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1. INTRODUCTION

This is a survey paper. I would like to state some recent results
in harmonic analysis related to characterization of function spaces by
square functions. The results include the following.

(1) Characterization of L? spaces, 1 < p < oo, by Littlewood-Paley
functions;

(2) Characterization of Sobolev spaces by Littlewood-Paley func-
tions;

(3) Characterization of H' Sobolev spaces by square functions of
Lusin area integral type;

(4) Characterization of Hardy spaces H? on homogeneous groups
by Littlewood-Paley functions, where 0 < p < 1.

2. MAPPING PROPERTIES OF LITTLEWOOD-PALEY OPERATORS ON
LP SPACES

Let ¢ be a function in L'(R") such that

(2.1) Rnw(m) dx = 0.

We consider the Littlewood-Paley function on R" defined by

>0 o dt\ '
22) win)@) = ([T1renord)
where 1;(x) =t~ (t"'x). The following result is well-known.

Theorem A. Let i) € L'(R") be as in (2.1). We assume that
(2.3) [p(e)] < OO+ =),

(2.4) /n |v(rx —y) — ¥(x)|de < Clyl¢ for ally € R,
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with some positive constants C,e. Then g, in (2.2) is bounded on
LP(R™) for all p € (1,00) :

(2.5) 9 (Nlp < Cpllfllp,

where y
p
pu— P pu— pd .
11 =11 = ([ 1s0pa)

This is a result of Benedek, Calder6n and Panzone [2].
Let

m(e) = [ 1P 7.

Then m is a homogeneous function of degree 0. Here the Fourier trans-
form is defined as

$(€) = %/)( Je eS8 d, ZIk&c

By the Plancherel theorem, one can see that g, is bounded on L*(R")
if and only if m € L>(R™).

Let
t

T+ 2o
be the Poisson kernel on the upper half space R" x (0,00) (see [40])
and Q(z) = [(0/0t)Py(x)];=1. Then, we can see that the function @
satisfies the conditions (2.1), (2.3) and (2.4). Thus by Theorem A gq
is bounded on L?(R™) for all p € (1, 00).

Let H(z) = sgn(z)x-1,1(2) = Xp.7(2) — x-1,0/(*) on R (the Haar
function), where y g denotes the characterlstlc function of a set £ and
sgn(x) the signum function. Then gy (f) is the Marcinkiewicz integral

@) = / TP+ P —2r@rE )

where F(x fo dy. We can easily see that Theorem A also
implies that gu is bounded on I”(R), 1 < p < .

We recall a theorem of Hormander [15] to see results about the re-
verse inequality of (2.5). Let m € L°°(R") and define

(2.6) T(f)(@) = | m(&)f(€)e*™ =9 de.

Rn
We say that m is a Fourier multiplier for L? and write m € M? if there
exists a constant C' > 0 such that

1T (Pl < Clifll
2

P(z)=c¢



for all f € L? N LP. Then Hormander’s result in [15] can be stated as
follows (see [5] for relevant results).

Theorem B. Let m be a bounded function on R". Suppose that m is
homogeneous of degree O and that m € M? for all p € (1,00). Suppose
further that m is continuous and does not vanish on S" ' = {z € R" :
|x| = 1}. Then, m=! belongs to M? for every p € (1,00).

The idea of the proof comes from a Banach algebra technique re-
lated to Wiener-Lévy theorem on absolutely convergent Fourier series.
Applying Theorem B, we can deduce the following (see [15, Theorem
3.8]).

Theorem C. Suppose that gy is bounded on L for every p € (1,00).

Let m(§) = [° [p(t€) 2 dt/t. Suppose that m is continuous and strictly
positive on S"~'. Then we have

1£llp < collgu ()l

and hence ||fll, = |lgu(f)|lp, f € LP, for all p € (1, 00), where || f||, ~
lgw (), means that

cllflly < lgw(Hllp < c2llFll

with positive constants cq, co independent of f.

