in \omega}$ be an indiscernible sequence over $A := \{a_{\eta} : \eta \in 2^{<\kappa'}\}$ with $b_i = (b_{i,0}, b_{i,1}, \ldots)$ such that $b_{i,0} \neq b_{j,0}$ for $i \neq j \in \omega$. Suppose there is a regular cardinal $\kappa < \kappa'$ such that $2^{|T|+|b_0|} < \kappa$. By Remark 1.9, there is an universal anticahin $S \subset 2^{\kappa}$ such that $a_{\eta} \equiv_{b_0} a_{\eta'}$ for all $\eta, \eta' \in S$. Take $\rho \in S$ arbitrary. Put $p(x, a_{\rho}) := \operatorname{tp}(b_0, a_{\rho})$ for $x = (x_0, x_1, \ldots)$ and for each $n \in \omega$, put

$$p_n(x_0,\ldots,x_n) := \bigcup_{i\leq n} p(x_i,a_\rho) \cup \{x_{i,0} \neq x_{j,0} : i \neq j \leq n\},$$

which is consistent by b_0, \ldots, b_n . Then, for each $n \geq 0$,

$$p_n(x_1,\ldots,x_n,a_\rho)\cup p_n(x_1,\ldots,x_n,a_{\rho^{\frown}0})$$

is consistent. Thus, the type

$$p(x, a_{\rho}) \cup p(x, a_{\rho \frown 0})$$

has infinitely many solutions whose first components are distinct.

Proof. Suppose not. By compactness, there is a formula $\psi(x_0, \ldots, x_n, y) \in p_n(x_0, \ldots, x_n, y)$ such that

$$\psi(x_0,\ldots,x_n,a_\rho) \wedge \psi(x_0,\ldots,x_n,a_{\rho^{\frown}0})$$

is inconsistent. By strongly indiscerniblity, for any $\eta \geq \nu \in 2^{<\kappa'}$,

$$\psi(x_0,\ldots,x_n,a_\eta)\wedge\psi(x_0,\ldots,x_n,a_\nu)$$

is inconsistent.

On the other hand, since $b_0, \ldots, b_n \models \psi(x_0, \ldots, x_n, a_\rho)$, by the choice of S,

$$b_0,\ldots,b_n\models\psi(x_0,\ldots,x_n,a_n)$$

for all $\eta \in S$. Since S is a universal antichain, for any antichain X in $2^{<\kappa'}$,

$$\{\psi(x_0,\ldots,x_n,a_\eta):\eta\in X\}$$

is consistent. Therefore, $\psi(x_0, \ldots, x_n, y)$ witnesses ATP with $(a_\eta)_{\eta \in 2^{<\kappa'}}$, which contradicts the assumption that T has NATP.

Definition 1.12 ([TZ]).

- (1) A pregeometry (X, cl) is a set X with a closure operator $\text{cl} : \mathcal{P}(X) \to \mathcal{P}(X)$ such that for all $A \subseteq X$ and singletons $a, b \in X$,
 - (a) (Reflexivity) $A \subseteq cl(A)$;
 - (b) (Finite character) $\operatorname{cl}(A) = \bigcup_{A' \subseteq A, A': \text{ finite}} \operatorname{cl}(A');$
 - (c) (Transitivity) cl(cl(A)) = cl(A);
 - (d) (Exchange) If $a \in cl(Ab) \setminus cl(A)$, then $b \in cl(Aa)$.

- (2) Let (X, cl) be a pregeometry and $A \subseteq X$.
 - (a) A is called *independent* if for all singleton $a \in A$, $a \notin cl(A \setminus \{a\})$;
 - (b) $A_0 \subseteq A$ is called a generating set for A if $A \subseteq cl(A_0)$;
 - (c) A_0 is called a *basis* for A if A_0 is an independent generating set for A.

Definition 1.13. Let (X, cl) be a pregeometry and $A \subseteq X$. It is well-known that all bases of A have the same cardinality([TZ]).

