On the module category of the triplet W-algebra \mathcal{W}_{p_+,p_-}

Hiromu Nakano Mathematical Institute, Tohoku University

We study the structure of the category of modules over the triplet Walgebra \mathcal{W}_{p_+,p_-} defined by Feigin, Gainutdinov, Semikhatov and Tipunin [1]. Since \mathcal{W}_{p_+,p_-} satisfies the C_2 -cofinite condition, by Huang, Lepowsky and Zhang [2], every simple module has the projective cover and the module categories have the structure of a braided tensor category. We determine the structure of the projective covers of all simple \mathcal{W}_{p_+,p_-} -modules, and determine certain non-semisimple fusion rules conjectured by Rasmussen [3] and Gaberdiel, Runkel and Wood [4]. This paper is based on the thesis [5].

${\bf 1} \quad {\bf Main\ results\ on\ the\ triplet\ } W\-{\bf algebra\ } \mathcal W_{p_+,p_-}$

Fix two coprime integers p_+, p_- such that $p_- > p_+ \ge 2$ and let

$$c_{p_+,p_-} := 1 - 6 \frac{(p_+ - p_-)^2}{p_+ p_-}$$

be a minimal central charge of Virasoro algebra. Let us briefly rewiew the definitions of the triplet *W*-algebra \mathcal{W}_{p_+,p_-} and the simple \mathcal{W}_{p_+,p_-} -modules in accordance with [6, 7, 8].

For $\alpha \in \mathbb{C}$, let F_{α} be the bosonic Fock module generated from the bosonic field

$$Y(|\alpha\rangle, z) = e^{\alpha \hat{a}} z^{\alpha a_0} e^{\alpha \sum_{n \ge 1} \frac{a_{-n}}{n} z^n} e^{-\alpha \sum_{n \ge 1} \frac{a_n}{n} z^{-n}},$$

where

$$[a_m, a_n] = m\delta_{m+n,0} \mathrm{id}, \qquad \qquad [\hat{a}, a_n] = \delta_{n,0} \mathrm{id}.$$

Let

$$T := \frac{1}{2} \left(a_{-1}^2 - (\alpha_+ + \alpha_-) a_{-2} \right) |0\rangle, \qquad \alpha_+ := \sqrt{\frac{2p_-}{p_+}}, \quad \alpha_- := -\sqrt{\frac{2p_+}{p_-}}$$

be a confomal vector. By T, each Fock module F_{α} becomes a Virasoro module whose central charge c_{p_+,p_-} .

For $r, s, n \in \mathbb{Z}$ we introduce the following symbols

$$\alpha_{r,s;n} := \frac{1-r}{2}\alpha_+ + \frac{1-s}{2}\alpha_- + \frac{\sqrt{2p_+p_-}}{2}n.$$

Let $F_{r,s;n} := F_{\alpha_{r,s;n}}$.

As detailed in [9], we can define the complex screening operators

$$Q_{+}^{[r]} = \oint_{z=0} dz \int_{[\Delta_{r-1}]} Q_{+}(z)Q_{+}(zy_{1})\cdots Q_{+}(zy_{r-1})dy_{1}\cdots dy_{r-1} \in \operatorname{Hom}_{\mathbb{C}}(F_{r,k;l}, F_{-r,k;l}),$$
$$Q_{-}^{[s]} = \oint_{z=0} dz \int_{[\Delta_{s-1}]} Q_{-}(z)Q_{-}(zy_{1})\cdots Q_{-}(zy_{s-1})dy_{1}\cdots dy_{s-1} \in \operatorname{Hom}_{\mathbb{C}}(F_{k,s;l}, F_{k,-s;l}),$$

where $Q_{\pm}(z) = Y(|\alpha_{\pm}\rangle, z)$ and $[\Delta_n]$ is a regularized cycle constructed from the simplex $\Delta_n = \{(y_1, \ldots, y_n) \in \mathbb{R}^n \mid 1 > y_1 > \cdots y_n > 0\}$. Let $Q_+^{[r]}$ and $Q_-^{[s]}$ be the zero modes of $Q_+^{[r]}(z)$ and $Q_-^{[s]}(z)$. These zero modes commute with every Virasoro mode of Y(T, z) and are called screening operators.

