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1 Introduction

This report is based on the author’s talk given at RIMS on December 9th, 2019.
Two-microlocal ideas in wavelet analysis are considered. Sections 2 and 3 are taken

from [JM] and [MY], respectively. Section 4 deals with some recent results obtained
in [Mo].

2 What is “two-microlocal estimate” ?

We first give a brief survey of Jaffard-Meyer (1996). See [JM]. The determination
of the pointwise regularity of a function f requires the use of some tools introduced
by Bony (1986). See [Bo].

Let S; be the “low-pass filter” which, after performing the Fourier transform, is
the multiplication by £(277¢), where (&) = 1 if |¢] < 1/2 and £(¢) = 0 if |¢] > 1.
Define A; = S;41 —S;. Thus we have the Littlewood-Paley decomposition:

Id=Sy+ QMg+ A1 +---.
The Fourier transform of A;(f) is supported by the set 2771 < [¢] < 271,

Definition 2.1 (Jaffard-Meyer). Let s,s" € R. Then f € S'(R") is said to belong
to C’j&sl if
1So(f) ()] < C(A+ [z —a0]) ™

and _ A ,
1A;(f)(@)] < C27°(1 + 2|z — zo]) .

Definition 2.2 (Bony). Let s,s' € R. Then f € S'(R™) is said to belong to ngf’ if
127°(1 + 27|z — o) A5 (f) |2 < ¢
with Y |¢;]? < oo.

Remark 2.3. We have the following fact: u € H;;)_k, with k£ being a positive integer,
if and only if u = 3", ;. (z — o) uq, where u, € He~lel(R™),

Let us now consider an orthonomal wavelet basis on R". Such a basis is composed
by translations and dilations of 2® — 1 functions 9. Recall the usual notation

Y (2) = 22D (20 — k), jEZ, ke
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The wavelet decomposition of a function f will be written

f= Z Cip 2920 (D — k).

i,k
We will usually forget the index . The following result is easy to check:
Proposition 2.4. f € §'(R") belongs to C’;;f’ if and only if
|Cp| < €272 (1 429|527 — )7

The following characterization also holds:
Proposition 2.5. f € §'(R") belongs to Hj;f' if and only if
D 271+ 2 [k27 — o) Cyl* < o0

j?k

Our next purpose is to characterize the two-microlocal spaces in terms of local
“Holder type” conditions. In order to state these conditions, we need the Holder-
Zygmund spaces C*(R™). If 0 < s < 1, then f € C*(R") is characterized by

[f(z) = fly)l < Clz =yl
If s = 1, then f € C*(R") is characterized by
[f(x+h) =2f(x) + f(x—h)| < Ch].

The definition of the case where s > 1 needs higher order differences and is omitted.
It is easily checked that f € C*(R™) if and only if its wavelet coefficients satisfy

the condition
|C]k| < 02—(5+n/2)j.

Let A C R™. By definition, a function f belongs to C*(A) if it is the restriction to
A of a function F in C*(R™). The norm of £ is then the infimum of all possible norms
of F'in C*(R™). Let B, be the ball [z —x¢| < p, and T, the annulus p < |z—x0| < 3p.
The following characterizations are the starting point of the talk:

Theorem 2.6. If s <0, then f € §'(R"™) belongs to C’;(’f’ if and only if
IF1CH (Bl < Cp'. (1)
If s > 0, then f € S'(R") belongs to C%* if and only if f € C3(R™) and

IF 1 (T < Cp. (2)



Proof. We assume that the wavelet ¢ is compactly supported and that 0 € supp .
See [D]. We denote by C’ the diameter of supp . We first suppose that f belongs
to C:izfl so that its wavelet coefficients satisfy

Gyl < C27CFDI(1 4 2Ty — k)~ (3)

Note first that if s > 0, then (3) implies that [C} x| < C2-+tn/2)J and so f belongs
to C*(R™). We split the wavelet decomposition

[ = Z Oj,kl/fj,k

into three sums: f = f; + fo + f3: The first, fi, corresponds to the wavelets whose
supports do not intersect the ball B, (or the annulus I',), and we can forget this
sum.

