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Abstract

Let o be an irrational number, and a/b a reduced fraction. Suppose
2/3 <o <a/b<3/4and b is sufficiently large. Let B be a canonical twig
for a/b and A the set of all leaves in B. Let p € B be a good vertex of B over
A. Let M be the generic structure for (K7, <) where f is the Hrushovski’s
log-like function associated to . Assume that B is a closed subset of M. Let
D be the orbit of p over A in M. Then M = cl(D). Actually, we can prove
this only assuming 0 < @ < a/b < 1.

1 Introduction

We show that Hrushovski’s pseudoplanes associated irrational numbers intro-
duced in his 1988 preprint [6] is a closure of an orbit of some point p over some
finite set A. The “rank” of the type of p over A can be arbitrarily small positive real
number. This statement is a weaker version of the monodimensionality introduced
by D. Evans, Z. Ghadernezhad, and K. Tent [4].

In this paper, we assume that the irrational number o satisfies 2/3 < a <
3/4 instead of 1/2 < a < 2/3 assumed in Hrushovski’s preprint [6]. With little
modification, we can prove the same statement assuing 1/2 < o < 2/3, or even
0 < o < 1. We essentially use notation and terminology from Baldwin-Shi [2]
and Wagner [15]. We also use some terminology from graph theory [3].

For a set X, [X]" denotes the set of all subsets of X of size n, and |X| the
cardinality of X.



We recall some of the basic notions in graph theory we use in this paper.
These appear in [3]. Let G be a graph. V(G) denotes the set of vertices of G.
Vertices will be also called points. E(G) is the set of edges of G. E(G) is a
subset of [V(G)]?. |G| denotes |V (G)| and e(G) denotes |E(G)|. The degree of a
vertex v is the number of edges at v. A vertex of degree 1 is a leaf. G is a path
xox1 ... x if V(G) = {x0,x1,...,%} and E(G) = {xox1,X1x2,...,X_1X;} where
the x; are all distinct. xp and x; are ends of G. The number of edges of a path
is its length. A path of length O is a single vertex. G is a cycle xpx| ...X; 1X0
it k>3,V(G) ={x0,x1,...,x_1} and E(G) = {x0x1,X1X2, . . ., Xk 2Xk—_1,Xk_1X0}
where the x; are all distinct. The number of edges of a cycle is its length. A non-
empty graph G is connected if any two of its vertices are linked by a path in G.
A connected component of a graph G is a maximal connected subgraph of G. A
forest is a graph not containing any cycles. A tree is a connected forest.

To see a graph G as a structure in the model theoretic sense, it is a structure in
language {E} where E is a binary relation symbol. V(G) will be the universe, and
E(G) will be the interpretation of E. The language {E} will be called the graph
language.

Suppose A is a graph. If X C V(A), A|X denotes the substructure B of A such
that V(B) = X. If there is no ambiguity, X denotes A|X. We usually follow this
convention. B C A means that B is a substructure of A. A substructure of a graph
is an induced subgraph in graph theory. A|X is the same as A[X] in Diestel’s book
[3].

Let A, B, C be graphs such that A C C and B C C. AB denotes C|(V(A)UV (B)),
ANB denotes C|(V(A)NV(B)), and A— B denotes C|(V(A) —V(B)). f ANB =0,
E(A,B) denotes the set of edges xy such that x € A and y € B. We put e¢(A,B) =
|E(A,B)|. E(A,B) and e(A, B) depend on the graph in which we are working.

Let D be a graph and A, B, and C substructures of D. We write D = B®4 C if
D=BC,BNC=A,and E(D) =E(B)UE(C). E(D) = E(B) UE(C) means that
there are no edges between B—A and C —A. D is called a free amalgam of B and
C over A. If A is empty, we write D = BQ C, and D is also called a free amalgam
of Band C.

Definition 1.1. Let @ be a real number such that 0 < o < 1.

(1) For a finite graph A, we define a predimension function d by 6(A) = |A| —
e(A)o.

(2) Let A and B be substructures of a common graph. Put §(A/B) = 6(AB) —
0(B).



Definition 1.2. Let A and B be graphs with A C B, and suppose A is finite.

A < B if whenever A C X C B with X finite then §(A) < §(X).

We say that A is closed in B if A < B. We also say that B is a strong extension
of A.

We say that A is almost closed in B, written A <~ B, if whenever A C X C B
with X finite then 6(A) < 6(X).