Definition 1.1.

The lattice vertex operator algebra $\mathcal{V}_{[p_+,p_-]}$ is the tuple

 $\left(\mathcal{V}_{1,1}^{+},\left|0\right\rangle,T,Y\right),$

where underlying vector space of $\mathcal{V}_{[p_+,p_-]}$ is given by

$$\mathcal{V}_{1,1}^+ = \bigoplus_{n \in \mathbb{Z}} F_{1,1;2n} = \bigoplus_{n \in \mathbb{Z}} F_{n\sqrt{2p+p_-}},$$

and $Y(|\alpha_{1,1;2n}\rangle; z) = V_{\alpha_{1,1;2n}}(z)$ for $n \in \mathbb{Z}$.

It is a known fact that simple $\mathcal{V}_{[p_+,p_-]}$ -modules are given by the following $2p_+p_-$ direct sum of Fock modules

$$\mathcal{V}_{r,s}^{+} = \bigoplus_{n \in \mathbb{Z}} F_{r,s;2n}, \qquad \qquad \mathcal{V}_{r,s}^{-} = \bigoplus_{n \in \mathbb{Z}} F_{r,s;2n+1},$$

where $1 \le r \le p_+, 1 \le s \le p_-$.

Note that the two screening operators Q_+ and Q_- act on $\mathcal{V}_{1,1}^+$. We define the following vector subspace of $\mathcal{V}_{1,1}^+$:

$$\mathcal{K}_{1,1} = \ker Q_+ \cap \ker Q_- \subset \mathcal{V}_{1,1}^+$$

Definition 1.2 ([1]). The triplet W-algebra

$$\mathcal{W}_{p_+,p_-} = \left(\mathcal{K}_{1,1}, \left| 0 \right\rangle, T, Y \right)$$

is a sub vertex operator algebra of $\mathcal{V}_{[p_+,p_-]}$, where the vacuum vector, conformal vector and vertex operator map are those of $\mathcal{V}_{[p_+,p_-]}$.

Let

$$r^{\vee} = p_+ - r, \qquad s^{\vee} = p_- - s.$$

For each $1 \leq r \leq p_+$, $1 \leq s \leq p_-$, let $\mathcal{X}_{r,s}^{\pm}$ be the following vector subspace of $\mathcal{V}_{r,s}^{\pm}$:

- 1. For $1 \le r \le p_+ 1$, $1 \le s \le p_- 1$, $\mathcal{X}_{r,s}^+ = Q_+^{[r^{\vee}]}(\mathcal{V}_{r^{\vee},s}^-) \cap Q_-^{[s^{\vee}]}(\mathcal{V}_{r,s^{\vee}}^-)$, $\mathcal{X}_{r,s}^- = Q_+^{[r^{\vee}]}(\mathcal{V}_{r^{\vee},s}^+) \cap Q_-^{[s^{\vee}]}(\mathcal{V}_{r,s^{\vee}}^+)$.
- 2. For $1 \le r \le p_+ 1$, $s = p_-$,

$$\mathcal{X}_{r,p_{-}}^{+} = Q_{+}^{[r^{\vee}]}(\mathcal{V}_{r^{\vee},p_{-}}^{-}), \qquad \qquad \mathcal{X}_{r,p_{-}}^{-} = Q_{+}^{[r^{\vee}]}(\mathcal{V}_{r^{\vee},p_{-}}^{+}).$$

3. For $r = p_+, 1 \le s \le p_- - 1,$

$$\mathcal{X}_{p_{+},s}^{+} = Q_{-}^{[s^{\vee}]}(\mathcal{V}_{p_{+},s^{\vee}}^{-}), \qquad \qquad \mathcal{X}_{p_{+},s}^{-} = Q_{-}^{[s^{\vee}]}(\mathcal{V}_{p_{+},s^{\vee}}^{+}).$$