- (1) The dimension of A, $\dim(A)$ is the cardinal of a basis for A.
- (2) A is called *closed* if cl(A) = A.
- (3) (X, cl) is called *modular* if for any closed finite dimensional sets B, C,

$$\dim(B \cup C) = \dim(B) + \dim(C) - \dim(B \cap C).$$

We say T is a (modular) pregeometry with acl or acl defines a (modular) pregeometry in T if $(\mathcal{M}, \operatorname{acl})$ is a (modular) pregeometry.

Remark 1.14. Assume T is a pregeomtry with acl. Let A, B be algebraically closed and c be a singleton not in $\operatorname{acl}(AB)$. Then for $D := A \cap B$, we have the following:

- (1) $\operatorname{acl}(cD) \cap \operatorname{acl}(AB) = \operatorname{acl}(D)$.
- (2) $\operatorname{acl}(cA) \cap \operatorname{acl}(AB) = \operatorname{acl}(A)$.
- (3) $\operatorname{acl}(cB) \cap \operatorname{acl}(AB) = \operatorname{acl}(B)$.

Moreover, if T is modular, then

(4) $\operatorname{acl}(Ac) \cap \operatorname{acl}(Bc) = \operatorname{acl}(cD)$.

Proof. (1)-(3) are easily obtained by exchange property.

(4): By finite character, we may assume that $\dim(A)$ and $\dim(B)$ are finite. It is enough to show that $\dim(\operatorname{acl}(Ac) \cap \operatorname{acl}(Bc)) = \dim(\operatorname{acl}(cD))$ because $\operatorname{acl}(cD) \subseteq \operatorname{acl}(Ac) \cap \operatorname{acl}(Bc)$ and they are algebraically closed.

By modularity and $c \notin \operatorname{acl}(AB)$,

$$\dim(\operatorname{acl}(Ac) \cap \operatorname{acl}(Bc)) = \dim(\operatorname{acl}(Ac)) + \dim(\operatorname{acl}(Bc)) - \dim(\operatorname{acl}(Ac) \cup \operatorname{acl}(Bc))$$
$$= (\dim(A) + 1) + (\dim(B) + 1) - (\dim(\operatorname{acl}(AB)) + 1)$$
$$= \dim(A) + \dim(B) - \dim(AB) + 1$$
$$= \dim(D) + 1.$$

2. Adding a generic predicate

The generic predicate construction was introduced in [CP98], and it is known that each of NTP₂ and NTP₁ is preserved by such a construction, proved in [Che14] and [Dob18] respectively. We collect some necessary facts from [CP98] first, and then show that NATP is also preserved using similar ideas given in aforementioned papers.

Throughout, consider a complete theory T in a first-order language \mathcal{L} , which contains some unary predicate S. The reader may note that the following fact is stated in [Che14] and [Dob18], but the location of brackets in the first item is corrected. The notation tp_T , acl_T or $\operatorname{acl}_{T_{P,S}}$ shall mean in the same way as in the previous sections, whose intended meaning will be clear from the context.

Fact 2.1. Assume that T has elimination of quantifiers and elimination of \exists^{∞} . Then

(1) [CP98, Theorem 2.4] $T_{P,S}^0$ has a model companion, denoted by $T_{P,S}$, which is axiomatized by T together with

$$\forall z \left[\exists x \left(\varphi(x, z) \land (x \cap \operatorname{acl}_{T}(z) = \emptyset) \land \bigwedge_{i < n} S(x_{i}) \land \bigwedge_{i \neq j < n} x_{i} \neq x_{j} \right) \right.$$

$$\to \exists x \left(\varphi(x, z) \land \bigwedge_{i \in I} P(x_{i}) \land \bigwedge_{i \notin I} \neg P(x_{i}) \right) \right]$$

where $x = (x_0, \dots, x_{n-1})$ and I ranges over all subsets of the set $\{0, \dots, n-1\}$. Indeed, above expression can be written in a first-order formula [CP98, Lemma 2.3].

