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1 Introduction

The aim of this manuscript is to show a resonant effect for matrix Schrodinger
operators which is comparable to the resonant tunneling effect for scalar
Schrodinger operators. The tunneling effect is one of the most famous quan-
tum effects (see e.g., [15]). In the single-barrier problem for a 1D scalar
semiclassical Schrodinger operator
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—hQ% +V(z), (h>0,VeCPR;R)), (1.1)
the transmission probability is exponentially small in the sense of semiclas-
sical limit h — 0T (see e.g., [11, 12, 18] and references therein). However,
resonant tunneling effect says in the double-barrier problem that the trans-
mission probability reaches almost one at resonant energies ([5, 7, 19] see
also [16] for an elementary model with piecewise constant potential and the
resonant tunneling for quantum walks). Conversely, in the no-barrier prob-
lem, the transmission probability is exponentially close to one (e.g. [18]). We
consider no-barrier problem for one of the two coupled scalar Schrodinger
operators, and show the “resonant reflecting effect” in the sense that the
transmission probability reaches almost zero at resonant energies.

Let us make precise our problem. We study the scattering matrix in the
semiclassical limit for a 2 x 2-matrix Schrédinger operator in 1D:

P(h) = @é{l;) é%), h> 0, (1.2)

where for each j = 1,2, P;(h) stands for the scalar semiclassical Schrodinger
operator and W for a multiplication operator of a function W:
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We assume the following conditions.

Condition A. There exist real values E1 and Ey such that the functions
Vi — E1, Vo — Ea, W are smooth (C*) real-valued with a compact support.

Then the scattering matrix S = S(F) is defined for E > max{F1, Es} as
a unitary 4 x 4-matrix. At such energy levels, behavior and estimates of the
anti-diagonal 2 x 2-blocks S12(F) and S2;1(E) of this matrix are interesting
in the context of phase space tunneling (see [1, 4, 14]):

_ (Su(E) Sia(E)
S(E) = (521(E) SQZ(E)> '

Note that if the anti-diagonal part W of the operator P vanishes identically,
it follows that the diagonal blocks S11 and Sao coincide with the scatter-
ing matrices of the scalar operator P; and P», and that the anti-diagonal
blocks vanish S1o = S9; = 0. Our interest is the diagonal block &71 as a
modification of the scattering matrix of P;. We consider energies near Fj
between Fq and E5 such that P; and P, admit no-barrier and single-well at
FEy, respectively.

Condition B. Let
0=F < Ey < E>. (1.3)

The functions Vi, Vo, W are even. There exists a’ > 0 such that

V —FE
M>O>V1(x)—Eo for x> 0.
x —al

Under Conditions A and B, the block S11(F) is a unitary matrix for
E near Ej (see Proposition 1). We call the modulus of the diagonal and
anti-diagonal entries of Si;(£) the transmission and reflection coefficients,
and denote by ¢(F) and r(E). The unitarity implies the identity

t(E)? +r(E)? =1. (1.4)

Near Ey, the spectrum of P is continuous, and that of P, consists of (real)
eigenvalues. For a positive [ > 0 independent of h, set

A(E) ::/ﬂé\/max{E—Vg(:E),O}dx, E e [Ey—lh, By+1h],  (1.5)

the classical action of the well, and

B, = By (1, Eo) := {E € [Eo — lh, Eo + 1h]; cos (%) = 0} (1.6)



the set of Bohr-Sommerfeld points. Then for any A > 0 small enough, there
exists a bijection s, : By(l, Ey) — o(Pa(h)) N [Ey — lh, Ey + lh] (the set
o(Py(h)) is the spectrum of P,(h)) such that

|sn(E) — B| = O(h?) (1.7)

uniformly for E € By(l, Ey) (see e.g., [10, 20]). Since the spectrum of Pj(h)
near Fjy is continuous, o(P2(h)) is the set of embedded eigenvalues near Ejy
of P(h) when W vanishes identically. For a general W, the eigenvalues of
P,(h) may turn into resonances in the lower half plane (see (2.3) for the
definition of resonances). The asymptotic distribution of resonances near
Ey is studied in [3, 13, 17] and [2]. When the characteristic sets {(z,¢) €
R% €2 + Vi(z) = Ep} and {(x,¢) € R?; €2 + Va(x) = Ey} do not intersect,
the imaginary part of the resonances is exponentially small with respect to
h [3, 13, 17], but when they do with a finite degeneracy, it is of polynomial
order [2]. To avoid a delicate estimate, we assume that they intersect.

Condition C. The difference Vi — Vo only vanishes at x = 0, and
Vi(0) = V2(0) = 0, V{"(0) - V5(0) # 0, W(0) # 0, suppW C {V2 < Ep}.

