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This is a summary of our recently published paper [3] (SIAM J. Math. Anal., 2022). We
also mention some supplementary topics and insights. We study the basic properties of d-
plane transform on the Euclidean space as a Fourier integral operator, and its application to
the microlocal analysis of streaking artifacts in its filtered back-projection. The d-plane trans-
form is defined by integrals of functions on the n-dimensional Euclidean space over all the
d-dimensional planes, where 0 < d < n. This maps functions on the Euclidean space to those
on the affine Grassmannian G(d,n). This is said to be X-ray transform if d = 1 and Radon
transform if d = n — 1. When n = 2 the X-ray transform is thought to be measurements of CT
scanners. In this note we present concrete expression of the canonical relation of the d-plane
transform and quantitative properties of the filtered back-projection of the product of the images
of the d-plane transform. The latter one is related to the metal streaking artifacts of CT images,
and some generalization of recent results of Park-Choi-Seo [18] (Comm. Pure Appl. Math.,
2017) and Palacios-Uhlmann-Wang [17] (STAM J. Math. Anal., 2018) for the X-ray transform
on the plane.
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1 d-plane transform, back-projections, CT, and artifacts

This note is based on the basic theory of microlocal analysis. See Hormander’s four volumes
of textbooks [11], [12], [13], [14], and the textbooks [4] and [7] on Fourier integral operators.
In this section we introduce the d-plane transform on the n-dimensional Euclidean space, and
review the basic facts about CT scanners.

1.1 d-plane transform and inversion formula

Letn =2,3,4,...,andletd = 1,...,n — 1. We denote by GG;,, the Grassmannian which is
the set of all d-dimensional vector subspaces of R™. It is well-known that dim G4, = d(n — d).
The affine Grassmannian is the set of all d-dimensional planes in R", that is,

G(d,n)={2"+0 : 0 € Gyp,2" €0},
where o is the orthogonal complement of o in R”. Set

N(d,n) :=dimG(d,n) = (d+ 1)(n — d)



for short. We use notation z”" 4+ 0 = (o, 2”).
We fix arbitrary o € Gy, and divide z € R" as z = 2/ + 2" € 0 @ o = R". The d-plane
transform of a function f(z) = f(2' + 2”) = O((z) ¢ ) is defined by

Raf(o,2") = / f= / f(a' +2")do, (1)
Ja''+o Jo
where (x) = /1 + |z|? and da’ is the Lebesgue measure on o. In particular R, f is called the
X-ray transform of f, and R,,_, f is called the Radon transform of f.

Next we explain the inversion formula of R ;. Roughly speaking, the formal adjoint of R is
given as integrals of functions over the set of all d-planes passing through arbitrary fixed point
x € R". More precisely

1
R*gox::—/ e(E)du(=
d ( ) C(dan) {E€G(d,n):x€E} ( ) ( )

1 /
=— o(x+ k- o)dk,
) Jo 7T

where ¢ € C(G(d,n)), C(G(d,n)) is the set of all continuous functions on G(d,n), C(d,n) =
(47)%2T'(n/2)/T ((n—1)/2), T(-) is the gamma function, O(n) is the orthogonal group, dy: and
dk are the normalized measures which are invariant under rotations, and o € G, is arbitrary.
The inversion formula of R, is given as follows.

Proposition 1 ( [10, Theorem 6.2]). For f(x) = O({z)~¢7¢)

f=(A)"PRRaf = Ry(—Aw)*Rauf,

where —A, = =02 — -+ — 02 and —A,» is the Laplacian on o=

Operators R and (—A,)¥?RY = R’(— A, )%? are said to be the unfiltered back-projection
operator and the filtered back-projection operator respectively.

1.2 CT scanners

We consider two-dimensional CT scanners for cross-sections, and explain that the X-ray trans-
form is considered to be the measurement of CT scanners. In this subsection we assume that the
X-ray beam has no width, and traverses the object along a line, say v below. Let (z,y) € R?,
and let f(z,y) be a compactly supported function describing the attenuation coefficient distri-
bution of the section of an object. We denote by [, and by I the intensities of the beam before
and after passing through the object respectively.