We also consider a discrete parameter version of g,:

o 1/2
(2.7) Ay(f)(x) = ( > If*wzk(x)l2> :

k=—0o0

We recall the non-degeneracy conditions

(2.8) sup [(t€)| > 0 for all £ # 0;
>0

(2.9) sup [1(28€)| > 0 for all € # 0,
keZ

where Z denotes the set of integers. Obviously, (2.9) implies (2.8).
We recall the weight class A, of Muckenhoupt. A weight w belongs
to A,, 1 < p < oo, if

sup (ﬁ w(z) dx) (ﬁ w(z) P d:z:)p_l < o0,

]i F(y) dy = ﬁ / £(y) dy

and the supremum is taken over all balls B in R" (see [13]).
3
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The weighted Lebesgue space L? (R™) with a weight w is defined to
be the class of all the measurable functions f on R™ such that

= ([P0 ) <o

B.(4) = /| @l

D) = ( /. )l "

Then the following two theorems are known (see [29]).

Let

Theorem 2.1. Suppose that
(1) B.(¢) < oo for some € > 0;

(2) D,(¢) < oo for some u > 1;
(3) Hy € L'(R"), where Hy(x) = supjy> . [¢(y)];
(4) the non-degeneracy condition (2.8) holds.
Then |[f s = 96(F)llpws £ € L2, for all p € (1,00) and w € 4,

Theorem 2.2. We assume that
(1) B.(¢) < oo for some € > 0;
(2) W)( W< CIE? for all € € R\ {0} with some § > 0;
(3) Hy € L}(R");
(4) the non-degeneracy condition (2.9) holds.
Then || fllpw = |1 As(f)llpw, f € LE, for all p € (1,00) and w € A,,.

The inequality || gy (f)|lpw < €| f|lpw in Theorem 2.1 was established
in [21] without the assumption (4). We easily see that Theorem A
follows from Theorem 2.1. Also, see [34] for related results with non-

isotropic dilations.

3. CHARACTERIZATION OF THE WEIGHTED SOBOLEV SPACES BY
LITTLEWOOD-PALEY FUNCTIONS OF MARCINKIEWICZ TYPE

Recall the function of Marcinkiewicz:

u(f)(@z(/oool (x+1) + F(z —t) = 2F ()] ff) /,
=/0$f(y)dy

J. Marcinkiewicz [17] introduced this square function in 1938 in the

setting of periodic functions on the torus. Zygmund [45] gave proofs of
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results conjectured in [17]. The non-periodic analogue was established
by Waterman [44].
If 2/3 < p < oo, then it is known that

() llp = [ fllmz, f € So(R),

where H? denotes the Hardy space and 8;(R") is the subspace of S(R")

consisting of functions f with f vanishing outside a compact set not
containing the origin (see [22]), where §(R") denotes the Schwartz class
of rapidly decreasing smooth functions.

The equivalence ||u(f)||, = || f]|m» can be rephrased as

1 = W ey f € So(R),

where

3.1 v = (/Ooo\f(x+t)+f(a:—t) —2f(x)|2%>

This may be used to characterize Sobolev spaces.

We give the definition of the Sobolev space W*?(R"). Let 1 < p <
oo, a > 0. We say that f € W*P(R") if f € LP(R") and f = J,(g) =
K, = g for some g € LP(R"), where K, denotes the Bessel potential
whose Fourier transform is given by

Ko(€) = (L+ drlgf?) o
(see [39, Chap. V]). The norm is defined to be

Il fllpe = llgllze  with f = Ja(g).

Let n > 2. Let 0 < o < 2. R. Alabern, J. Mateu and J. Verdera [1]
(2012) considered
1/2
>\
112 ’

Valf) () = ( / ) ‘f(fv) -4 L fwds

where B(z,t) is a ball in R" having center x and radius ¢. The article
[1] proved the following.