For (2) and (3), let a, b be tuples of $(M, P) \models T_{P,S}$ and $A \subseteq M$.

(2) [CP98, Proposition 2.5 and Corollary 2.6(2)] $\operatorname{tp}_{T_{P,S}}(a) = \operatorname{tp}_{T_{P,S}}(b)$ if and only if there exists an \mathcal{L}_P -isomorphism between substructures:

$$f: (\operatorname{acl}(a), P \cap \operatorname{acl}_T(a)) \to (\operatorname{acl}(b), P \cap \operatorname{acl}_T(b))$$

such that f(a) = b.

(3) [CP98, Corollary 2.6(3)] $\operatorname{acl}_T(A) = \operatorname{acl}_{T_{P,S}}(A)$.

The following remark will be freely used.

Remark 2.2.

- (1) Note that $T_{P,S}$ is not necessarily complete, so ' $T_{P,S}$ is NATP' means that any completion of it is NATP (Definition 1.4).
- (2) Due to Fact 2.1(3), we can say $T_{P,S}$ also has the exchange property for cl = acl if T has this property. We will not distinguish between acl_T and $\operatorname{acl}_{P,S}$, so the subscripts for acl will be omitted.
- (3) If it happens that $T \models S(x) \leftrightarrow x = x$, then we simply write $T_{P,S}^0$ for T_P^0 and $T_{P,S}$ for T_P .

Theorem 2.3. Let T be a modular pregeometry with acl and let T have quantifier elimination and elimination of \exists^{∞} . If T is NATP, then T_P is also NATP.

Proof. Fix a monster model (M, P) $\models T_P$ (which is not necessarily a complete theory). Let κ and κ' be cardinals such that $2^{|T_P|} < \kappa < \kappa'$ and $cf(\kappa) = \kappa$. Suppose for a contradiction that Th(M, P) has ATP witnessed by an \mathcal{L}_P -formula $\varphi(x, y)$ with a strongly indiscernible tree $(a_{\eta})_{\eta \in 2^{<\kappa'}}$ (such a tree of this form exists, similarly as Remark 1.6). By [AKL21, Theorem 3.17], we may assume that |x| = 1.

Let $(\operatorname{acl}(a_{\eta}))_{\eta \in 2^{<\kappa'}}$ be a tree of tuples where each enumeration of $\operatorname{acl}(a_{\eta})$ starts with a_{η} . Then $(\operatorname{acl}(a_{\eta}))_{\eta \in 2^{<\kappa'}}$ itself might not be strongly indiscernible, but by Fact 1.3 and compactness, there is a strongly indiscernible $(\operatorname{acl}(a_{\eta}^*))_{\eta \in 2^{<\kappa'}}$ which is strongly based on $(\operatorname{acl}(a_{\eta}))_{\eta \in 2^{<\kappa'}}$. Then with dummy variables, an \mathcal{L}_P -formula $\varphi(x, y') \equiv \varphi(x, y)$ with a strongly indiscernible tree $(\operatorname{acl}(a_{\eta}^*))_{\eta \in 2^{<\kappa'}}$ witnesses ATP of T_P . Thus we may replace each a_{η} by a_{η}^* and say that $(\operatorname{acl}(a_{\eta}))_{\eta \in 2^{<\kappa'}}$ is strongly indiscernible; whenever an enumeration of $\operatorname{acl}(a_{\eta})$ is concerned in the rest of this proof, we refer to the enumeration fixed here. Note that $(\operatorname{acl}(a_{\eta}))_{\eta \in 2^{<\kappa'}}$ is strongly indiscernible over $D := \operatorname{acl}(a_{\emptyset}) \cap \operatorname{acl}(a_{0}) (= \operatorname{acl}(a_{\eta}) \cap \operatorname{acl}(a_{\nu})$ for any $\eta, \nu \in 2^{<\kappa'}$).