Case 1. Uniform media If the object is uniform, that is, f = a - xq, Wwhere a € R is a
constant and g, is the characteristic function of a bounded domain §2. We denote by ¢ the travel
length in the object.
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Figure 1. X-ray beam passing though uniform media

Then the Beer-Lambert law obtains

log (%) —a-t= [ f=Rif0) @)
il

Case 2. General media Consider the case of Figure 3.
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Figure 3. X-ray beam passing though an object

More precisely, f is a compactly supported step function on R?, and its support is convex.
Then supp f N 7 becomes a line segment. In this case the restriction of f(x,y) on + is a one-

dimensional step function
K
fly = Z Ak Xy s
k=1

where a;, is a non-zero constant, and v, is the k-th line segment of v in supp f. We denote by
I;;_1 and by [} the intensities of the beam before and after passing through ~,. Then I = I.
Repeating the argument of Case 1 above, we deduce that

Ty Iy L Ik Iy
st = [ 130 f 1= 3o () <ve (2 1) = (7).

which is the same as (2). In this case f and R, f(y) can be also considered to be an approxi-
mating step function of some function F' and the Riemann sum of F'|, respectively. So we can
obtain (2) for more general appropriate functions by the limit process.

We observe an artificial example of a grayscale image of a cross section, its X-ray transform,
the unfiltered back-projection, and the filtered back-projection by using the Julia Programming



Language. We introduce the standard coordinates of G(1,2). For arbitrary line v € G(1,2) in
R, there exists a pair (6,¢) € [0,27) x R such that

v=L(0,t) = {(z,y) € R® | zcosd + ysinf =t}
= {(z,y) € R*| cosf(x —tcosf) +sinf(y — tsinf) =0}
= {(tcos® — ssinf,tsinf + scosf) | s € R}.

See Figure 4 below. We remark that (0, t) = L(0 £, —t) and [0, 27) x R is a double covering
of G(1,2).

0) .

Figure 4. Parametrization (6, t) of the space G(1,2) of all the lines in R?

For an appropriate function f(z,y), the X-ray transform R f() is given by

Rif(v) =Ruf(0,t) = /f = / f(tcosl — ssinf, tsinf + scosb)ds.
Y —0o0

Then we have R, (0,t) = R, f(0 & m, —t). We have only to consider the coordinates (6,t) €
[0, ) x R. Here is an artificial example of the set of four grayscale images.

Original Grayscale Image Sinogram: X-ray transform Xf(6,t)
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Figure 5. An original gray scale image, its X-ray transform,
the unfiltered back-projection, and the filtered back-projection



Here we explain how to see these images.

* Northwest A grayscale image is a matrix whose entries are real numbers belonging
to the closed interval [0, 1]. An element with value 0 expresses a black pixel, an element
with value 1 expresses a white pixel, and an element with intermediate value between 0
and 1 expresses an pixel with corresponding gray color.

* Northeast This is the heat map of R, f(0,t), that is, the value of each entry of the
“matrix” R, f is expressed by the sequential color scale indicated in the color bar. The
heat map of X-ray transform is called a sinogram.

* Southwest This is the unfiltered back-projection R;R, f. More precisely, this is the
grayscale image given by a matrix with modified entries defined by
RiRif —minRiR. f
maxRiR1f — min RIR, f’

whose entries are in the interval [0, 1]. The grayscale image of R{R, f is blurred.

* Southeast  This is the filtered back-projection (—92 — 92)/2R{ R, f. Roughly speak-
ing, the first derivative of the unfiltered back-projection is clear and gives the reconstruc-
tion of f from the measurement R, f. The relationship between unfiltered and filtered
back-projections is similar to that of the rectified linear unit (ReLU) and the Heaviside
function on R. If we set

ReLU(s) — {3 Eszo), ¥(s) = {1 (szo),

s <0), 0 (s<0),
then we have J

—ReLU=Y

ds

in the sense of distribution. The Heaviside function Y'(s) describes the step difference at
s = 0 clearly, and the ReLLU does not.

