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Abstract

We present a fermionic description of flagged skew Grothendieck polynomials, which can
be seen as a K-theoretic version of flagged skew Schur polynomial. Our proof depends on the
Jacobi-Trudi type formula proved by Matsumura. This result generalizes the author’s previous
result of a fermionic description for skew Grothendieck polynomials.

§1. Introduction

§1.1. Overview

Grothendieck polynomials [6] are a family of polynomials which represent the struc-
ture sheaf of a Schubert variety in the K-theory of the flag variety. As each Schu-
bert variety is naturally associated with a permutation, Grothendieck polynomials are
parametrized by permutations.

A flagged Grothendieck polynomial is a Grothendieck polynomial that associates
with a vexillary permutation. As a K-theoretic analog of the flagged Schur polynomi-
als, the flagged Grothendieck polynomials have various interesting combinatorial and
algebraic properties. Knuston-Miler-Yong [5] showed that the flagged Grothendieck
polynomial can be seen as a generating function of flagged set-valued tableaux. Hudson-
Matsumura [2] proved a Jacobi-Trudi type formula for them.

For a permutation w € S,,, the inversion set (see [7, 10]) of w is defined as I;(w) =
{jli<jand w(i) >w(y)} C {1,2,...,n}. The permutation w is called vezillary if the
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family {I;(w)}i=1,2,... » forms a chain by inclusion. For a vexillary permutation w, we
associate a partition A(w) by arranging the cardinalities of the inversion sets. A flagging
of w is the increasing sequence obtained by arranging min /;(w) — 1 in increasing order.
The flagged Grothendieck polynomial G, (x) is also written as G\ s(x), where A = A(w)
and f is the flagging of w.

In the work [8], Matsumura introduced a generalization of these functions associ-
ated to a skew shape \/p with a flagging f/g, where f = (f1,..., fr)and g = (g1,---.,9r)
are sequences of natural numbers. He proved that the flagged skew Grothendieck poly-
nomials, which are defined as a generating function of flagged skew set-valued tableaux,

[P/Q](x)

admits a Jacobi-Trudi type formula. For n,p,q € Z, define G, by the generating

function

14+Bx
(1.1) Z G[p/q](qj)z” = 1+5u_1 [Tk= q 1— W’i > q)
nez 1+5u—1 (p<q)

Matsumura’s determinant formula [8, §4] is given as

(12) Gx/p.f/g(2) = det <Z (l )55 Afl/ijg—wﬁs(ﬁ)) :

s=0

In this paper, however, we adopt the slightly different definition

1 D 1+8x
5T Hkeg Toapee. (P> 0)

(1.3) Z Gllp/dl (1) = 14_/61u_1 (p=q—1)
1—|—Blu—1 sz =p+1 }—ﬁ—ﬁka (p<qg-1)

and consider the polynomial

(1.4) G/ulif/q) (%) = det (Z (2 )BS fZ/ggszrJJrs(l')) .

s=0

These polynomials are different in general but coincide with each other if f; + A\; — i >
g; + i — 7 whenever f; < g; — 1. In particular, if g1 = go = --- = g, = 1, we have
Gr/u,f19(®) = Gy /g () for any skew shape A/p.

Our aim is to construct a new algebraic description of G/, 17/ (7) by using the
vertex operators acting on the fermion Fock space. In the previous work [3, §4], the
author of the paper presented a fermionic description of skew Grothendieck polynomials.
Generalizing this method, we show the main theorem (Theorem 3.2) that presents a
fermionic description for the flagged Grothendieck polynomial.



§2. Preliminaries

§2.1. Fermion Fock space

Let A be the C-algebra generated by the free fermions ,. ) (n € Z) with anti-
commutation relations

ija wn]—i— - w};kn’ ¢Z]+ =0, Wm, ¢Z]+ = 5m,n>

where [A, B]+ = AB + BA is the anti-commutator.
Let F = A-|0) be the Fock space, the left A-module generated by the vacuum
vector
Vm|0) =2]0) =0, m <0, n>0.

We also use the dual Fock space F* := (0|- A, the right A-module generated by the dual
vacuum vector
(O]t = (O]¢py, =0, m <0, n>0.

There uniquely exists an anti-algebra involution on A
A A Y oy,
satisfying (ab)* = b*a* and (a*)* = a for a,b € A, which induces the C-linear involution
w:F—F, X|0)— (0] X"
The vacuum expectation value 9, §4.5] is the unique C-bilinear map
(2.1) FropF =k, (w®v) = (wv),

satisfying (0]0) = 1, ((w|¢n)|v) = (w|(¥nlv)), and ((w]vy)|v) = (w|(¥y]v)). For any
expression X, we write (w|X|v) = ((w|X)|v) = (w|(|X|v)). The expectation value
(0] X|0) is often abbreviated as (X).