Let K be the class of all finite graphs A such that @ < A.
Some facts about < appear in [2, 15, 16]. Some proofs are given in [11].

Fact 1.3. Let A and B be disjoint substructures of a common graph. Then §(A/B) =
0(A)+e(A,B).

Fact14. fA<BCDandC C D then ANC <BNC.
Fact 1.5. Let D = B®4C.

(1) 6(D/A)=038(B/A)+6(C/A).

(2) IfA < C then B < D.

(3) IfA<Band A < C then A <D.

Let B, C be graphs and g : B — C a graph embedding. g is a closed embedding
of B into C if g(B) < C. Let A be a graph with A C Band A C C. g is a closed
embedding over A if g is a closed embedding and g(x) = x for any x € A.

In the rest of the paper, K denotes a class of finite graphs closed under isomor-
phisms.

Definition 1.6. Let K be a subclass of K. (K, <) has the amalgamation property
if for any finite graphs A, B,C € K, whenever g; : A — B and g, : A — C are closed
embeddings then there is a graph D € K and closed embeddings /7 : B — D and
g2:C — Dsuchthat hjog; =hyog.

K has the hereditary property if for any finite graphs A, B, whenever A C B € K
then A € K.

K is an amalgamation class if @ € K and K has the hereditary property and
the amalgamation property.

A countable graph M is a generic structure of (K, <) if the following condi-
tions are satisfied:

(1) If A C M and A is finite then there exists a finite graph B C M such that
ACB<M.



(2) If AC M then A € K.

(3) Forany A, B€ K, if A <M and A < B then there is a closed embedding of
B into M over A.

Let A be a finite structure of M. There is a smallest B satisfying A C B < M,
written cl(A). The set cl(A) is called the closure of A in M.

Fact 1.7 ([2, 15, 16]). Let (K, <) be an amalgamation class. Then there is a
generic structure of (K,<). Let M be a generic structure of (K,<). Then any
isomorphism between finite closed substructures of M can be extended to an au-
tomorphism of M.

Definition 1.8. Let K be a subclass of K. (K, <) has the free amalgamation
property if whenever D = B®4 C with B,C € K,A < Band A < C then D € K.

By Fact 1.5 (2), we have the following.

Fact 1.9. Let K be a subclass of Ky. If (K, <) has the free amalgamation property
then it has the amalgamation property.

Definition 1.10. Let R™ be the set of non-negative real numbers. Suppose f :
R* — R is a strictly increasing concave (convex upward) unbounded function.
Assume that f(0) =0, and f(1) < 1. We assume that f is piecewise smooth.
f'.(x) denotes the right-hand derivative at x. We have f(x+h) < f(x)+ fL.(x)h
for h > 0. Define Ky as follows:

Ky ={AcKy|BCA=3(B)>f(B])}

Note that if K is an amalgamation class then the generic structure of (K¢, <) has
a countably categorical theory [16].

A graph X is normal to f if §(X) > f(|X]|). A graph A belongs to K if and
only if U is normal to f for any substructure U of A.

2 Hrushovski’s Log-like Functions
Definition 2.1. Let o be a positive real number. x is called a best approximation

of a strictly from above with a denominator at most n if x is a smallest rational
number r such that r = k/d > a with d < n where k and d are positive integers.



Definition 2.2 ([6]). Let « be a positive real number. We define x;,, e, k,, d,, for
integers n > 1 by induction as follows: Put x; =2 and e; = 1. Assume that x,, and
e, are defined. Let r;, be the best approximation of « strictly from above with a
denominator at most e,,. Let k,/d, be the reduced fraction satisfying k,/d, = r,.
Finally, let x,,.1 = x, + k&, and e, | = e, + d,,.

Let ag = (0,0), and a, = (x,,x, — e, @) forn > 1. Let fy be a function from R
to R™ whose graph on interval [x,,x,.1] with n > 0 is a line segment connecting
a, and a, 1. We call fy a Hrushovski’s log-like function associated to «.

Fact 2.3 ([6]). Let fy be a Hrushovski’s log-like function and {x;}, {e;}, {ki},
{d;} sequences in the definition of fq.

Suppose C is an extension of B by x points and z edges, |B| > x,, and x/z >
kn/d, for some n, and B is normal to fy. Then C is normal to fq.

Fact 2.4 ([6]). Let D =B®4C. If 6(A) < 8(B), 6(A) < 8(C), and A, B, C are
normal to fo then D is normal to fg.