It might be somewhat difficult to understand the correspondence of the original grayscale image
and the sinogram. So the author opens computer program based notebooks illustrating this
correspondence at the GitHub page

https://github.com/hiroyuki-chihara/xray
which is clickable in the PDF of this manuscript. The author provides two notebooks there.
* A notebook created by Pluto.jl of Julia Programming Language.

* A notebook created by Live Script of MATLAB.



1.3 Metal streaking artifacts

There are some factors causing artifacts in CT images: beam width, partial volume effect, beam
hardening, noise in measurements, numerical errors, and etc. See, e.g., Epstein’s celebrated
textbook on medical imaging [5]. In this note we study the beam hardening effect causing
metal streaking artifacts. It is known that this phenomenon occurs for the CT images of human
bodies containing metal regions such as implants, stents, metal bones and etc.

In the formulation of (2), the X-ray is supposed to be monochromatic with a fixed energy,
say Fy > 0. Actually, however, the X-ray beam has a wide range of energy F € [0, c0), and the
attenuation coefficient distribution fr depends on E. This is described by the spectral function
p(E) which is a probability density function of E € [0, 00). In this case the formulation of the
measurements P of CT scanners becomes

P :=log (%) = —log {/OOO p(E) exp(—leE)dE} .

If fr is independent of £, i.e., fr = fg,, then

log <I—]°> = - log{/:o p(E)dE - eXp<—R1on)}
= —log{exp(—Ri1fE,)} = RS,

Recently, the beam hardening effect and metal streaking artifacts were studied from the
viewpoint of microlocal analysis. Let D be a metal region in R?. Consider a simple model of
spectral function and beam hardening effect of the form

1
p(E) = 2_8X[E0—€,E0+€}(E)7

feo(x) = fu,(x) + (B = Eo)xp(),

where [, is an attenuation coefficient distribution of normal human tissue, € and « are small
positive constants, and D is a metal region which is a disjoint union of finitely many strictly
convex bounded domains with smooth boundaries. Then the measurement P becomes

sinh(aeR =
P—TRifg =— log{ ( 1XD)} = ZAk(O‘ERl)(D)%'
k=1

acRixp

This means that P consists of the normal tissue part and the beam hardening part, and that the
latter part is a (formal) power series of (Rl X D) ?. The main object is the filtered back-projection
of the power series. Here are pioneering works on the microlocal analysis of metal streaking
artifacts for this simple model.

* Park, Choi, and Seo ( [18] Comm. Pure Appl. Math., 2017) proved that the metal streaking
artifacts are propagation of WF(xp) along the union of the common tangential lines £
of metal domains.

* Palacios, Uhlmann, and Wang ( [17] SIAM J. Math. Anal., 2018) proved that the streak-
ing artifacts are conormal distributions supported by L.



The following figure illustrates a grayscale image of two disks of metal regions with differ-
ent radii, its X-ray transform, the filtered back-projection, and the filtered back projection of
(Rl X D)Q, which is the principal part of the beam hardening effect. The southeast image illus-
trates the streaking artifacts of four common tangential lines of the two disks.

Original Grayscale Image Sinogram: X-ray transform Xf(0,t)
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Figure 6. Two disks, the sinogram, the standard FBP, and the FBP of (Rl X D)2.

In this note we study the higher dimensional generalization of [17].

2 Conormal distributions

Comparing unfiltered and filtered back projections, one can understand that singularities are
the essential part of information contained in imaging data. In this note we quantitatively deal
with generalized functions or the distribution kernels of linear operators. So we use the clas-
sifications of Schwartz distributions based on singular supports, singular directions, and the
order of singularities. These are called the classes of Lagrangian distributions. This section
provides preliminaries. we mainly pick up conormal distributions, which are simple examples
of Lagrangian distributions.

Definition 2 (Conormal distributions). Let X be an /N-dim manifold, and let Y be a closed
submanifold of X. A Schwartz distribution u € Z’(X) is said to be conormal with respect to
Y of degree m if

Ly -Layju € HP, n ) (X)
forall M = 0,1,2,... and all vector fields L, . . ., Lj, tangential to Y. Denote by I"(X; N*Y),
the set of all distributions on X conormal with respect to Y of degree m.