Theorem 2.1 (Wick’s theorem (see [1, §2], [9, Exercise 4.2]) ).  Let {my,...,m,}
and {n1,...,n.} be sets of integers. Then we have

(g = b, tby, ) = det((Ym ¥ ) 1<i <o

For an integer m, we define the shifted vacuum vectors |m) € F and (m| € F* by

z/)m—ﬂ/)m—Q T 1/)0|0>7 m > 07 <O|7/)81/}i< tee 1/):;1—17 m > 07
fmp = § (m| =
x5 1]0), m < 0, O _1¢—2...¢%m, m <O,



§ 2.2. Vertex operators and commutation relations
For any monomial expression M in v, and 9, the normal ordering
M: €A
is defined by moving the annihilation operators

wma w* m<07n20

n?

to the right, and multiplying —1 for each move (See [1, §2], [9, §5.2]). For example, we
have : Y197 = Y1) and : Y1 := —19]. The normal ordering can extend naturally
to the C-linear map

{polynomial expressions in 1, and 1} with coefficients in C} — 4; X —: X :
Let a,, (m € Z) be the current operator a,, =) ;. ; * Yx¥k,,, i, Which satisfies

(22) [am, an] = m5m+n’0, [afm7 I/Jn] - Q/Jn—mv [amv @DZ] = _w;kz—l—m?

where [A, B] = AB — BA. (see [9, §5.3].) If |v)) = (v*|, we have w(a;|v)) = (v*|a_; for
any n € Z.

Let X = (X1, X3,...) be a set of (commutative) variables. We define the Hamil-
tonian operator

Pn(X n n
n>0

and its dual

H = —n-

0=y,
n>0

We define the vertex operators by

>~ H(X)" . > H*(X)"
eH(X):Z (X) eH(X):Z (X)

nl n!
n=0 n=0

Let ¥(2) = >, ez ¥n2" and ¥*(2) = > ., ¥r2" be the fermion fields. Here, we
enumerate some important commutation relations:

(2.3) H OO (2)e HX) = <H 1 _1Xiz> W(z),

i

(2.4) Xy (z)e T X) = (H #) P(2),

i

* 1 *
H(X) H*(Y) _ H*(Y) H(X)
(2.5) e e = ! Jl 1= X,7, e e ,
(2.6) (ol )] - ) = S



T, =T

Z_w N\ DqpyP
where —2— =5 " 2PuwP.

§ 3. Flagged Skew Grothendieck polynomial

§3.1. G/ (g)

We can relate the commutation relations of the vertex operators defined in the
previous section with the generating function of Glit/a ”(:c) (Eq. (1.3)). For brevity, we
adopt the convention

D Xqu+1“'Xp (pZQ)
I xe=141 (p=q—1)

Xp_—i}lxp_—l}2 T Xq_—ll (p<q—1)

for a sequence X1, Xs,... of (commutative) functions.
Let 2lf1 = (x1,22,...,25) and

H(x[f/g]) - H(x[f]) _ H(m[g—l}).

If f > g, H(zl¥/9)) coincides with H (x4, z441,..., 7). From (2.3-2.5), we have

€H(x[f/g])¢(2)6_H*(_6) _ 1 f[ 1+ BIZ €_H*(_5)w(z)eH(x[f/g])
14+ Bz 1 et 1— a2 ’

where the rational function on the right hand side expands in the ring!

Clay, 2, . 1((2)A]]-

Comparing this equation to (1.3), we obtain

(3.1) eH(w[f/g])ng;(z)e—H*(—ﬁ) = (Z Ggf/g]](l.)zn> e—H*(—,B)d}(Z)eH(m[f/g])‘

nez

A similar calculation leads

—1
(32) 6H*(_5)1/}*(w)e—H(x[f/9]) — (Z Ggf/g]]('r)w—n> 6_H(x[f/g])¢*(w)eH*(_5).

nez
! Note that the two rings C((2))[[8]] and C[[8]]((2)) are different. In fact, C((2))[[8]] contains

2
z z

while C[[8]]((z)) does not.



Lemma 3.1. Gw/g]](a:) admits the fermionic description

G/ (1) = (0eH @Dy, e H (=B 1),

Proof. Let F, = <O|€H(m[f/g])1/Jn_1€_H*(_’3)| —1). Since (0[e”"(=#) = (0| and
eH(m[f/g])| —1) =] —1), we have

>0 Faz = (0 p(z)e ]
nez

= (Z G/ <as>zm> (O™ (=)™ D) — 1)

MeEZ
= (Z G%/g](ar)zm> (Ofs(2)] —1).
meZ
As (0]9(2)] — 1) = (Op(2)1*1]0) = 21, we conclude F,, = GH/9(z). O

§ 3.2. Fermionic description

We introduce a fermionic presentation of skew Flagged Grothendieck polynomial

in this section. For a sequence of noncommutative elements Py, Ps, ..., denote
I[[ p=nrPr- P, I[[ =Py PP
i:1->N :IN—1

For any X,Y, we use the notation
Ad.x (V) =X Ye ™.