Fact 2.5 ([6]). Let o be a real number with 0 < o« < 1. Then fy, is strictly increas-
ing and concave, and (Ky,,<) has the free amalgamation property. Therefore,
there is a generic structure of (Ky,,<). Any one point structure is closed in any
structure in Ky . If o is rational then fq is unbounded.

The following is easy.

Lemma 2.6. Let C = A ®), B where p is a single vertex and A,B € K. Then
C € K. Any finite forests belong to K.

Lemma 2.7. Suppose2/3 < o0 < 3/4.

(1) The first several terms of the sequences defining fq are given by the follow-
ing chart with (ks,ds) being either (3,4) or (5,7):

|2 3 4 5 8
|1 2 3 4 8
k11 1 1 3 ks
11 1 1 4 ds

(2) Suppose C is an extension of B by x points and z edges, 5 < |B|, 3/4 < x/z,

and B is normal to fy. Then C is normal to f.



(3) Suppose C is an extension of B by x points and z edges, 5 < |B
o < x/z, and B is normal to fy. Then C is normal to fy.

,2<(4/7)|B

b

Proof. (1) is straightforward. (2) holds by Fact 2.3 and (1).

(3) Choose i satisfying x; < |B| < x;+1. Since x4 =5 < |B|, we have 4 < x;. Then
x;i—1<e; and k,‘/d,' < 3/4 Also, we have d; < e¢;. So, |B| < Xjr1 =Xxi+ ki =
Xi + (ki/dl')di < (e,-+ 1) + (3/4)&' = (7/4)31' + 1. Hence, |B| < (7/4)ei and thus
7z < (4/7)|B| < e;. By the choice of k;/d;, we have k;/d; < x/z. Since x; < |B|, C
is normal to f by Fact 2.3. 0

3 Special Structures

Definition 3.1. Let 4/k and /' /k’ be reduced fractions of non-negative integers.
(h+H')/(k+Kk') is called a mediant of h/k and I’ /k'. We say that (h/k,H' /K') is a
Farey pair if W'k —hk’ = 1. Note that 0 < h/k < I/ /K.

The following lemma is well-known.
Lemma 3.2. Let (h/k,h' /K') be a Farey pair and u, v positive integers.
() Ifh/k<u/v<h [k thenk+k <w.

(2) Leth" /K" be the mediant of h/k and W' /k'. Then (h/k,h" /K") and (W' /K" W' [K)
are Farey pairs.

Definition 3.3. Let u/v be a reduced fraction of positive integers. A graph W is
called a general twig for u/v if the number of edges of W is v, the number of
non-leaf vertices of W is u, and the set of all leaves of W is almost closed in W
with respect to J,/,. A general twig W for u /v is called a twig for u/v if there is
apath P = pg--- pr in W such that pg is a leaf of W, p; is a non-leaf vertex of W,
and the paths from leaves of W other than pg to P are independent paths. The path
P is called the main path of the twig W, pg the left end of the main path of W, and
P the right end of the main path of W. Note that the left end of the main path of
a twig is a leaf of the twig, and the right end of the main path is a non-leaf vertex
of the twig. A twig is a twig for some reduced fraction.

Lemma 3.4. Ler (h/k,h' /k') be a Farey pair, A a general twig for h'/k' and B a
general twig for h/k. Suppose D = A ®. B where c is a non-leaf vertex of A as
well as a leaf of B. Then D is a general twig for (h+h'")/(k+K).



Proof. First of all, it is clear that the number of all edges in D is k+k’. Since
vertex c 1S a leaf in B as well as a non-leaf vertex in A, the number of all non-leaf
vertices in D is h+ /'.

Let F be the set of all leaves of D, X a proper substructure of D with F C X.
Put X4 =XNAand Xg =XNB. Then X =X, ®Xpif c € X and X = X4 ®. Xp
if ¢ € X. Let u be the number of all non-leaf vertices of A in X, v the number of
all edges of A in X, «’ the number of all non-leaf vertices of B in X, v the number
of all edges of B in X. Since c is a non-leaf vertex in A as well as a leaf in B, the
number of non-leaf vertices of D in X is u + u’ and the number of edges of D in
Xisv+v. So, 6(X/F) = (u+u')— (v+Vv)a where a = (h+1')/(k+ k). We
have h/k < W' /k' < u/v because A is a general twig for /' /k’, and We also have
h/k < u'/v' becuase B is a general twig for h/k. Hence, h/k < (u+u')/(v+').
Since the number of all edges in D is k+ k', X is a proper substructure of D, and
D is connected, we have v+V' < k+k’. Note that h/k and (h+h')/(k+k') form a
Farey pair by Lemma 3.2 (2). Hence, we have (h+#)/(k+k') < (u+u')/(v+V)
by Lemma 3.2 (1). Since v+ < k+k/, we cannot have (u+u')/(v+V) =
(h+H)/(k+K). O