Note that N;Y := T X/TrY forany y € Y, and

||u||°°H(S)(RN) ‘= sup (/
7=0,1,2,... A

J

1/2
<£>28|ﬁ(£)|2d€> ,



Ag:={lg] <1}, A ={21 gl <2},j=1,2,3,....
Roughly speaking, a conormal distribution u € "™ (X; N*Y') is a distribution on X such that
u € C*(X\Y), that is, singsupp v C Y/, and the microlocal singularities of « on Y are limited
to the normal directions of Y. If u € I"™(X; N*Y), then WF(u) C N*Y \ 0. It is very
interesting that conormal distributions can be characterized by oscillatory integrals locally.

Proposition 3 ( [13, Theorem 18.2.8]). Let v = (2/,2") € R¥ x RN and let Y = {0} x
RYF = {o2' = 0}. Thenu € Z'(RY) belongs to I™*/2=N/4(RN: N*Y') if and only if there
exists an amplitude a(x",£") € S™(RN™F x R*) such that

u<x) _ /Rk eml'fla(x”,gl)df,,

Here S™(RN~* x R¥) is the standard symbol class, that is, we say that a smooth function
a(z"”, &) belongs to S™ (RN~ x R¥) if for any compact set K C R ~* and for any multi-indices
o/ and 3, there exists a constant C'( K, a, ) > 0 such that

02,08 a(a”, €] = C(K., a, )Y,
We can replace the conormal bundle N*Y by more general conic Lagrangian submanifold A.
The elements of 1™ (X; A) is said to be Lagrangian distributions on X. These are characterized
as oscillatory integrals with more general phase functions of the form:

u(z) = /em(mﬁ)a(m,ﬁ)d@.

The distributions kernels of Fourier integral operators are Lagrangian distributions.

(2",¢) € K x RF.

We now see typical examples of conormal distributions.

Example 4 (A characteristic funtion of a smooth domain). If D be a domain in R™ with smooth
boundary, then the characteristic function xp of D belongs to I~'/2="/4 (R”; N *8D).

\
N

Figure 7. A bounded domain with smooth boundary, and smooth and singular directions

Example S (The distribution kernal of a pseudodifferential operator). Set
A ={(z,7):z € R"},
which is the diagonal part of RN x RN, If a(x,€) € S™(RY x RY), then

K(z,y) = / e Eq(x, €)de € I™(RY x RY; N*A),
]RN

N'A = {(z,2;€, —€) 1 2. £ € RV},



Figure 8.  The singular support of the distribution kernel of a pseudodifferential operator

3 Canonical relation of d-plane transform

The canonical relation of a Fourier integral operator describes the mapping properties of mi-
crolocal singularities before and after the operator applies to a function. In this note the canon-
ical relation of the d-plane transform plays a crucial role in our microlocal analysis. It is well-
known the canonical relation of the X-ray transform R, on the plane R2. See [19] or [15] for
this. Moreover, this has been often used for applied mathematics related to medical imaging.
Andrade-Loarca et al [1] constructed their original deep neural network detecting the wave front
sets of distributions of two variables and detected the wave front set of sinograms by using the
canonical relations. Bubba et al [2] used this canonical relation and designed their own deep
neural network reconstructing CT images from limited CT data. However, for the other cases
(d,n) # (1,2), we could not find the concrete expression of the canonical relation of the d-plane
transform. So we tried to compute this by ourselves.

Theoretically, it is known that the incidence relation obtains the canonical relations of inte-
gral transforms such as d-plane transform. See [8] and [20]. However, it is not so easy to com-
pute the conormal bundle of a subset of G(d, n) x R™ in the cotangent bundle 7% (G(d,n) x R™).
So we establish the generalized Fourier slice theorem for d-plane transform, and obtain the con-
crete expression of the distribution kernel A ((0, "), y) of the d-plane transform:

1

K((o,2"),y) = ryd

/ @ =g e ((0, z"), y) € G(d,n) x R™. 3)
oL
We can compute the canonical relation of the d-plane transform using the phase function

¢((0.2"),y:€) = («" —y)- & ((0,2"),y) € G(d,n) xR", £ € 0.