Theorem. Assume Conditions A, B, and C. Let | > 0 be independent of
h. Then there exists hg > 0 such that

tHE) =

T(FE)+ O(h
20, (E) + Oh) AE) | (1.8)

e 7(E) —2(Ey — E)/2w2h2/3en

holds with

7(E) = (4 + (Ey — E)1/2w2h2/3> coS @,

1/3
Y i 3WE Y cos T
AWOE (vg"<o>—v1"<0>> £(5) e,

6 = o VE — E, — \/E — Vy(z)) dz,
fo )

uniformly for 0 < h < hg and for E € [Ey — lh, Ey + [h].

It follows in particular that
t(E) =1+ O(h*3) (1.9)
for E away of order h from B,(l, Ey), and that

t(E) = O(h'/3) (1.10)



for E € B,(l, Ep). In this sense, the “resonant energies” are close to the
eigenvalues of P5(h). According to [2], the resonant energies are also close

to the real part of resonances. They proved the existence of a bijection
zn : Bp(l, Eg) — Res(P(h)) N ([Eo — lh, Ey + Lh] — i]0,[h]) such that

|zn(E) — sp(E)| < ch®/3 (1.11)

uniformly for E € B(l, Ey), where Res(P(h)) stands for the set of reso-
nances of P(h).

These facts are similar to the double-barrier problem for scalar Schrodinger
operators. The resonant energies in the double-barrier problem are close to
the eigenvalues produced by the well between two barriers, that is, eigen-
values for the modified operator to a single-well conserving the potential
well, potential V on {V < Ep}. There are also resonances of the original
operator called “shape resonances” exponentially close to each eigenvalues
of the modified one.

In this manuscript, we prove Theorem by a simple method of contin-
uation of the Jost solutions. In the preparing paper [9], we will employ
microlocal analysis for more general situations.

2 Jost solutions and scattering matrix

We here define the scattering matrix by using the Jost solutions. It coincides
with the analytic continuation through the upper half plane of the scattering
matrix defined for £ > E5. For S = L, R, we denote by Jf g9 Jf’s, 9.9 J;S
the solutions to the equation (P(h) — E)w = 0 characterized by 7

)

Jf,L — ¢ WE-Er :C/hvh JI{,L — (VE-Er :c/hvl

2.1
Jy, = VP Balhy, g+ _ ~VE—Balhy, (2.1)

for x < —1 (left) and
Jig = VIR T = e VB Ry, (2.2)

JQjR — e—\/EQ—Em/h,UQ’ J;:R — e\/EQ—EI/h,UQ’

for z > 1 (right) with v1 = (1,0) and vy = (0,1). Such solutions ex-
ist under Conditions A and B. We call Jf,s and Jlb,s (S = L,R) out-

going and incoming Jost solutions, respectively. The two tuples J’ :=
(JI{yL,J{yR,J;L,J;R) and J! = (‘]f,R’Jlﬁ,L’JQ_,R’JQ_,L) are bases of the so-
lution space if E €|FE1, Es[ is not a resonance, that is, the Wronskian

t
Wi (JF) := det (ha;](ﬁ)) (2.3)
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does not vanish. Under Conditions A, B, and C, there is no real resonance
near Fy [2]. Note that the Wronskian of four solutions is independent of x.
Define a 4 x 4-matrix S(E) by

J’ = J'S(E). (2.4)

We are interested in the 2 x 2-block

I
Su= I O S . 2.5
w= (2 0va)s () 2.5)

Proposition 1. Let [ > 0 be independent of h. Under Conditions A, B,
and C, for each E € [Ey — lh, Ey + Lh], the 2 x 2-block S11(FE) is unitary.

Sketch of the proof of Proposition 1. Let T(E) be the 4 x 4 transfer matrix
between the two bases Jj, := (Jf,L’Jlly,L’JQ_,L’J;:L) and Jg := (Jf’R,JiR,
Jo g J;:R) of the solution space: J.T(E) = Jr. We represent the scattering
matrix S(E) in terms of the entries of T'(E). By putting

0 ti2 0 t1a t11 1 t13 0

AP = Al = 2.
0 t3o 0 t3q4 |’ t31 0 t33 1|7 (2:6)
0 t40 1 taa tygn 0 43 O

we have J! = JpA! J° = JpA° and S = (A%)"14°. The matrix A
is invertible if and only if J? is linearly independent, that is, E is not a
resonance. A straightforward computation implies in particular that

1tz M to1  to3
S = 1 _ s = det 5
=< <—77 f43> ¢ <t41 t43
tog tog t11 tia
= det = det )
n (t42 t43> <t4l t43>
where we denote by tj, = t;,(E) and by t/* = t/¥(E) the (j, k)-entry of
T(FE) and of T(E)~!, respectively. In the computation, we used the equali-

ties det T(E) = 1 and tj; = Loty oy (7)o(1.2 (k) where o1 stands for the trans-
position (1,2): 0(1,9)(1,2,3,4) = (2,1,3,4). The identity

(2.7)

Wi(JL) = Wh(Jr) = 4i\/ E — E1\/Ey — E, (2.8)

implies det T(E) = 1. The complex conjugacy of (Jf’L, J{L) and (Jfﬂ, J{R),
and the real-valuedness of JQ” I JQ” g imply tj_k =t We also

have

a1,2)(F)o,2) (k)"

) t11 ti2 13
t45 = — det t21 t22 t23
ty1 tao 43



By the symmetry of Vi, Vs, and W, it follows that t*3 = t43, and Sy is
unitary. In fact, we can check the following equalities: t43t* + |n|> = [¢|?

and (tss)? + |2 (43 )
o ae ((ts3)2 +|n 1™ —ta3)n
Susi = [¢] <(t43 —ta3) (t*)* + |77|2> '

3 Outline of the proof

We compute the scattering matrix by substituting into (2.7) the value of the
entries of the transfer matrix T'(F). To obtain these values, we continue the
Jost solutions Jf rand J, p.