Lemma 3.5. (1) A path of length 4 is a general twig for 3 /4. It can be consid-

ered as a twig for 3 /4 having a main path of length 2 and a uniform height
2. This twig will be called a 2-twig for 3 /4.

(2) A path of length 3 is a general twig for 2/3. It can be considered as a twig

for 2/3 having a main path of length 1 and a uniform height 2. This twig
will be called a 1-twig for 2 /3.

Definition 3.6. Two twigs are said to be isomorphic twigs if there is a graph
isomorphism between them which preserves the main paths. A graph W is called
a concatenation of two twigs Wy and W, if W = W/ ®, W, where W] is a twig
isomorphic to Wy, Wj is a twig isomorphic to W,, and c is the left end of the
main path of W/ as well as the right end of the main path of W,. A graph W =
Wi ®p, Wa®p, -+ ®p, | Wy is called a chain of twigs if each W; is a twig and each
pi is a right end of the main path of W; as well as the right end of the main path of
Wiptfori=1,...k—1. Wi ®p W2 ®), -+ ®p,_, W; with j < k will be called a
left prefix of W. W 1is said to be a chain of twigs satisfying certain property if each
W; has the property. For example, W is a chain of twigs for 2/3 if each W; is a
twig for 2/3. Let pg be the right end of the main path of W; and py the left end of
the main path of W;. The path from pg to p; in W is called the main path of W, pg
the left end of the main path of W, p; the right end of the main path of W. Note
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that the paths from leaves of W other than pg to P are independent paths. We say
that a chain of twigs has a uniform height n if the distance from any leaves other
than the left end of the main path is n.

Lemma 3.7. Let (h/k, W' /k) be a Farey pair, W a twig for h/k, and W' a twig for
W /K. Let u/v be a reduced fraction with h/k < u/v < I’ /k'. Then there is a twig
for u/v which is also a chain of twigs isomorphic to W or W'.

Proof. We prove the lemma by induction on v — (k+ k). Let W” be a concatena-
tion of W and W’'. Let 4" /k” be the mediant of i/k and /' /K.

Suppose u/v =h"/k”. Then W" is a twig for u/v by Lemma 3.4. We have the
lemma in this case.

Suppose u/v #h' /k". Then h/k <u/v <h'[k" ot i /K" <u/v <N /K.

Case h/k <u/v < h'/K'. Since k" =k+k' > k', we have v— (k+ k") <
v— (k+k’). By induction hypothesis, there is a twig W’ for u/v which is also a
chain of twigs isomorphic to W or W”. Since W” is a concatenation of W and W’,
W' is also a chain of twigs isomorphic to W or W',

Case W' k" < u/v < I /K. The proof for this case is similar to the proof for
the previous case. O]

Definition 3.8. Let a/b be a reduced fraction with 2/3 < a/b < 3/4. A twig for
a/b is called a canonical twig if it is a chain of twigs isomorphic to a 2-twig for
4/3 or a 1-twig for 2 /3. Canonical twigs exist for any such a/b.

4 Almost Monodimensionality

In this section, there are many cases that we want to show some structures are
normal to f. Note that any trees are normal to f and any single vertex is closed in
structures normal to f. Also, the free amalgamation property holds for the class
of structures normal to f. So, if a structure is normal to f then any extension by a
tree over a single vertex is also normal to f.

Definition 4.1. Let B be a graph and A a substructure of B. A substructure X of B
is said to be smooth over A if any leaves of X belong to A.

Definition 4.2. Let B be a graph and A a substructure of B, and p € B. di(p/A)
denotes the smallest value of 64(X/A) where A C X C B and there is a path from
ptoAinX.



Definition 4.3. Let B be a graph, A a substructure of B, and 8 a real number. B is
called a 3/4-extension of A if x = |B| — |A| and z = e¢(B) — e¢(A) then x/z > 3 /4.