1/2

Theorem D. Let 1 < p < oo. Then, the two statements in the
following are equivalent:

(1) f belongs to WHP(R"),

(2) fe LP(R") and Vi(f) € LP(R™).
Furthermore,

[ llp.x 2= 11l + VA () -
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Since the expression fB f makes sense in general metric measure
spaces, this result may be used to define Sobolev spaces analogous to
WLP(R™) in metric measure spaces.

Let 1 < p < 00, « > 0 and w € A,. Since it is known that
|Ja(g9)] < CM(g), where M denotes the Hardy-Littlewood maximal
operator defined by

M(f)(z) = sup ][ Ly

t>0

we have J,(g) € LP if g € L?. The weighted Sobolev space W2*(R")
is defined as the collection of all the functions f € L? (R™) for which
we have f = J,(g) for some g € LP (R"). Since such ¢ is uniquely
determined, the norm is defined to be || f1|, a0 = [|9]]pw-

We can apply Theorems 2.1, 2.2 in characterizing the weighted Sobolev
spaces WP (R™) by square functions related to the Marcinkiewicz func-
tion including V,(f) and its discrete analogue

0 9 1/2
(Z ‘f(fﬂ)—]{g(m)f(y)dy 2‘”“‘) . a>0.

k=—o00
For a« > 0, we define function spaces M*(R"). If 0 < a < 1,
M2(R™) is the collection of functions ® which are compactly supported,
bounded on R" and satisfy [,, ®(x)dz = 1. When a > 1, we say
O € M*(R") if ® further satisfies that

(3.2)
/ O(z)2"dr =0, 2" =2]"...2), forallywithl< |y <[]

where [«] denotes the largest integer not exceeding avand v = (71, ..., V),
v; € Z,y; > 0, is a multi-index and |y| = y;+- - -+7,. Let & € M*(R")
and define

(33)  Galf)(x) = ( / 1) = Bk () tﬁ;)m, o0,

o 1/2
(34)  Eu(f)(2) = ( D (@) = o f(2)]* 2‘”“") , a>0.
k=—oc0
We note that
1
Fe— eEMY, 0<a<?2,
B, ’
and that if @ = F, then G,(f) = V,(f). The following results are

known (see [29]). )



Theorem 3.1. Suppose that 1 < p < oc, w € A, and 0 < a < n.
Let G, be as in (3.3). Then f € WSP(R™) if and only if f € LP and
Ga(f) € Li; also,

£ llp.ceo = | fllpaw + [|Ga ()]

Theorem 3.2. Let 1 <p < oo, w e A, and 0 < o < n. Let E, be as
in (3.4). Then f € W3P(R™) if and only if f € L2 and E,(f) € L?;
furthermore,

p,w-

I fllpaw = 11f llpw + 11 Ea(f) -

We can find some relevant results in [14, 26]. Also, a characterization
of W2P(R") by a square function with ® € M is given in [28].
We write

fle+t)+ fle—t) = 2f(x) = 2/ (f(z —ty) = f(x)) do(y),

SO

where S® = {—1,1} and o is a measure on S° such that o({—1}) = 1/2,
o({1}) = 1/2. According to this observation we generalize v in (3.1)
to higher dimensions. Let n > 2 and
1/2
2 ar) "
t b

where do is the Lebesgue uniform measure on S"~! normalized as

fSn71 do = 1.
Let 0 < aw < 2 and S,(f) = D*(Iof):

Salf)(x) = ( |

where I, is the Riesz potential operator defined by
L()(&) = (2xle)f (&),

D)) = ( [Tl [ - sanaow

L6 = [ 1) =) doty

1/2
> dt
$+1+2a ’

I,(f)(x) = Lo * f(z), La(x) = Cylz|* "
Then the following result is known.

Theorem E. Let 1 <p <oc, n> 2. Then for f € S(R") we have
151 (Al = £ 1lp-
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This result of P. Hajlasz-Z. Liu [14] may be used to characterize the
Sobolev space WP (R™).