4. $r = p_+, s = p_-,$

$$\mathcal{X}^+_{p_+,p_-} = \mathcal{V}^+_{p_+,p_-}, \qquad \qquad \mathcal{X}^-_{p_+,p_-} = \mathcal{V}^-_{p_+,p_-}.$$

We define the interior Kac table \mathcal{T} as the following quotient set

 $\mathcal{T} = \{(r, s) | \ 1 \le r < p_+, 1 \le s < p_-\} / \sim$

where $(r,s) \sim (r',s')$ if and only if $r' = p_+ - r, s' = p_- - s$. Note that $\#\mathcal{T} = \frac{(p_+-1)(p_--1)}{2}$. For $(r,s) \in \mathcal{T}$, let $L(h_{r,s})$ be the Virasoro minimal simple module defined by

$$L(h_{r,s}) = \operatorname{Ker}_{F_{r,s;0}} Q_{+}^{[r]} / \operatorname{Im}_{F_{r^{\vee},s;-1}} Q_{+}^{[r^{\vee}]}.$$

Theorem 1.3 ([6, 7, 8]). The $\frac{(p_+-1)(p_--1)}{2} + 2p_+p_-$ vector spaces

$$L(h_{r,s}), (r,s) \in \mathcal{T}, \qquad \qquad \mathcal{X}_{r,s}^{\pm}, \ 1 \le r \le p_+, \ 1 \le s \le p_-$$

become simple \mathcal{W}_{p_+,p_-} -modules and give all simple \mathcal{W}_{p_+,p_-} -modules.

We use the following symbols for the projective covers of the simple modules.

Definition 1.4. Let $1 \le r < p_+, 1 \le s < p_-$.

- 1. Let $\mathcal{P}_{r,s}^+$ and $\mathcal{P}_{r,s}^-$ be the projective covers of the simple modules $\mathcal{X}_{r,s}^+$ and $\mathcal{X}_{r,s}^-$, respectively.
- 2. Let $\mathcal{P}(h_{r,s})$ be the projective cover of the minimal simple module $L(h_{r,s})$.
- 3. Let $\mathcal{Q}(\mathcal{X}_{r,p_{-}}^{\pm})_{r^{\vee},p_{-}}$ be the projective covers of the simple modules $\mathcal{X}_{r,p_{-}}^{+}$ and $\mathcal{X}_{r,p_{-}}^{-}$, respectively.
- 4. Let $\mathcal{Q}(\mathcal{X}_{p_+,s}^{\pm})_{p_+,s^{\vee}}$ be the projective covers of the simple modules $\mathcal{X}_{p_+,s}^{+}$ and $\mathcal{X}_{p_+,s}^{-}$, respectively.

Theorem 1.5 ([5]). The projective modules $\mathcal{P}_{r,s}^{\pm}$, $\mathcal{Q}(\mathcal{X}_{r,p_{-}}^{\pm})_{r^{\vee},p_{-}}$ and $\mathcal{Q}(\mathcal{X}_{p_{+},s}^{\pm})_{p_{+},s^{\vee}}$ have the following socle series:

1. For $\mathcal{P}_{r,s}^+$, we have

$$S_{1} = \mathcal{X}_{r,s}^{+},$$

$$S_{2}/S_{1} = \mathcal{X}_{r,s^{\vee}}^{-} \oplus \mathcal{X}_{r,s^{\vee}}^{-} \oplus L(h_{r,s}) \oplus \mathcal{X}_{r^{\vee},s}^{-} \oplus \mathcal{X}_{r^{\vee},s}^{-},$$