Next we consider the sum f, whose coefficients satisfy 2/p < 10C’; in that case,
because 27|k277 — x4| can be estimated from above by some constant comparable to
10C", (3) becomes

|Gkl < C27(H/23,

and so || fo | C5(R™)|| < C. The inequalities (1) and (2) for f, follow from this. (The
details are omitted.)
Finally we consider the remaining sum f; whose coefficients satisfy 27p > 10C".
The case where s' > 0: (3) becomes

Gl < O (o' ni2)i s

because the supports of the wavelets are inside the annulus I, so that |zg—k277| > p.
The corresponding sum f3 satisfies

Ifs | CoH ®RY] < Cp™.
The case where s" < 0: (3) implies that
(Cjul < C27CFDI(1L 4 2 p) = < O (Han2i e,

We have the same conclusion as before.
Conversely let us assume that (1) or (2) holds. We consider a given wavelet v, ;.
The case where s’ < 0: We take for p the smallest number such that the support
of 1; 1, is completely included in B, so that any function extending f outside B, has
the same wavelet coefficient C}; and (1) implies that

2Oy < Cp.

The case where s’ > 0: Suppose first that |xg—Ak277| > 2C'277. Then the support
of 1, is completely included in I', when p = |x¢g — k277|/2 so that any function
extending f outside I', has the same wavelet coefficient C;, and (2) implies that

2(5+s,+”/2)j|0j,k| < Cp_S,.
If |z — k277] < 2C"277, then we have to prove that [Cjz| < C27 /27 which is
implied by the assumption that f € C*(R"). O
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3 Two-microlocal Besov spaces and wavelets

Two-microlocal Besov spaces are considered by Moritoh-Yamada (2004), which is a
natural extension of Jaffard-Meyer (1996). See [MY].
We first give the following definition and proposition. See [M] and [T].

Definition 3.1 (homogeneous Besov space). Let s > 0 and 1 < p,q < oo. Then
the homogeneous Besov By (R") is defined as the set of all tempered distributions f
(modulo polynomials) satisfying

1/q
1£ 1 By (RY)|| = (Z 2j8q||f‘1(sojff)|Lp(R”)||q> < 0.

JEZ

Here, F f(£) denotes the Fourier transform of f(z), and {¢;};cz is a smooth resolu-
tion of unity.

Proposition 3.2. f € B;q(]R{") if and only if

q/p
Z2j§q (Z |Cj’k|p> < 0Q,

jez kezn
where § =s+n/2 —n/p.

We can define the local Besov spaces B, (U) by restriction (see the previous
section), and we now give the definition of the two-microlocal Besov spaces B;:gl (U),
where U is an open subset of R".

Definition 3.3 (two-microlocal Besov space). Let s >0, s € R and 1 < p,q < .
Then f € S'(R") is said to belong to the two-microlocal Besov space Bys (U) if the
following two-microlocal estimate holds:

SIS
Q=

11835 (0] = zzm{z\(1+zfd<kz—j,y>)s’cj,kp} <,
kezZm

jez
where d(k277,U) denotes the distance from k277 to U.

In order to state the local Besov type conditions in our theorem below, we shall
use the following notation as an analogue of Hérmander’s notation [H]: If g(p) is a
function of the real variable p, defined for all positive p, we write g(p) = O® (p=*)
if and only if

R dp R
/ (9(p)p°)P— = / g(p)PpP~ldp < oo for every R > 0.
0 0



Theorem 3.4. Let s >0, s <0 and 1 <p < oc. Let U be an open subset in R™
and A, = {x € R"; d(z,U) < p,x ¢ U}. Then f € S'(R™) belongs to B;:;’(U) if
and only if there exists a decomposition f = f1 + fa such that

fi € B3, (R™),

and
If2 | Bt (Ap) || = O (p=).

Proof. We assume that the wavelet ¢ is compactly supported and that 0 € supp .
We denote by C’ the diameter of the support of the wavelet 1. Let f € B;;;'(U ).
Then its wavelet coefficients satisfy

S 3 (14 Pk, 1)) cj,k‘p < o0, (4)

jEZ kezn

We write f as

f= Y Cutiut >, Cutip=h+h
supp ¥, NU#D supp 1, sNU=0
If supp v N U # 0, then 27d(277k,U) is estimated from above by some constant
comparable to C”. Therefore f; € B;p(R").

Next we split the wavelet decomposition of f; into three sums fo =, +> o+
Let R > 0 be fixed. The first, ), corresponds to the wavelets whose supports do
not intersect Ar, and we can forget this sum.

Next we consider the sum Y, whose coefficients satisfy 2/ R < 10C"; in that case,
because 2/d(277k, U) can be estimated from above by some constant comparable to
10C", we have that >, € B;,p(R”).