Theorem 6. R, is an elliptic Fourier integral operator such that

K((o,2"),y) € I_d(”_d+1)/4(G(d,n) x R™; Ay),

Aif): {(0-7y_ﬂ-0yay; U(y'wl,...,y-wd,l,l)) :
o= (wi,...,wq) € Ggpn, wi,...,wg €S, yeR", neo}



= {(O',x”,x”"i_tlwl ++tdwd7 §<t17"'7td7171>) :
(0,2") € G(d,n), 0 = (w1, ...,wq) € Gan,
wl,...,wdESn_l, tl,...,tdER, fEUJ—},

where T, is the orthogonal projection of R" onto 0 € Gy,
The most important thing is that all the elements of fiber variables are of the form
scalar X acommon elementn € 0.

This fact plays a crucial role when we consider the canonical relation of R};. This means that if
microlocal singularities in G(d, n) differ from this form, such singularities never arise in R".

Unfortunately, however, it might be difficult to understand the meaning of the frequency
part of the canonical relation above. So we consider the canonical relation of the geodesic
X-ray transform on an n-dimensional Riemannian manifold (M, g), where ¢ is a Riemannian
metric tensor on a smooth manifold M. We denote by G the set of all the normal geodesics in
(M, g). Then G becomes a 2(n — 1)-dimensional smooth manifold like G(1,n). Indeed, for
each hypersurface X in M, local coordinates of G is given by the pair of the passing point on X
and the direction for the normal geodesics passing through . For an appropriate function f on
M, the geodesic X-ray transform of f is defined by

Xf(y) = /f = /f(expp tw)dt, v =exp, w€G
ol

with some (p,w) € S*M, where S*M is the unit cotangent sphere bundle over M. The canon-
ical relation of X’ is a conic Lagrangian submanifold of 7*(Gx M) \ 0 given by

A = { (Vg @ 1(to), — T (p(t0))w; (to)mi(to). m) = (¢, n)ET*(M) \ 0,weSE(M) N}

where 7., = exp, w, p(t) = Ygw(t), w(t) = J4u(t), n(t) is the parallel transport of 7 along
Yaw at p(t), to € R is some constant, and T, (p) is the Christoffel symbol of the Levi-Civita
connection at p€ M. The canonical relation A’ says that the geodesic X-ray transform maps the
visible singularity n at point ¢ to the horizontal lift of the parallel transport of n along the
geodesic flow (74w, Ygw)-

n(to)

p(to)

Figure 9.  The canonical transform of 7*M \ 0to 7%G \ 0

The canonical relation of R, on R? is given by

;L tcosf — ssinf| —sind cosf|\
¢ = {(9,15, [tsin@%—scos&} ) T8 [ cos 6 } T T {sin@}) s, TER, G € [O’W]}
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We have

WF(R1f) = Cl o WE(f) := {(p,€) : (p,q;&,m)€C, (q,n) € WF(f)}

since R, on the plane is an elliptic Fourier integral operator. Figure 10 shows a grayscale image
of a square, its sinogram, the wave front set of the square in S*R?, and the wave front set of the
sinogram normalized in some sense.

The wave front set of a square The wave front set of the sinogram
Sinogram: X-ray transform Xf(8,t)
-
@
W
-
5

8 [rad]

Original Grayscale Image

Figure 10. A square, its sinogram, and their wave front sets

4 Main Theorem

In this section we state our main theorem of this note, and explain its meaning using some
figures. Firstly we state our assumption about the metal region, and set some notation.

Assumption. The metal region D C R" is supposed to be a disjoint union of finitely many
D; (j = 1,...,J) which are simply connected, strictly convex, and bounded with smooth
boundaries 3, := 0D;. Set ¥ := 0D.