We can give an alternative proof of Theorem E. We recall the Bochner-
Riesz mean of order 5 on R" defined by

S(f)(x) = / O = R2ep)? it ae.
[E]<R

Define a Littlewood-Paley operator oz, Re(3) > 0, by

o = ([ |reronsini| dlf)

B (/ooo ‘_25 (sz(f)(x) - Sﬁ‘l(f)(x))r %> 1/2

Then we have a pointwise equivalence of o5(f) and S,(f).
Theorem 3.3. Let 0 < a < 2, f =a+n/2. Then
O',g(f)(.’l)) %Da(laf)(x)a f € 8O(IRn)

When 0 < « < 1, this is due to Kaneko-Sunouchi [16] in 1985. The
range of « is extended to (0,2) by [30].

We can apply Theorem 3.3 with @ = 1 and a property of og with
B =14 n/2 to give an alternative proof of Theorem E (see [30]).

4. CHARACTERIZATION OF H' SOBOLEV SPACES BY SQUARE
FUNCTIONS OF LUSIN AREA INTEGRAL TYPE

We define H' Sobolev space W&, (R"), where H' is the Hardy space.
We say that f € W&, (R*) if f € HY(R") and f = J,(h) = K, * h for
some h € H'(R"). Define

[fllwe, = allmr,  f = Jalh),

where || - ||z denotes the norm in H' (see [11]).
Let
(4.1) Y (x) = Lo(2) — Lo % (),

where & € M*, 0 < a < n. We consider a Lusin area integral of
Marcinkiewicz type:

suotne = ([~ [ N Wzﬂ)
Ry



Also, define

Ua(f)(z)

> _ _ % o 2 204@)1/2
(/0 /B(O’l)|f(:r )~ @y flo ) dat

[e9] y
(/ / |f(2) — @y % f(z)‘Q dthandt> |
0 B(x,t) "

Dra(f) = Szp(a)([faf% f S SO(Rn)

The H! Sobolev space can be characterized by U,.

Then

Theorem 4.1. Suppose that n/2 < a <n, ® € M* and
ROl <C+lE)?, atp>n

Then the following two statements are equivalent:
(1) f e Wh(R?),
(2) fe H(R") and U,(f) € L'(R").
Further, we have ||f||W;_;1 ~ || fllz + | Ua( )1

In Theorem 4.1, the hypothesis « > n/2 is optimal in the sense that
if 0 < a < n/2, the estimate

1Ua(HI < ClIfllwe,

does not hold.
The weighted H' Sobolev space W, (R") is defined as follows. Let

w € A; and set
Hy={feL,: f el fllu=If

where f*(x) = sup,s ¢ * f(2)| with ¢ € S(R") satisfying [ pdz = 1.
The space Wg, (R") is the family of functions f € H, (R") such that
f = Ju(h) for some h € H(R"). We define HfHW;l = ||| a2

We confine our attention to the one dimensional case and we have
the following result.

1w,

Theorem 4.2. Suppose that w € A;. Then the following two state-
ments are equivalent:

(2) f € H.(R) and v(f) € L. (R), where v is as in (3.1).
Furthermore, || fllwy, 2 [|fllm, + ()]l -
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Theorems 4.1 and 4.2 can be found in [33].
Let

1/2
Da(f)a) = ( L(f) & — ) — L(f)(@) |y|‘,fﬁ2a) |

]Rn
It has been observed that the square function Sy (f) is closely related
to Do (f) (see [37] and also [6]). We recall the following results for D,,.

Theorem F. Let 0 < a < 1 and py = 2n/(n + 2«). Suppose that
po > 1. Then

(1) Dy is bounded on LP(R™) if py < p < oo (E.M. Stein [38]);

(2) D, is of weak type (po,po) (C. Fefferman [10]).