Finally we consider the remaining sum Y, whose coefficients satisfy 2R > 10C".
We decompse Ay into the “curved annuli” as follows:

Ap=|J {frern2m'<d@U)<2"b= () Du ()
meZ;2~m<R m;2MR>1
By using this decomposition (5), we can write (4) as follows:
> o Z (L+27™ " Ol < oo (6)
4; 29 R>10C" m; 2MR>1 k; k2=9€Dy,



The case where m > j + L(C"), L(C") being an integer dependent only on C’, is
negligible because supp ¢, x N U = ). Therefore we obtain from (6) that

Z Z 978p9(i—m)s'p Z |Cj,k|p -

;29 R>10C" m;2MR>1 k;k2=9€Dy,
m<j+L(C’) (7)
= E Q—ms’p g 2jp(§+$/) E |C]k|p < 00.
m;2MmR>1 ji2d R>10C" k; k2=3€D,y,
j>m—L(C")

On the other hand, the O®-condition that for every R > 0,

E ., / pdp
| (1B ) 2 < o
0 P
follows from the condition that
2, 2 D, Y B, ), < ()
u€Z;2-v<R 4329 R>10C" VEZ;v>u k; k2-I €D,

Because supp ¢j, N U = (), and the geometric series Y, 2-us'P ig estimated from

u<v
above by some constant comparble to 27”7 (note that s’ < 0), this last condition
(8) follows from that

Z 9—vs'p Z 9ip(5+s") Z CxP < oo (9)

v; 2V R>1 j; 29 R>10C k; k2—-7ieD,
j>v—=L(C")

It follows from (7) and (9) that the remaining sum ), satisfies the local Besov
OP)_condition, as desired.
Conversely let us assume that f = f; + f satisfies the following conditions:

1 € By, (R"). (10)

and

If2 | Byy™ (Ap)| = OP (o). (11)

We note that if the support of the wavelet 1);, is completely included in A,, then
any function extending f outside A, has the same wavelet coefficient C} ;. From
this remark and (11), we have that for any R > 0,

Doy ) N[Ol < oo, (12)
u; 2*R>1 JEZ ki k2=I€A, .,
The condition (12) is equivalent to that

S Y o Y 2 < oo

jez kezn w;2UR>1
2ud(k2—7,U)<1
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After the calculation of the geometric sum, we arrive at the following:

Zij(§+s’) Z |Cj,k|p <d(k2‘j, U)s’p _ Rs’p> < 00. (13)
jJEZ kezm

Note that s’ < 0. Then as R — oo in (13), we obtain that

p

LD ‘(1 +2id(k27, U))" Cj,k‘ < 00,

jez  kezr
that is fo € Bs:% (U). Taking into account the assumption (10) that f; € B;p(R”),
we conclude that f = f1 + fo € B;;;'(U). O

4 Two-microlocal Besov spaces with dominating
mixed smoothness

Moritoh (2016) considers “two-microlocal Besov spaces with dominating mixed smooth-
ness” as a natural extension of Jaffard-Meyer (1996) and Moritoh-Yamada (2004) by
taking account of uncertainty functions given by Weyl-Hoérmander calculus (Bony-
Lerner, 1989). See [Mo] and [BL].

We treat only the case where n = 2. Let us now consider an orthonormal wavelet
basis on R? composed by translations and dilations of (1) (), where 1(x) is a
one-dimensional compactly supported smooth wavelet. Let 1, (x) = 29/2)(27x — k)
for j € Z,k € Z. Then every f € S'(R?) will be written

f(z) = Z Z Cj,k Vi1 dea (371)1/{72,]52 (22),

jez? kez?

where 7 = (71,72) and k = (kq, ko).

Let s1,80 > 0 and 1 < py,p2,q1,q2 < 00. Then the homogeneous Besov space
with dominating mixed smoothness S ng (R?) is defined as the set of all tempered
distributions f (modulo polynomials) satisfying

115 By 4(R?)|

IS/

J2€Z J1€Z

227 49

a2
Y N4 2\
. . ~ p1
S1+7j28 ,
9J181+])252 (p]l ¢]2f> (33'17 LUQ) dl’l) > dxg <00,

where s = (s1,52),p = (p1,02),9 = (1, ¢2), and

(¢j190j2f)v($17 $2) = (9031 (51)90]'2 (SQ)f(fla 52))v(x1, x2)'
See Schmeisser-Triebel’s book [ST].