Denote by v(y;) the unit outer normal vector of ¥; at y; € X;. We consider the set of pairs
(yj, yk) € X, X Xy such as

Mﬁ;) = {(yj,yk) S Ej X Ek Y +Tyj2j = Yk +Tyk2k7 V(yj) = ﬂ:V(yk)}

We can confirm that this is an (n — 2)-dimensional submanifold of ¥; x ;. Using this we can
introduce the set of lines

L5 =Ly +tl— ) (i) €M), LR},

Then Eﬁt) becomes a cylindrical surface or a cone which is tangent to >J; at y; and to X, at y;
for all (y;,yx) € /\/lﬁt) Set L, := Eg;r) U [é;) and £ := U L.

j<k



Figure 11.  X;, X, EE.Z), and £§;)

We set the notation for the CT image corresponding to the beam hardening effect as a formal
series of the form

fua = for — fr, = Z Ar(ae)* Ry (—An)*[(Raxp) ],
k=1
where A (k =1,2,3,...), a, and ¢ are real-valued constants. We now state our main theorem.
Theorem 7. Away from %,
fMA c I—(d+2+n/4)+d(n—d)/2 (Rn, N*g)
The principal symbol of the FBP of (Raxp)? does not vanish.
All the known results related to our main theorem are limited to the case (n,d) = (2, 1).

¢ Park, Choi, and Seo ( [18], 2017) proved that WF( fya) C N*.Z.
* Palacios, Uhlmann, and Wang ( [17], 2018) proved Theorem 7.

* Wang and Zou ( [21], 2021) studied the studied the case that D, ..., D; are not neces-
sarily convex. This is difficult setting, and they obtained some results.

We explain what Theorem 7 says.

e If ¥ and X, have a common tangential hyperplane, then the common conormal singular-

ity propagates all over the line connecting the tangential points. This is the true identity
of the metal streaking artifacts.

Figure 12.  The case that there exists a common hyperplane passing through y; and y;
for (y;, yx) € M\, thatis, v(y;) = v(ye) or v(y;) = —v(ye).



e If XJ; and XJ;, have a common tangential plane of codimension two, then the normal di-
rections at the tangential points are different and no singularity propagates along the con-
necting line.

Nj

[ yk.—»nk

Y

Z)

Figure 13.  The case that there is not a common hyperplane passing through ¥, and y;
for (y;, yx) € M\, thatis, v(y;) # v(yx) and v(y;) # —v(ys)-

We consider only smooth boundary .. Actually, however, it is possible to consider nonsmooth
boundary such as polyhedrons. Indeed Palacios, Uhlmann, and Wang ( [17], 2018) studied
also the case that some D); are polygons on the plane. In this case we need to consider the
interaction of microlocal singularities arising from edges and vertices. More precisely, there are
three types of interaction: edge-edge, vertex-vertex, and edge-vertex. In particular we remark
that all the directions are singular directions at vertices. We can observe edge-edge and vertex-
vertex interactions in the next figure.

2
Original Grayscale Image f FBP of (R,f)

n

Figure 14. Edge-edge and vertex-vertex interactions

We can consider the case that some D; are convex polyhedrons in R?. Unfortunately, however,
I gave up this trial since we needed to consider many types of interaction such as vertex-vertex,
vertex-edge, vertex-face, edge-edge, edge-face, and face-face.

5 Proof of Theorem 7

Finally we explain the outline of the proof of Theorem 7. The main part of the proof is the
evaluation of the product of Lagrangian distributions R x p,, and relies on advanced theory of
microlocal analysis such as paired Lagrangian distributions, which was developed in Melrose
and Uhlmann [16], and Greenleaf and Uhlmann [6]. So we need so-called the intersection
calculus of manifolds. We split this section into three subsections: intersection calculus, paired
Lagrangian distributions, and overview of the proof.



5.1 Intersection calculus for R,xp,
We state the definition of transversal intersection and clean intersection.
Definition 8. Let X be a smooth manifold, and let Y and Z be submanifolds of X.

* We say that Y and Z intersect transversely if N;YNNZ = {0} forall z € YNZ.
Note that this condition is equivalent to that 7, Y UT,Z =T, X forall x € YNZ.

* We say that Y and Z intersect cleanly if Y'NZ is smooth and
T.YNT,Z =T,(YNZ) for all x € YNZ. Moreover,

e := codim(Y') + codim(Z) — codim(Y'NZ)
1s said to be the excess of the intersection.