In [35], this is generalized by considering analogues of D, with frac-
tional integrals of mixed homogeneity in place of the Riesz potentials
of Euclidean structure.

5. SKETCH OF PROOF OF THEOREM 3.1

Let 0 < a < n, ® € M*® and define

rine = ([0 - e e )

Since (¥ (x) = Lo(x) — ® * Lo(x) with ® € M®, it is easy to see that
[p(@)(z)| < Clz|~"* for |z| < 1 and [ (x)| < Clz| mFo—lel=1 for
|z| > 1. By these estimates, the conditions (1), (2) and (3) of Theorem
2.1 hold for 1(®). Also,

—

P@(€) = (2mE) (1 — (¢))

satisfies the non-degeneracy condition (4) of Theorem 2.1, since ® (&) —
0 as [£] — oc by the Riemann-Lebesgue lemma. Further, since

@ (€)] < Clg| HalH

we have @(0) = 0. We see that T,(f) = gy@ (f). Thus by Theorem
2.1

NTa(f)llpw = ||9¢(a)(f)||p,w 2 || f llp 2o

Using this and the observation

Ta(l—af) :G@(f)u f S SO(RH)J
we have

NG a(lpw = 1 -afllpw-

We can derived Theorem 3.1 from this.
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6. SKETCH OF PROOF OF THEOREM 4.1

Theorem 4.1 follows from the next result.
Theorem 6.1. Let ¢)(*) be defined as in (4.1) with ® as in Theorem
4.1. Then
Sy (Dlls = [ fllmrs  f € So(RY).

We need the following Hormander condition in proving Theorem 6.1.
Lemma 6.2. Let ¥(*) be as in Theorem 6.1. Then

/|;r|>2|y| |:/Bo><(0,oo)

with a constant C independent of y € R", where By = B(0,1).

By Lemma 6.2 and a result of [13] for vector valued singular integrals
we have [|Sy@ (f)ll1 < C|fl[m-
The reverse inequality can be deduced from the following result.

Lemma 6.3. If f € §(R") and g € BMO(R"), then we have

[ fa)gta)ds| < Cllglmo [ Sy (F)a)d

From Lemma 6.3 and duality of H' and BMO we see that |||/ <
C||Syter ()]]1-

The proof of Theorem 3.1 is based on the estimates ||, @) (f)[pw =
Il fllpwo- T (| gy (F)lIL = [z, then we would be able to characterize
Wi by G,. We do not know at present if the estimate ||f||g; <
C||gy@ (f)]]1 holds or not.

2 dt

1/2
w§“) (x—y—tz) — wﬁa) (x —tz2)| dz 7] dr < C,

7. SKETCH OF PROOF OF THEOREM 4.2

The proof of Theorem 4.2 is based on the following result.
Lemma 7.1. Let w € Ay. Then we have

N = [ fllm,  f € So(R).
Define

9ol F) () = ( / " (0f0wyuls, t>|2tdt) "

where u(z,t) denotes the Poisson integral of f: wu(x,t) = P, x f(x),
P(&) = e 2™l Let R(&) = 2mice=>™¢l. Then go(f) = gr(f) and we
have

(7.1) 1fllms < Cllgo(f)ll1w, f € So(R).
11



This can be seen from the following (the unweighted case is in [11, 43]).
Remark 7.2. Let ¢ € L'(R"). We say ¢ € B if

(1) & € Co(R"\ {0});
2) supy [ (t€)| > 0 for all £ # 0;
3) ¥ € CYR"), Opp € L'(R™), 1 < k < n, where 9, = /0xy;

(2)
(3)
(4) [$(&)] < CI¢|* for some € > 0;
(5)

~

5) [07(€)] < C,-|€| 7 outside a neighborhood of the origin for
all multi-indices v and 7 > 0, where 8 = 9]'9)>...9)", v =

(715’727"'7’)%)-
Let 0 <p <1, we€ Ay and ¢ € B. Then we have

(7.2) 111z < Collgw ()l

for f € §y(R") with a positive constant C, independent of f. This is
proved in [33]. See also [31], [32] for related results.