For a basis (u1, %1) of the solution space to the scalar equation (P;(h) —
E)u =0, put

Be0) = Tyl (@) - B@nG) . (G

where we denote the Wronskian by
y up Uy
14% = det o
o) =ae (13 )

We can easily check that kq(z,y) is independent of the choice of the basis.
We also define the function ks(x,y) in the same manner. The Jost solutions
are represented as follows;

lCluﬁ _ Kllcgu_
Jﬁ — 17R s J et < 2’R 5 3.2
LR (Kglclug’ R) 2R Kauy (3:2)

where we introduce the integral operators

+oo
K f(x) = - / k) fwdy (feCR), je{1,2),  (33)
the infinite sums

K= Z(K1K2)k, Ko = Z(K2K1)k,
k>0 k>0

and the solutions u{R to (Pi(h) — E)u = 0 and uy p to (P2(h) — E)u =0
characterized by
uii’R _ (WVEEiz/h uy g = e VE-Ea/h 5 q

)



These infinite sums converge to bounded linear operators on C'(R) equipped
with the supremum norm. On one hand, by definition, we have

i ty e~ VE-Biz/h . iVE-Fix/h
Jl,R = t31€‘/E2_Em/h + t4le_‘/E2_Ex/h (3.4)
for x <« —1. On the other hand, we have
KlugyR = ﬁﬁugl + ﬁbu?yL, KglCluﬁyR =a uy g+ a+u§:L, (3.5)

for x <« —1 with

Bt =7t 4 _— / W (z)u] ol )K1K2u1 g(z)dz,
MW (1,0 ;)
1
B=7 / W(ﬂf)ug L(aj)lclKQUTi r(@)dz,
hW(ung,ugyL) 7 |
B -1
O = W(w)u;L(ﬂv)Kluﬁ,R(ﬂv)d%

1
at=—-———— [ W(a)u, (:E)ICluti (z)dz.
hW(u, L,u;L) R 2L LR

Here, we denote by ul L u? Lo U s and u2 5 the Jost solutions to the scalar
equations (Pj(h) — E)u =0 (1=1,2) characterized by

uii L= e—z\/E—Elx/h’ uli,L — ez\/E—Elx/h’
— _ VE:-Eax/h + _ —VE:—Ez/h
Uyp =€ , U =€ ,

for x < —1. The constants 7% and 7” are determined by

uﬁ R= Tﬁug ot Tbu?yL. (3.6)
By combining (3.4), (3.5), and similar ones for J, 5, we obtain the inte-
gral representation of the entries ¢j1, t;3 (j = 1,2, 3, 4) of transfer matrix
T(E). The difference between each infinite sum and its first term is suitably
estimated. For example, we have

1
=t =1 /R Wg i pda + O(h).

The rest of this manuscript is devoted to show how we obtain the asym-
potics of the integral by using the degenerate stationary phase method. On
the support of W, Uy is written as a linear combination of another basis
of solutions. There exist constants 77 and 7~ such that

92/}7, (E ‘/2 1/4ZT:|: :tifoz\/E—VQ(t)dt/h+O(h)’

+oo
6, = / <\/E2 “E—/Va(a) - E) dz + \/Es — Ea(E)
a(E)



0

uniformly on each compact set contained in | — a®,a’[. Here, a(F) is the

unique solution near a’ of Va(a(E)) = E (a® = a(Ep)). Then we have

el2/h /R WuQ_’Lu?Rdac = Zri /Rei‘bi(z)/ho(x, h)dx + O(h)
+

with

65 (z) = /Ox (\/E “WVi(t) £ VE - Vg(t)) dt,

Y E—E1 1/4
o(w,h) = /" <(E — Vi(x))(E — Vg(m))> W

0; = /(:oo (\/E "B - VE— Vl(x)) dz.

Then z = 0 is the critical point of ¢~ whereas (¢1)" does not vanish. The

degenerate stationary phase at = 0 implies
/ e“f)_(”)/hcr(az, h)dx = eml/h(E - E1)1/4wh1/3 + O(h2/3),
R
with

1/3
312VE 4 T
=2 E12 TV (- —.
=) (w'<o>—v2”<o>) (5)e%

Therefore, we obtain

= ((E — B)VAwn!/3 4 0(h2/3)) .
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