Let us recall the fact that f € S Bf,g(RQ) if and only if

Jo€Z \ ko€Z \J1€Z \Kk1€Z

)3 Z(Z (wamc )Ziyl m <o,

where §; = s; +1/2—1/p; (i = 1,2). See [B] and [V]. We treat only the case where
p=q=(p,p), 1 <p<oo. Wecan define the local Besov space SBy (R,, x A,)
as usual, where R,, x A, denotes the horizontal strip {(z1,22); z1 € R, |z2| < p}
for p > 0. We can also give the deﬁmtlon of the two-microlocal Besov space with
dominating mixed smoothness B3 (R,, x {0}) as follows:

Definition 4.1. Let s;,85 > 0, s3 € R, and 1 < p < oo. Then f € S'(R?) is
said to belong to the two-microlocal Besov space with dominating mixzed smoothness
SBEN (R, x {0}) if the following two-microlocal estimate holds:

||f ‘ SB(S1 s2) 83 961 % {0})”

1
p

Z Z 2(j1§1+j2§2)p(1_|_2j1 +(|k2|_|_1)2—j22j1Vj2)ssp|ijk|p < oo,
jez? kez?

where j1 V jo = max{ji, ja}.
Our main theorem of this section is the following:

Theorem 4.2. Let s; > 0, s3 <0, s;+s3 >0 (i=1,2), and 1 <p < 0. Then
f € 8'(R2) belongs to SBY ™" (Ry, x{0}) if and only if there exists a decomposition
f=fi+ fo+ fs + fu such that

fi € SBEISI(R?), fo € SBUTos)(R?),
f3 €5 p,sp+83782_83)(R2)7

and
[£2] SBE 9 (Ry, x A,)|| = 0P (p7).

W//////%

/ R/2
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Skech of the ];)roof: We employ the method used in the proof of Theorem 4.2.
Let f € SBEY*™(R,, x {0}). Then its wavelet coefficients satisfy

Z Z 2(j1§1+j2§2)p(1 + 2J1 + (|k2| 4 1)2_j22j1\/j2>83p|0j,k|p < 00. (14)

jez? kez?

We decompose f as follows:
f = fl + f27

where fi and f, correspond to the cases where 0 € supp vj, x, and 0 € supp ¢¥j, i,
respectively.

First: We decompose f; into three parts according to {j; > 0,js > 0}, {j2 <
0,j1 > ja2}, and {j1 < 0,2 > ji }.

Second: We decompose f> into three parts, among which the case where 272 R >
10C" is the most important.

Third: We decompose this important term into three parts according to {j; <
0,72 <m}, {71 > 0,72 < j1 +m}, and {j2 > m, jo > j; +m}. The last term yields
the function f; characterized by the local Besov type condition with dominating
mixed smoothness.

Summing up, the case where 2/2R > 10C" (R is a fixed positve number), jo > m,

Jjo > j1+m (m > —log, R) in the wavelet decomposition of f yields the most
singular part fj.

We finally remark that the case where j; > j» and jp < 0 in the wavelet decom-
position of f; vields the function f5 € SBSET%7%)(R2).

J2
A




Remark 4.3. The idea of this theorem is that every f belonging to the generalized
function space SBSS***(R,, x {0}) has a good decomposition f = 3% | f;, where
the term f, represents the singularities of the function f along the line R,,; they
satisfy the local Besov type conditions in the neighborhood of the zj-axis. (As we
have seen in section 2, every f € B;;;’(azo) has a good decomposition f = f; + fo,
where the term f; represents the singularities of the function f at the point x.)
Our future research is a more complete theory of two-microlocal spaces using Weyl-

Hormander calculus.

Remark 4.4. The typical examples considered by Jaffard-Meyer are an indefinitely
oscillating function of the form x®sin(1/2”), and Riemann’s nondifferentiable func-
tion o(r) = Y 7 (1/n*)sin(rn’z), where the Holder regularity at a point x, de-
pends on the Diophintine approximation properties of xy. Higher dimensional sin-
gularities will be studied in our future research.

Remark 4.5. The two-microlocal Besov spaces of product type are easily introduced
and characterized. It is associated with the uncertainty functions A\; = 1 + |z;||&]
(¢ = 1,2); the norm of the wavelet coefficients € is defined by means of the

weighted cocfficients 201511252 (1 4 |y )1 (1 + |k2|)8/2|0j’k

Lo D1

) N

Ry, x Ay, and A, x R,
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