Put $A = \{a_{\eta} : \eta \in 2^{<\kappa'}\}$. Recall that by Remark 1.10, $\{\varphi(x, a_{\eta}) : \eta \in 2^{\kappa}\}$ has infinitely many realizations. Thus (by Ramsey's Theorem and compactness) we can find a non-constant A-indiscernible sequence $(b_i)_{i<\omega}$ not in $\operatorname{acl}(A)$ such that each b_i realizes $\{\varphi(x, a_{\eta}) : \eta \in 2^{\kappa}\}$. For each i, put \bar{b}_i some fixed enumeration of $\operatorname{acl}(b_i D)$ starting with b_i such that $\bar{b}_i \equiv_A \bar{b}_0$.

Let $B = \bigcup_{i < \omega} \operatorname{acl}(b_i D)$, $C = \{\operatorname{tp}(\operatorname{acl}(a_{\eta})/B)) : \eta \in 2^{\kappa}\}$, $f : 2^{\kappa} \to C$ be a function such that $f(\eta) = \operatorname{tp}(\operatorname{acl}(a_{\eta})/B)$ and $c : C \to S_{y'}(B)$ be an inclusion map where $|y'| = |\operatorname{acl}(a_{\eta})|$. Then letting $\lambda = 2^{|T_P|} (= |S_{y'}(B)|)$, we can find a subset $S \subseteq 2^{\kappa}$ given in the Fact 1.7 so that

- for any $\eta, \nu \in S$, $\operatorname{tp}(\operatorname{acl}(a_{\eta})/B) = \operatorname{tp}(\operatorname{acl}(a_{\nu})/B)$;
- for any $k < \omega$, there exists some tuple in S strongly isomorphic to the lexicographic enumeration of 2^k .

Now, choose an element $\rho \in S$ arbitrary, put $p(\bar{x}, \operatorname{acl}(a_{\rho})) = \operatorname{tp}_{T}(\bar{b}_{0}/\operatorname{acl}(a_{\rho}))$. By Remark 1.11, $p(\bar{x}, \operatorname{acl}(a_{\rho})) \cup p(\bar{x}, \operatorname{acl}(a_{\rho^{-0}}))$ has infinitely many realizations, whose first coordinates are all distinct. Then by compactness, we can find \bar{b} such that $\bar{b} \models p(\bar{x}, \operatorname{acl}(a_{\rho})) \cup p(\bar{x}, \operatorname{acl}(a_{\rho^{-0}}))$ and the first element, say b, of \bar{b} is not in $\operatorname{acl}(A) \cdots (*)$. Via an elementary map, \bar{b} is an enumeration of $\operatorname{acl}(bD)$.

By Remark 1.14, 2.2(2) and that $b_0 \notin \operatorname{acl}(A)$, following relations between algebraic closures hold (†):

- (1) $\operatorname{acl}(b_0 D) \cap \operatorname{acl}(a_\rho a_{\rho \cap 0}) = \operatorname{acl}(D);$
- (2) $\operatorname{acl}(b_0 a_\rho) \cap \operatorname{acl}(a_\rho a_{\rho \cap 0}) = \operatorname{acl}(a_\rho);$
- (3) $\operatorname{acl}(b_0 a_{\rho \frown 0}) \cap \operatorname{acl}(a_{\rho} a_{\rho \frown 0}) = \operatorname{acl}(a_{\rho \frown 0});$
- (4) $\operatorname{acl}(b_0 a_{\rho}) \cap \operatorname{acl}(b_0 a_{\rho} a_{\rho}) = \operatorname{acl}(b_0 D) (= \overline{b_0}).$

Let \bar{c}_0 be an enumeration of $\operatorname{acl}(b_0 a_\rho) \setminus (\operatorname{acl}(b_0 D) \cup \operatorname{acl}(a_\rho))$ and denote $\bar{b}_0 \setminus \operatorname{acl}(D)$ a subsequence of \bar{b}_0 , formed by deleting coordinates of \bar{b}_0 in $\operatorname{acl}(D)$. By (\dagger) and Remark 2.2(2), the sets of all coordinates of $\bar{b}_0 \setminus \operatorname{acl}(D)$, \bar{c}_0 and $\operatorname{acl}(a_\rho a_{\rho^{\frown}0})$ are pairwise disjoint.