Let f = (f1,f2,.... fr) and g = (g1, 92,-..,9r) be sequences of positive integers.
Let Gx/,.[1f/9))(7) be the polynomial defined by the determinantal formula (1.4). The
following is the main theorem of the paper:

Theorem 3.2.  Let A\/u be a skew partition. Then, the flagged skew Grothendieck
polynomial G, 1174 (x) is expressed as
(3.3)

<—7“| H lZ)Zj,jGH*(_’B)B_H(m[gj71/gj71]) ( H BH(m[fi/fi_l+1])¢)\i_Z‘B_H*(_B)) ‘_T>.

Jir—1 i:l—r

Proof. By using the equations

erX H P, = H (er=H DX pe=(r=0)Xy — H Ad,—ox (eXPy),

:1—r i 1—r 21—
H Pjle ™ = H (elr= DX pre(r=d+Xy — H Ad,-ix (Pje™ ™),
Jir—1 Jir—1 Jir—1



the expectation value (3.3) is rewritten as

(3.4)

<_T|6—H($[QT_1]) H Ad r—j—nym*(—p) (eH(x[gj_1])¢:j_jeH*(—/B)e—H(z[gj_1])€—H*(—/3))

Jir—1

*(_ ER _H*(—B8) —H(zlfi]
(H Ad iy (- (eH (—8) H( S )%i_ie H™(=B) o —H( f ))) | — 7).

:1—r

Let

Az(zz) — Ade(r—i)H*(—B) (eH*(fﬁ)eH(m[fi])lp(zi)efH*(,B)efH(m[fi]))

Bj(w;) :== Ador—i-1yu= (-5 (eH(‘”[gj_l])l/J*(wj)eH*(_ﬁ)e_H(x[gj_1])e—H*(_5)>

Then, by Wick’s theorem (Theorem 2.1), the expectation value (3.4) equals to the

Ar—1 Ar—T p1—1
1 "'Z’]"T .

coefficient of z wit - wkr T of the determinant

Z?j

_ z[g,«fl]
det ((—r|e HE@ ™) B ;) Ag (2] — 7’})
From (3.1), A;(z;) satisfies

Ai(z) = (Z GL{”(:C)@”) “Ad oo (V(24))

) (Z G%”(w)z?) (LB (),

We also have

1
Bj(w;) = <Z Ggfj_”(w)’wj_n> (14 Bwy) T Ad -y - (7 (w5))

) (Z Gifj-%wf") (L By ()



by (3.2). Therefore, we have
—H{(gler—1]
(ke By ) AgCa0)| = )

sz . r—j—1 - _—
) zzagg— Z))w (21165)) (e M0 (w0 ) (z)e D] =)
J K3

1
_ G @) (4 Buyyr ng‘1< — a2i)
Z Gga_l (z)w; " (1 —l—ﬁzi_l)r” - (1 — TRW; )
_ > Gf’ (a:)zzn (14 Bw;) 71 z’“_ll(l TRpz) 2w
Yon Gl (J:)w no(14 Bz )t 18— Tpw; D1 - zw,

(=l (w)(zi)| =)

) . 1 —r, —T
0B By TGO o) s
zj__ll(]_ +/8.rk) (1 _1_/827:_1)7"—1—'-1 i’r 9 (1 _ Tkw )]_ — Ziwj J

To take the coefficient of z;\_lwf 77 on the both side, we use the complex line integral.
Note that the expansion of the rational function F'(z;, w;) in the field

Clary, @2, ... ]((w; 1)) (=) [[B]]

coincides with the Laurent expansion on the domain {|8] < |z| < |w;'| < [z, ']}
Then, we have

9] (e 1 B, 1) 4, )

1 d(wTh)
= F(zi,w) - (w™h)HimI 2—
21V =1 Jjg1< sl < w1 <yt (w=1)
1 .
(3.5) = F(z,t™ Y - twi=37 14t
2mv/ =1 J1gi<fz<ltl <o
Since F(z;,t~1) - thi=771dt expands as
fi(1+5m)  (t+p) i;‘flﬂ(l —api) 2"

- - tHidt,
DA+ Bag) (L4 Bz )= [ (1 —agt) = 2 |

the contour integral (3.5) should equal to the residue of the differential form at ¢t = z;.
Finally, we obtain

o _H(glor—1 plfr]
[ (T H T By () Ay )T

fi
1 1 o
_ H + /BZUk . (Zz + 6)1—3253

14 Bz " hg, 1 — k2
- (Z Gﬁfi/gj”mzf) (14 B2 )32t
nez



i—1

Since the coefficient of zf‘ is
— (0= 5\ as AllF:/05]]
Z( s )5 G)\,-—ujj-—i—i—j—i—s(m)?
s=0
we conclude the theorem. O
§3.3. Remarks
Ifg1 = g2 = =g, =1, G/ 11/ (7) reduces to the (usual) flagged Grothendieck

polynomial G/, ¢(z). In this case, our main Theorem 3.2 reduces to

Cojpg (@) =(—rlgps e O g H By HH)

A HE Dy e HTEBY L (H @ Iy e B oy,

By taking f1 = fo = --- = f,. = n, we recover the fermionic presentation of the

symmetric Grothendieck polynomial given in [3, §4.2]. This expression is not included

in the fermionic presentation of the multi-Schur function [4].

[1]
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