Definition 4.4. Suppose A < B. p € B is called a good vertex of B over A if
p € B— A and whenever p € X C B with X N A # 0 then either 7 < |X — A| or
X ®, pp1p2ps3 is a 3/4-extension of X’ p3 for some X’ C X with X NA C X’. Here,
pp1p2p3 is a path of length 3 with ends p and ps.

Proposition 4.5. Let o be an irrational number, and a/b a reduced fraction. Sup-
pose 2/3 < o < a/b < 3/4 and b is sufficiently large. Let B be a canonical twig
for a/b and A the set of all leaves in B. Then there is a good vertex of B over A
whose distance from A is 3.

Proof. Note that for any reduced fractions a’ /b’ with 2/3 < d’' /b’ < 3/4, the
canonical twig for @’ /b’ begins from the left end with a twig for 3/4 and ends
with a twig for 2/3 at the right end. Since b is sufficiently large, the canonical
twigs B for a/b look like the following:

IRERIE RS

Hence, there is a substructure of B which is isomorphic to one of the following

njﬂ nim

Let us assume that there is a substructure of B isomorphic to (1) above. Choose
a vertex p as indicated in the figure. We show that p is a good vertex of B over A.

Let X be a smooth and connected substructure of B over pA with p € X and
X NA # 0. Suppose that X does not contain a vertex in B adjacent to p. Then
X contains the other vertex in B adjacent to p, say p’. Then X ®, pp1p2p3 =
(X — p) ®, p'pp1p2p3. Therefore, it is a 3 /4-extension of (X — p)p3. See (3) in
the figure below.

Now, suppose that X contains both vertices adjacent to p. If X contains at least
5 vertices from the main path of B, then X contains at least 2 more paths from the



main path of B to A. Each such path has length 2 and thus contains an inner vertex.
Hence X — A contais at least 7 vertices. See (7) in the figure below.

If X contains exactly 3 vertices from the main path of B, then X ®, ppp>p3
looks like (4) in the figure below. It is an extension of (X NA)p3 by 7 vertices and
9 edges. Since 7/9 > 3 /4, it is a 3 /4-extension of (X NA)ps3.

If X contains exactly 4 vertices from the main path of B, (a) X is isomorphic
to (5) or (b) X ®, pp1p2p3 1s isomorphic to (6) in the figure below. In the case
(a), X — A contains 7 vertices. In the case (b), X ®, pp1p2p3 is an extension
of (XN A)p3 by 8 vertices and 10 edges. Since 8/10 =4/5 > 3/4, itis a 3 /4-

extension of (X NA)p3.
DP3e—e D2 D3e—e D3e—e
P1 :I p, B ) 1:_.
e b
3) 4) &) (6) (7

We have shown that vertex p is a good vertex of B over A when we choose p
as in (1). When we choose p as in (2), we can show that p is a good vertex of B
over A similarly. L]

Lemma 4.6. Let o be an irrational number with 2/3 < a < 3/4, u/v a reduced
fraction with u/v < o such that whenever u/v <u'/v' < ot thenv <V'. Let f = fy
be the Hrushovski’s log-like function associated to o. Assume that B € K¢ with
A < B and there is a good vertex b of B over A, W is a canonical twig for u/v, C the
set of all leaves of W, and k = |C|. Let D = (By®4 B1 4By ®4 ... @4 Bj—1) @cW
where C = {bg,by,...,by_1}, B; is isomorphic to B over A and b; € B; is the
isomorphic image of b for eachi =0, ..., k— 1. Then for sufficiently large v, D
belongs to Ky, and there is a good vertex p of D over A such that df,(p/A) >
dg(b/A) +min{d§(b/A),3(1 — o) }.

Proof. We show that D belongs to Ky by choosing v sufficiently large. It is
straightforward to prove other statements.

The b; are the leaves of W. We can assume that b is the left end of the main
path of W, and by, b», ..., by are ordered from left to right respecting the order
of vertices in the main path of W connected to b; by a path of length 2 in W.
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by bibiy1 bitr b2 by

For j with 1 < j <k, let D;= (B() XA Bl ®aABy X4 ... ®AB]‘) ®Cj W; where
Cj={bo,b1,...,b;}, and W; is the left prefix of W with the right most leaf b;.
Note that D = Dy _;.