We remark that transverse intersection is clean intersection with no excess. Here we observe
two examples of intersections of two surfaces in xyz-space R3. We set

Vi={z=r+y}), Ys={z=(x+9)?*}, Z={z=0}
Then Y;,NZ = {(x, —x,0)}. For any p € Y,NZ we have

T,(yNZ) = T,Y;NT,Z = {(1,—1,0))r
CT,Y;NT,Z = ((1,~1,0),(1,1,0))s = T, Z.

Then Y1NZ is clean and Y3NZ is not clean.

Figure 15.  Clean intersection Y;MNZ and unclean intersection Y3NZ

In case of the clean intersection Y;NZ, we can pick up local coordinates (s, ¢,u) such as

1 1 1
s{1| +¢t|—-1] +u |l
0 0 2

near Y,NZ. Moreover Y,NZ is transversal intersection since

codim(Y;) + codim(Z) — codim(Y1NZ) =14+1—-2=0.



In case of Y3MZ we cannot choose appropriate local coordinates near Y3NZ.

In the proof of Theorem 7 we need to consider a product of the form
J

(Raxp)* = Z(RdXDj)Q +2 Z Raxp; - RaXp,-

Jj=1 155<k<J

In particular we shall investigate the interaction of conic Lagrangian submanifolds in 7*G(d, n)\
0 of the form

NyoN*S; = {(o,y — 7oy n(--+ 1))+ (y,n)EN*S;, 0€G i}

We shall understand the structure of this conic Lagrangian submanifold. So we define two
subsets of G(d,n) as

S; =T (AyoN*E)) = {(0,y — moy) 1 y€X;, 0€Gq,, T35},
Sjk = SjﬂSk.
Then we have
Lemma 9.
* codim S; =1, and N*S; = A;)ON*ZJ-.
o If j#k and S;NSk # 0, then S; intersects Sy, transversely, that is,
N(*U7x//)Sij(#;.7x//)Sk == {0}
for any (o, 2")€S;NS.
Here we observe an example of transverse intersection of S;NSs in G(1,2). We set D; and
D, in R? as
Dy ={2*+y* <1}, Dy={(x—5)?+y* <4}
Then we have
S1=A{(0,£1):0€[0,7]}, So={(6,2+5co0s6):0¢€[0,x]}.

We draw the intersection S;N.S;.
S1and S2

51
52

[ N T R T R T - S
T T T T T T T T r T T

1 1 1
0 2 n

C]

Figure 16.  Transverse intersection S; and S, in G(1, 2)



In the two-dimensional case n = 2, each intersecting point corresponds to a common tangential
line, and the normal directions, which are singular directions, at tangent points are the same.

D, | D,

Figure 17. Common tangential lines corresponding to points in S7MSy

In the higher dimensional case n = 3, the set of pairs with a common tangent line becomes

a connected (n — 2)-dimensional submanifold Mﬁt) of X; x Xy, and the singular directions at
tangent points are not necessarily same. We now clarify this. For this purpose we introduce the

projection of Mﬁt) to X, by
B = {y; € 55|y € D st (yy, ) € M),
which is an (n — 2)-dimensional submanifold of ;. Let {2, be the connected subdomain of 3,

) ,)
enclosed by B, "UB;; "

Figure 18. £§.Z), L',g.;), Qi and €y

For any y; € ), there are many y; € (2, such that 3; and ¥; have common tangential line
passing through y; and y;, but the normal directions at the points are different. We classify these
two types of common tangent lines. Lemma 9 implies that codim S, = 2. If (o, 2”") €S}y, then
there exist y; € ¥; and y,, € ¥ such that o C T, 3,07, ¥ and 2" = y; — ToY; = Y — ToYk-
Sk is a disjoint union of

St ={(0,2") € Sj : Ny R =N; 5}, S5 ={(0.2") € Sjp.: N} S#N;, 1}

J k

we have the following.