By applying (7.2) on R' with ¢» = R we have (7.1).
Also, it is known that the pointwise relation

holds (see [22]). Combining (7.1) and (7.3), we have
[ £l < ClpCH10-
To get the reverse inequality, recall that u(f) = gu(f),
H(z) = X[-1,0] (z) — X[0,1] ().
We can show that

00 dt\'"? [yl
2
([t - m@pS) " <ol for2iy <ol

Using this and a result for vector valued singular integrals, we can prove
the reverse inequality:

(Pl < ClFllmy-

This can be also shown by applying the pointwise relation between
g3 and pu (see [22]) and the H) — L) boundedness of g5 with w € A;,
which can be found in [18], where

Gi(f) () = ( /] o (ﬁ) " \Vuly. O dy dt) "

12




8. CHARACTERIZATION OF HARDY SPACES ON HOMOGENEOUS
GROUPS BY LITTLEWOOD-PALEY FUNCTIONS

Let R® be the n dimensional Euclidean space as before. Here we
assume that n > 2. We also consider R” as a homogeneous group H
equipped with multiplication given by polynomial mappings. We have
a dilation family {A4;};~0 on R" of the form

Ay = (t" 0, 1%y, ..t xy,), = (T1,...,%,),

where real numbers aq,...,a, satisfy 1 = a7 < ay < --- < a,. We
assume that each A; is an automorphism of the group structure (see
[12], [42] and [19, Section 2 of Chapter 1]). The homogeneous nilpotent
Lie group structure of H has the following properties:

(1) Lebesgue measure is a bi-invariant Haar measure;

(2) we have (z1,...,x,) as the canonical coordinates;

(3) the group law obeys the Hausdorff-Campbell formula as a nilpo-

tent Lie group;

4) the identity is the origin 0 and 27! = —u;

) (ax)(Bz) = ax + fz for z € H, o, f € R;

) Ay(zy) = (Awr)(Ay) for z,y € H, t > 0;

) if z = zy, then 2, = Py(x,y), where Pj(z,y) = x; + y; and
Pi(z,y) = xx + yr + Ri(z,y) for £ > 2 with a polynomial

(
(
(
(

Ry.(z,y) depending only on x4, ..., 25 1,%1, .., Yr_1, which can
be written as
k
Ry(z,y) = > aly’.

[710,].71#0,a(T)+a(J)=ay

Here, I = (i1,49,...,1,) € (Ng)" with Ny denoting the set of
non-negative integers and

a(l) = ayiy + agia + « -+ + Ayip;

also, J € (Ny)™.

We have a norm function p(z) which is homogeneous of degree one
with respect to the dilation A;; so we have p(A;x) = tp(z) for t > 0
and x € H. We may assume the following:

(8) pis continuous on R" and smooth in H \ {0};
(9) p(z +y) < p(z) + p(y) and p(zy) < co(p(z) + p(y)) for some
constant ¢g > 1 and p(z 1) = p(x);
(10) p(z) < 1lifand only if |z| < 1 and if ¥ = {z € H: p(z) = 1}
and S" ! = {z € R" : |z| = 1}, then ¥ = 5"~ L.
13



(11) there are positive constants ¢;, oy, B, 1 < j < 4,1 <k <2,
such that

arlz]™ < plx) < eofx]™if p(z) > 1,
cala|™ < plx) < eala|™ if p(x) < 1.