Now, let X be a substructure of D. Our aim is to show that X is normal to f.
By Fact 2.4 (the free amalgamation property for the structures normal to f), we
can assume that X NA # @, X is smooth over A, and X NW is connected.

Put Y; = (XN By) @xra - - @xra (X NBj). Then Y; € K for any j. In partic-
ular, |Yy| > 7k’. Also, the number of all edges in Wy is at most 4k’ and Cyy < Wy.
By Lemma 2.7 (3), X N Dy = Yy ®@c,, Wy is normal to f.

Now, consider X N Dy . There are two cases for Wy, 1: Wy =W @), Py
where Py, is a path of length 4 or a path of length 3 with ends p € Wy and by ;.
We have Dy | = (D @4 By 1) ®p by, P-

If the length is 4, then X N Dy is a 3/4-extension of (X N Dy) @xna (X N
By 1), which is normal to f. Hence, X N Dy is also normal to f by Lemma 2.7
(2). If the length is 3, then X N Dy is a 3 /4-extension of (X NDy) @xna X’ for
some X’ with X NA C X’ C X N By 1 because by | is a good vertex of By | over
A. XN Dy ®xna X' is normal to f by Fact 2.4, so is X N Dy ; by Lemma 2.7 (2).
Repeating the similar arguments, we see that X N Dy_ is normal to f.

The essential remaining case is the case where W C X and [X NB j| > 7 for all
J. Since v is sufficiently large, We can assume 0 > 84 (W /C) > —84(B/A). We
can also assume that & is very large. Then X N D is normal to f. O

Now, we prove the main theorem.

Theorem 4.7. Let o be an irrational number, and a/b a reduced fraction. Sup-
pose 2/3 < a < a/b < 3/4 and b is sufficiently large. Let B be a canonical twig
for a/b and A the set of all leaves in B. Let p € B be a good vertex of B over A.
Let M be the generic structure for (K¢, <) where f is the Hrushovski’s log-like
function associated to o. Assume that B is a closed subset of M. Let D be the
orbit of p over A in M. Then M = cl(D).

Proof. We first claim that any points in M independent from A over the empty set
belong to cl(D).

Note that a good vertex of B over A exists by Proposition 4.5. Let By < M be
the embedded image of D obtained by By Lemma 4.6 from B. Then B; C cl(D,A),
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A < By, there is a good vertex p; of By over A. Repeating this process, we get
A <B| < By <...<Bj <M for any natural number j, and a good vertex p; of B;
over A for each i < j. Each p;, for i belongs to cl(Orb(p;/A)). Therefore, each
pi+1 for i belongs to cl(Orb(p/A)).

Let € = min{d(p/A),3(1 — ) }. By the structures of B;, d (p1/A) > 2¢,
dg,(p2/A) > 3¢, and so on. We have dg, (pj/A) > (j+ 1)e. For sufficiently large
J» we have dgj(pj/A) > 1. Therefore, there is j such that d(p;/A) =1 =d(p,)
and p; € cl(D). Suppose x is not adjacent to vertices in A and xA < M. Since
pjA < M and xA is isomorphic to p;A, there is an automorphism of M which
sends x to p; and fixes A pointwise. Hence, x belong to cl(D) also because D is
invariant under the automorphisms fixing A pointwise. We have shown the first
claim.

Choose a reduced fraction u/v with u/v < @ which is a good approximation
of a from below. Using twigs for u/v, make a big tree W such that there is a root
x of W such that for all the leaves y of W, yx is not an edge of W, and yx < W.

Now, let x € M. Consider cl(xA). Consider W ®, cl(xA) > cl(xA). We can
embed W ®, cl(xA) into M over cl(xA) as a closed structure. Let y be a leaf of W.
Suppose yYA C X C W R, cl(xA). If x € X, then X = (X NW) ® (X Ncl(xA)). In
this case, y < (XNW) and A < X Ncl(xA). Hence, 6(yA) < 6(X) unless yA = X.
Suppose x € X. X = (X NW) ®, (X Ncl(xA)). We have 6(yx) < §(X NW) unless
XNW =yx. Also, we have 6(A) < §(XNcl(xA)) sinceA <M and A C X Ncl(xA).

Suppose yx C X NW. We have

O0X)=0(XNW)+d(XNcl(xA))—1>6(yx) —14+6(A) =1+4+06(A).
Therefore, yA is closed in W ®, cl(xA), and thus yA < M. This shows that all the
leaves of W belong to cl(D). So, x belongs to cl(D). O
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