Lemma 10. We have clean intersections
(Ay)"oN™S; = N*%;\ 0,
(AL)*oN*S4) = N*L\ 0, e=d(n—d-—1),
(AG)"oN*S%) = (N*Quu \ 0) U (N* Q4 \ 0), e =d(n—d—2).
Lemma 10 says that S](-,? creates conormal singularities on £, and Sj(.? does not create addi-

tional singularities other than N*X.. This corresponds to the facts explained by Figures 12 and
13.

5.2 Paired Lagrangian distributions
We introduce paired Lagrangian distributions originated by [16].

Definition 11 (Paired Lagrangian distributions). Let u,v € R. Suppose that Ay and A, are
cleanly intersecting conic Lagrangian submanifolds of 7*X \ 0, that is,

T )Mo ()Mt = Tlag) (Ao N A1), V(2,€) € Ao N A

We say that u € 2'(X) belongs to I (X; Ag, Aq) if WF(u) C AgUA4, and away from AgNA4,
we have u € I*7(X; Ao\ Ay) and u € TH(X; Ay).

We apply the next lemma to the product Ry D" Raxp,

Lemma 12 (Greenleaf-Uhlmann, 1993). Let X be an N-dimensional manifold, and let Y and
Z be transversely intersecting submanifolds of X. We define integers k1, ko, 11, and ly by

codimY =ky, codimZ =1;, codimYNZ =k + ks =11 + l>.
Then we have
]‘U’+k1/2_N/4(X; N*Y) . IV+k1/2_N/4(X; N*Z)
CI/1,+k1/2—N/4,V+k2/2(X; N*(sz)’ N*Y) + ]V+ll/2_N/4».U'+12/2(X; N*(sz)’ N*Z)
The transversality N*YNN*Z = {0} guarantees that the product can be well-defined since

E4+n#0 for EENYY, neENZ x€YNZ.

5.3 Overview of the proof of Theorem 7

Set
of = Z]—(d+1)/2—N(d7n)/47—(d+1)/2 (G(d,n); N*Sj, N*S;).
Jj#k
We remark that

XDj e ]—1/2—n/4(Rn;N*2j)’ RdXDj c I—(d+1)/2_N(d7n)/4(G(d, n)’N*S]) C A .

We prove Theorem 7 in the following three steps.



¢ Lemma 12 proves that (Rqxp)? € <.
* It follows that .7 is an algebra. In particular
Pya =Y Ap(ae)™(Raxp)™ € o7.
k=1
* Applying Lemmas 10, 13, and 14 to Py, 4, we prove Theorem 7.
We state Lemmas 13 and 14.

Lemma 13. R(—A,»)%? is a Fourier integral operator of order

d N(dn) n

2T 1 T
with a canonical relation
(AY)" = A{(2,y,&m) : (y,2,5m,6) € Ay}
Lemma 14 ( [14, Theorem 25.2.3]). Assume the following conditions.
» A, and A, are Lagrangian distributions such as
Ay € I™M(X XY, CY), Ay e I™(YxZ, (Cy),
and are properly supported.

 The intersection C' := C{oCY, is proper, connected, and clean with excess e, that is,
C1 xCY cleanly intersect

T*X x diag(T*Y x T*Y) x T*Z
with excess e.

Then
AjoAy € IMitmetel2( X 7. ().

Finally we show how the clean intersection condition works in our analysis briefly. Basically
we make use this condition to pick up appropriate local coordinates. If

= I*(d+l)/27N(d7b)/4,f(d+l)/2 (G(d, n)7 N*Sjk,N*Sj),

then we can choose local coordinates (z,7,2) € R x R x RY (@1)-2 and find an amplitude
a(z,y,z,& n)such that S; = {x =0}, Sj, = {x =y =0},

07,2080y a(x,y. 2,€,n) = O((& )~ H2/2ma () ~(F2270),

x?yVZ

u(z,y, z) = // eV (3, y, 2, €, n)dEdn
R2

near (z,y, z) = 0. Using formulas like this, we can obtain

(W(G(d, n); N* Sy, N*Sj))2 c o,
I (G(d,n); N*Sj,, N*S;) - IV (G(d,n); N* S, N*Sy) C o .
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