Recall $p(\bar{x}, \operatorname{acl}(a_{\rho})) = \operatorname{tp}_T(\bar{b}_0/\operatorname{acl}(a_{\rho}))$ and $\bar{b} \models p(\bar{x}, \operatorname{acl}(a_{\rho})) \cup p(\bar{x}, \operatorname{acl}(a_{\rho \cap 0}))$. Using \mathcal{L} -elementary maps f_0, g_0 where f_0 fixes $\operatorname{acl}(a_{\rho}), f_0((\bar{b}_0 \setminus \operatorname{acl}(D)) \operatorname{acl}(a_{\rho})) = (\bar{b} \setminus \operatorname{acl}(D) \operatorname{acl}(a_{\rho}))$ and $g_0((\bar{b}_0 \setminus \operatorname{acl}(D) \operatorname{acl}(a_{\rho}))) = (\bar{b} \setminus \operatorname{acl}(D) \operatorname{acl}(a_{\rho \cap 0}))$, we obtain the following enumerations which are automorphic images of \bar{c}_0 :

- \bar{c}_{ρ} of $\operatorname{acl}(ba_{\rho}) \setminus (\operatorname{acl}(bD) \cup \operatorname{acl}(a_{\rho}))$ and
- $\bar{c}_{\rho \frown 0}$ of $\operatorname{acl}(ba_{\rho \frown 0}) \setminus (\operatorname{acl}(bD) \cup \operatorname{acl}(a_{\rho \frown 0}))$.

Note that

- $(\overline{b} \setminus \operatorname{acl}(D))\overline{c}_{\rho} \operatorname{acl}(a_{\rho})$ is an enumeration of $\operatorname{acl}(ba_{\rho})$ and
- $(\overline{b} \setminus \operatorname{acl}(D))\overline{c}_{\rho \frown 0} \operatorname{acl}(a_{\rho \frown 0})$ is of $\operatorname{acl}(ba_{\rho \frown 0})$.

Now let

$$q(\bar{x}\bar{w}, \operatorname{acl}(a_{\rho})) = \operatorname{tp}_{T}((\bar{b}_{0} \setminus \operatorname{acl}(D))\bar{c}_{0}/\operatorname{acl}(a_{\rho})).$$

Then for any formula $\psi \in q(\bar{x}\bar{w}, \operatorname{acl}(a_{\rho})) \cup q(\bar{x}\bar{w}_*, \operatorname{acl}(a_{\rho^{\frown 0}}))$ where $\bar{w} \cap \bar{w}_* = \emptyset$, say $\psi(\bar{x}'\bar{w}'\bar{w}'_*, \bar{a}\bar{a}_*) \equiv \psi_{\rho}(\bar{x}'\bar{w}', \bar{a}) \wedge \psi_{\rho^{\frown 0}}(\bar{x}'\bar{w}'_*, \bar{a}_*)$ where

- (1) $q(\bar{x}\bar{w}, \operatorname{acl}(a_{\rho})) \vdash \psi_{\rho}(\bar{x}'\bar{w}', \bar{a}),$
- (2) $q(\bar{x}\bar{w}_*,\operatorname{acl}(a_{\rho^{\frown}0})) \vdash \psi_{\rho^{\frown}0}(\bar{x}'\bar{w}'_*,\bar{a}_*),$
- (3) $\bar{x}' \subseteq \bar{x}, \ \bar{w}' \subseteq \bar{w}, \ \bar{w}'_* \subseteq \bar{w}_*$ are finite tuples of variables,

the following formula(Fact 2.1(1))