We recall the Heisenberg group H; as an example of a homogeneous
group. Define the multiplication

(z1, 29, 23) (Y1, Y2, ¥s) = (X1 + Y1, To + Yo, T3 + Y3 + (T1y2 — T2y1)/2),

(1,29, 23), (Y1,Y2,y3) € R®. Then this defines a group law for the
Heisenberg group H; with the underlying manifold R?, where the dila-
tion Ay(x1,x9,73) = (try,twy, t2x3) is an automorphism ({A4;} satisfies
(6))-

We define the Littlewood-Paley ¢ function on H by

(8.1) gdﬂ@ﬂ=(%mv*wx)lﬂ>/,

t

where f € §, ¢ € § satisfying [; odz = 0 and ¢,(z) = ¢ 7p(4; 'z)
with v = a; + - -+ + a,. Here 8’ denotes the space of tempered distri-
butions and 8 the Schwartz space, which are the same as those in the
Euclidean case (see [40]). The convolution F x G on H is defined by

PWQ@=Aﬂwﬂﬂw@:AF@Mw%@

See [9] and [7, 8, 24, 27, 42] for the study of Littlewood-Paley opera-
tors and singular integrals, respectively, on L? spaces on homogeneous
groups, 1 < p < oo. Also, see [23, 34] and [25, Section 7] for results in
harmonic analysis with non-isotropic dilations.

In this section we give a characterization of Hardy spaces H?, 0 <
p < 1, on H in terms of the Littlewood-Paley ¢ functlons We first
recall related results in the Euclidean case. Let o, ¢ =1,2,... M,
be functions in 8(R") which satisfy the non- degeneracy condltlon

(8.2) inf pz 1F(9)(t8)| > ¢

£eR™\{0} t>

for some positive constant ¢, where F(¢¥) denotes the Fourier trans-
form. In [43] the following result for the Euclidean structure can be
found.

14



Theorem G. Let 0 < p < 1. Let ¢\ € §(R") with [, ¢\9 dz = 0,
¢=1,2,...,M. Suppose that the condition (8.2) holds. Then

M
epll Fllme < 1gg0 (H)llp < Coll fllae
=1

for f € HP(R"), where g, (f) is defined similarly to (8.1) with the
Euclidean structure (see (2.2)).

See [11] for the Hardy space H?(R™). Analogous results for L” spaces,
1 < p < o0, can be found in [2], [15] and [29].

Let e; = (egj),egj), . ,eg)), 1<j<nmn, egj) =1 and e,(c]) =0if k # 4.
Define

X, f(z) = [%f(x(tej))] N
b =[]

Then X; and Y} are called the left-invariant and right-invariant deriva-
tives, respectively.

Let I = (i1,i2,...,1n) € (Ng)™ Higher order differential operators
X7 and Y are defined as

XT=Xbxe X Y=YV, Y

Then |I| is called the order of X7 and Y7 and a(I) the homogeneous
degree for them.
Let

(83) P(x)= chxl, ol =l ain T = (iy,dg,. .. ip),

be a polynomial on R". We may also consider P(z) as a polynomial
on H. The degree of the polynomial P is max{|I|: ¢; # 0}. Also, the
homogeneous degree of P is defined to be max{a(I) : ¢; # 0}.

Let A = {a(I) : I € (Ny)"}. We denote by P, the space of all
polynomials P in (8.3) with a(I) < a for all I.

Let

[@]lnv) = sup (14 p(z)) MOV D (2)]
|[I|<N,zeH

(see [12, p. 35]). Define
By = {(I) €8: ||(I)||(N) < 1}.
Let
My (f)(x) = SUP{Stu(F)’ |f* ®y(z)| : @ € By}
>
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We define the Hardy space H? on H for p € (0,1] as

H? ={f €8 ||fllar = [[M,) (f)llp < o0},
with sufficiently large N,. The number

N—mm{NENO N>min{fa€e A:a>~v(p'—1)}}

can be taken as N,. If A = Ny, then N, = [y(p' — 1)] + 1 (see
[12, Chap. 2]). See [11] for the definition of H? spaces in the case of
Euclidean structure.