$$\psi(\bar{x}'\bar{w}'\bar{w}'_*, \bar{a}\bar{a}_*) \wedge (\bar{x}'\bar{w}'\bar{w}'_* \cap \operatorname{acl}(\bar{a}\bar{a}_*) = \emptyset) \wedge \bigwedge_{v_i, v_j \in \bar{x}'\bar{w}'\bar{w}'_*, i \neq j} (v_i \neq v_j)$$

has a realization in $(\overline{b} \setminus \operatorname{acl}(D))\overline{c}_{\rho}\overline{c}_{\rho} c_{\rho}$ (by (*), $b \notin \operatorname{acl}(A)$. Then it can be checked that $\operatorname{acl}(ba_{\rho}) \cap \operatorname{acl}(A) = \operatorname{acl}(a_{\rho})$ by exchange property). In particular, $b \notin \operatorname{acl}(a_{\rho}a_{\rho} c_{\rho}) \cdots (**)$.

Then by Fact 2.1(1) and compactness, there is $(\bar{b}' \setminus \operatorname{acl}(D))\bar{c}'_{\rho}\bar{c}'_{\rho^{\frown}0} \models q(\bar{x}\bar{w}, \operatorname{acl}(a_{\rho})) \cup q(\bar{x}\bar{w}_*, \operatorname{acl}(a_{\rho^{\frown}0}))$ where \bar{b}' is an enumeration of $\operatorname{acl}(b'D)$ starting with b' and we can arbitrarily choose which of the elements of $(\bar{b}' \setminus \operatorname{acl}(D))\bar{c}'_{\rho}\bar{c}'_{\rho^{\frown}0}$ are in P.

To summarize, now we have the following:

• There are \mathcal{L} -automorphisms f_0, f_1 of M fixing $\operatorname{acl}(a_n)$ such that

$$f_0((\overline{b}_0 \setminus \operatorname{acl}(D))\overline{c}_0 \operatorname{acl}(a_\rho)) = (\overline{b} \setminus \operatorname{acl}(D))\overline{c}_\rho \operatorname{acl}(a_\rho);$$

$$f_1((\overline{b} \setminus \operatorname{acl}(D))\overline{c}_\rho \operatorname{acl}(a_\rho)) = (\overline{b}' \setminus \operatorname{acl}(D))\overline{c}'_\rho \operatorname{acl}(a_\rho).$$

where $(\overline{b}' \setminus \operatorname{acl}(D))\overline{c}'_{\rho}\operatorname{acl}(a_{\rho})$ is an enumeration of $\operatorname{acl}(b'a_{\rho})$.

• There are \mathcal{L} -automorphisms g_0, g_1 of \mathbb{M} such that

$$g_0((\overline{b}_0 \setminus \operatorname{acl}(D))\overline{c}_0 \operatorname{acl}(a_\rho)) = (\overline{b} \setminus \operatorname{acl}(D))\overline{c}_{\rho \frown 0} \operatorname{acl}(a_{\rho \frown 0}),$$

$$g_1((\overline{b} \setminus \operatorname{acl}(D))\overline{c}_{\rho \frown 0} \operatorname{acl}(a_{\rho \frown 0})) = (\overline{b}' \setminus \operatorname{acl}(D))\overline{c}'_{\rho \frown 0} \operatorname{acl}(a_{\rho \frown 0})$$

where $(\bar{b}' \setminus \operatorname{acl}(D))\bar{c}'_{\rho \frown 0} \operatorname{acl}(a_{\rho \frown 0})$ is an enumeration of $\operatorname{acl}(b'a_{\rho \frown 0})$.

Since we can freely choose $P \cap ((\overline{b}' \setminus \operatorname{acl}(D))\overline{c}'_{\rho}\overline{c}'_{\rho^{\frown}0})$,

$$f_1 f_0 : (\operatorname{acl}(b_0 a_\rho), P \cap \operatorname{acl}(b_0 a_\rho)) \to (\operatorname{acl}(b' a_\rho), P \cap \operatorname{acl}(b' a_\rho)) \text{ and}$$

 $g_1 g_0 : (\operatorname{acl}(b_0 a_\rho), P \cap \operatorname{acl}(b_0 a_\rho)) \to (\operatorname{acl}(b' a_{\rho \cap 0}), P \cap \operatorname{acl}(b' a_{\rho \cap 0}))$

can be simultaneously regarded as \mathcal{L}_P -isomorphisms between \mathcal{L}_P -substructures since

- $\operatorname{acl}(b'a_{\rho}) \cap \operatorname{acl}(b'a_{\rho \cap 0}) = \operatorname{acl}(b'D)$ by (**) and Remark 1.14(4);
- $f_1 f_0(\bar{b}_0) = g_1 g_0(\bar{b}_0) = \bar{b}';$
- $f_1 f_0$ fixes $acl(a_{\rho})$ pointwise;
- $g_1g_0(\operatorname{acl}(a_\rho)) = \operatorname{acl}(a_{\rho^{\frown}0})$ and preserves P-coloring by the $(\mathcal{L}_{P}$ -)strong indiscernibility of $(\operatorname{acl}(a_\eta))_{\eta \in 2^{<\kappa'}}$.

Therefore by Fact 2.1(2), $\operatorname{tp}_{T_P}(b_0 a_\rho) = \operatorname{tp}_{T_P}(b' a_\rho) = \operatorname{tp}_{T_P}(b' a_{\rho \cap 0})$. Since $\models \varphi(b_0, a_\rho)$, we have $\models \varphi(b', a_\rho) \wedge \varphi(b', a_{\rho \cap 0})$, which contradicts that φ witnesses ATP with $(a_\eta)_{\eta \in 2^{<\kappa'}}$.

References

[AKL21] Jinhoo Ahn, Joonhee Kim and Junguk Lee, On the Antichain Tree Property, J. Math. Log., 2022, doi:10.1142/S0219061322500210.

[AK20] Jinhoo Ahn and Joonhee Kim, SOP_1 , SOP_2 , and antichain tree property, submitted, 2020, arXiv:2003.10030v4.

[CP98] Zoe Chatzidakis and Anand Pillay, Generic structures and simple theories, Ann. Pure Appl. Logic, 95, No.1 -3, (1998), 71–92.

[Che14] Artem Chernikov, Theories without the tree property of the second kind, Ann. Pure Appl. Logic, 165, (2014), 695–723.

[CR16] Artem Chernikov and Nicholas Ramsey, On model-theoretic tree properties, J. Math. Log., 16, (2016), 1650009, 41 pp.

[Dob18] Jan Dobrowolski, Generic variations and NTP₁, Arch. Math. Logic, 57, (2018), 861–871.

[DK17] Jan Dobrowolski and Hyeungjoon Kim, A preservation theorem for theories without the tree property of the first kind, *Math. Log. Quart.*, **63**, (2017), 536–543.

[KR20] Itay Kaplan and Nicholas Ramsey, On Kim-Independence, Journal of the European Mathematical Society, 22, (2020), 1423–1474.

[KK11] Byunghan Kim and HyeungJoon Kim, Notions around tree property 1, Ann. Pure Appl. Logic, 162, (2011), ,698–709.

[KKS14] Byunghan Kim, HyeungJoon Kim and Lynn Scow, Tree indiscernibilities, revisited, *Arch. Math. Logic* **53** (2014), 211–232.

[TT12] Kota Takeuchi and Akito Tsuboi, On the existence of indiscernible trees, Ann. Pure Appl. Logic, 163, (2012), 1891–1902.

[TZ] Katrin Tent and Martin Ziegler, A Course in Model Theory, Cambridge University Press, 2012.

DEPARTMENT OF MATHEMATICS YONSEI UNIVERSITY 50 YONSEI-RO SEODAEMUN-GU SEOUL 03722 SOUTH KOREA

 $Email\ address: {\tt hyoyoonlee@yonsei.ac.kr}$