To generalize Theorem G to the case of homogeneous groups, we
recall the fact that the condition (8.2) implies the existence of functions
M, ... M) € §(R™) such that each supp F(n®) is a compact set not
containing the origin and such that

Mo dt
(8.4) E / <p§£) * ngé) - = d in §,
=170

where 0 denotes the Dirac delta function.

We employ an analogue of (8.4) as a non-degeneracy condition for
e . M) on H and we can prove the following result analogous to
Theorem G.

Theorem 8.1. Let 0 < p < 1. There exists d € A having the following
property. Suppose that {o© € 8§ :1 < ¢ < M} is a family of functions
such that (1) and (2) below hold:

(1)
GOde =0, fort=1,2,...,M;

(2) there exist functions n'9 € 8, 1 < ¢ < M, satisfying that

Z/ V! _JH{)‘Z/ )« Y —5 in 8’

B—soo £=1
and that

/n(g)de:O forallPe Py, 1<l M.

Then
(8.5) ol fllae < Z 9o (llp < Coll fllae for f € H?

with positive constants ¢, and C), independent of f, where g« is as in

(8.1) and H? is the Hardy space on H.
16



Consider a stratified group H with a natural dilation and let h be
the heat kernel on H (see [12]). We define ¢1) € §, j =1,2,..., by

69 (x) = [(0/0t) h(w,1)] _, = (LY h(z,1),

where L is the sub-Laplacian of H. We have the following result as an
application of Theorem 8.1.

Corollary 8.2. Let f € H?, 0 < p < 1. Then we have
Sl fllae < Nggor ()llp < Cpll fll e

for any j > 1, with some positive constants c,, C, independent of f.

This is almost Theorem 7.28 of [12]; in [12] the first inequality is
proved under the condition that f € &' vanishes weakly at infinity and
9o (f) € LP.

We recall the Lusin area integral on the homogeneous group H de-
fined by

0 1/2
s =(["[ . ireawreraa)
plz™ y)<

Then, results analogous to Theorem 8.1 were proved for S,(f) in [12]
(see [12, Theorem 7.11 and Corollary 7.22]), but the characterization by
the Littlewood-Paley function was shown only for special Littlewood-
Paley functions gyt coming from the heat kernel.

As in the case of the Euclidean structure of Theorem G, the first
inequality of (8.5) is more difficult for us to prove than the second one;
the second inequality may be shown by applying a theory of vector-
valued singular integrals.

In [31] an alternative proof of the first inequality of the conclusion
of Theorem G is given by applying the Peetre maximal function F{'p
of [20] defined by

- [F(x —y)|
Finle) = S0 (3 RV

Here we would like to give some comments on the application of the
Peetre maximal function in proving the first inequality of Theorem G.
When F(¢) each has a compact support not containing the origin,
then we can prove that inequality much more easily by applying the
Peetre maximal function. A reason for this is the availability of the
trick similar to the one in the proof of Bernstein’s inequality for the
estimates of the derivatives of trigonometric polynomials.

The proof of [31] is expected to extend to some other situations.

Indeed, it has been applied to characterize parabolic Hardy spaces of
17



Calderén-Torchinsky [3, 4] by Littlewood-Paley functions (see [32]).
See also [33] for related results on weighted Hardy spaces.

The methods of [31] can be also applied to characterize Hardy spaces
on the homogeneous groups by certain Littlewood-Paley functions (The-
orem 8.1). In proving the theorem we apply the Peetre maximal func-
tion on H defined by

SRS | NP 1 )]
(8.6) Nr(T) = ver (L1 Rp@)N  yek (1L + Rply ')V

and use the following lemma.

Lemma 8.3. Let N =~/r,r>0,0< 0§ <1. Let f,o € 8. Then we
have

(fx@)Na(x) < Cd MM xil)' (@) +Crb (% (X))o ()
j=1

for allt > 0, where M denotes the Hardy-Littlewood mazimal operator
on H defined by

M(f)(z) = supt™ [ Tl
ply~—lz)<t

t>0

See [36] for the details.
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