$$S_{3}/S_{2} = \mathcal{X}_{r,s}^{+} \oplus \mathcal{X}_{r^{\vee},s^{\vee}}^{+} \oplus \mathcal{X}_{r^{\vee},s^{\vee}}^{+} \oplus \mathcal{X}_{r^{\vee},s^{\vee}}^{+} \oplus \mathcal{X}_{r^{\vee},s^{\vee}}^{+} \oplus \mathcal{X}_{r,s^{\vee}}^{+} \oplus \mathcal{X}_{r,s^{\vee}}^{+},$$

$$S_{4}/S_{3} = \mathcal{X}_{r^{\vee},s}^{-} \oplus \mathcal{X}_{r^{\vee},s}^{-} \oplus L(h_{r,s}) \oplus \mathcal{X}_{r,s^{\vee}}^{-} \oplus \mathcal{X}_{r,s^{\vee}}^{-},$$

$$\mathcal{P}_{r,s}^{+}/S_{4} = \mathcal{X}_{r,s}^{+}.$$

where $S_i = \operatorname{Soc}_i$.

2. For $\mathcal{P}^{-}_{r^{\vee},s}$, we have

$$S_{1} = \mathcal{X}_{r^{\vee},s}^{-},$$

$$S_{2}/S_{1} = \mathcal{X}_{r^{\vee},s^{\vee}}^{+} \oplus \mathcal{X}_{r^{\vee},s^{\vee}}^{+} \oplus \mathcal{X}_{r,s}^{+} \oplus \mathcal{X}_{r,s}^{+},$$

$$S_{3}/S_{2} = \mathcal{X}_{r^{\vee},s}^{-} \oplus \mathcal{X}_{r^{\vee},s}^{-} \oplus \mathcal{X}_{r,s^{\vee}}^{-} \oplus L(h_{r,s}) \oplus L(h_{r,s}) \oplus \mathcal{X}_{r,s^{\vee}}^{-} \oplus \mathcal{X}_{r,s^{\vee}}^{-} \oplus \mathcal{X}_{r^{\vee},s}^{-},$$

$$S_{4}/S_{3} = \mathcal{X}_{r,s}^{+} \oplus \mathcal{X}_{r,s}^{+} \oplus \mathcal{X}_{r^{\vee},s^{\vee}}^{+} \oplus \mathcal{X}_{r^{\vee},s^{\vee}}^{+},$$

$$\mathcal{P}_{r^{\vee},s}^{-}/S_{4} = \mathcal{X}_{r^{\vee},s}^{-}.$$

3. Let (a, b, c, d, ϵ) be an element in

 $\{(r, p_{-}, r^{\vee}, +), (r^{\vee}, p_{-}, r, p_{-}, -), (p_{+}, s, p_{+}, s^{\vee}), (p_{+}, s^{\vee}, p_{+}, s)\}.$ Then, for the socle series of $\mathcal{Q}(\mathcal{X}_{a,b}^{\epsilon})_{c,d}$, we have

$$\begin{aligned} &\operatorname{Soc}_{1} = \mathcal{X}_{a,b}^{\epsilon}, \\ &\operatorname{Soc}_{2}/\operatorname{Soc}_{1} = \mathcal{X}_{c,d}^{-\epsilon} \oplus \mathcal{X}_{c,d}^{-\epsilon}, \\ &\mathcal{Q}(\mathcal{X}_{a,b}^{\epsilon})_{c,d}/\operatorname{Soc}_{2} = \mathcal{X}_{a,b}^{\epsilon}. \end{aligned}$$

Definition 1.6. By taking quotients of $\mathcal{P}_{r,s}^+$, $\mathcal{P}_{r^{\vee},s^{\vee}}^+$, $\mathcal{P}_{r^{\vee},s}^-$, and $\mathcal{P}_{r,s^{\vee}}^-$, we obtain eight indecomposable modules $\mathcal{Q}(\mathcal{X}_{a,b}^{\epsilon})_{b,c}$ where

$$\{ (\epsilon, a, b, c, d) \} = \{ (+, r, s, r^{\vee}, s), (+, r, s, r, s^{\vee}), (+, r^{\vee}, s^{\vee}, r^{\vee}, s), (+, r^{\vee}, s^{\vee}, r, s^{\vee}), (-, r^{\vee}, s, r, s), (-, r^{\vee}, s, r^{\vee}, s^{\vee}), (-, r, s^{\vee}, r, s), (-, r, s^{\vee}, r^{\vee}, s^{\vee}) \},$$

and each socle series is given by:

1. For $\mathcal{Q}(\mathcal{X}^+_{a,b})_{c,d}$,

$$Soc_1 = \mathcal{X}^+_{a,b},$$

$$Soc_2/Soc_1 = \mathcal{X}^-_{c,d} \oplus L(h_{a,b}) \oplus \mathcal{X}^-_{c,d},$$

$$\mathcal{Q}(\mathcal{X}^+_{a,b})_{c,d}/Soc_2 = \mathcal{X}^+_{a,b}.$$

2. For $\mathcal{Q}(\mathcal{X}_{a,b}^{-})_{c,d}$,

$$Soc_1 = \mathcal{X}^-_{a,b},$$

$$Soc_2/Soc_1 = \mathcal{X}^+_{c,d} \oplus \mathcal{X}^+_{c,d},$$

$$\mathcal{Q}(\mathcal{X}^-_{a,b})_{c,d}/Soc_2 = \mathcal{X}^-_{a,b}.$$

Using the structure of the center of the Zhu algebra $A(\mathcal{W}_{p_+,p_-})$ [6, 7, 8], we can determine the structure of the projective modules $\mathcal{P}(h_{r,s})$.

Theorem 1.7 ([5]). Each projective module $\mathcal{P}(h_{r,s})$ has the following length five socle series:

$$\begin{aligned} \operatorname{Soc}_{1}(\mathcal{P}(h_{r,s})) &= L(h_{r,s}),\\ \operatorname{Soc}_{2}(\mathcal{P}(h_{r,s}))/\operatorname{Soc}_{1}(\mathcal{P}(h_{r,s})) &= \mathcal{X}_{r,s}^{+} \oplus \mathcal{X}_{r^{\vee},s^{\vee}}^{+},\\ \operatorname{Soc}_{3}(\mathcal{P}(h_{r,s}))/\operatorname{Soc}_{2}(\mathcal{P}(h_{r,s})) &= 2\mathcal{X}_{r^{\vee},s}^{-} \oplus L(h_{r,s}) \oplus 2\mathcal{X}_{r,s^{\vee}}^{-},\\ \operatorname{Soc}_{4}(\mathcal{P}(h_{r,s}))/\operatorname{Soc}_{3}(\mathcal{P}(h_{r,s})) &= \mathcal{X}_{r,s}^{+} \oplus \mathcal{X}_{r^{\vee},s^{\vee}}^{+},\\ \mathcal{P}(h_{r,s})/\operatorname{Soc}_{4}(\mathcal{P}(h_{r,s})) &= L(h_{r,s}).\end{aligned}$$

In the following, we introduce the structure of certain fusion rules of \mathcal{W}_{p_+,p_-} . Let us define the following indecomposable modules.

Definition 1.8.

1. For
$$1 \le r \le p_+ - 1$$
, $1 \le s \le p_- - 1$,
 $\mathcal{K}_{r,s} := \mathcal{W}_{p_+,p_-} \cdot |\alpha_{r,s}\rangle$.

2. For $1 \le r \le p_+, \ 1 \le s \le p_-,$ $\mathcal{K}_{r,p_-} := \mathcal{X}^+_{r,p_-}, \qquad \qquad \mathcal{K}_{p_+,s} := \mathcal{X}^+_{p_+,s}.$

Let \mathcal{C}_{p_+,p_-} be the category of \mathcal{W}_{p_+,p_-} -modules and let $(\mathcal{C}_{p_+,p_-}, \boxtimes, \mathcal{K}_{1,1})$ be the braided tensor category on \mathcal{C}_{p_+,p_-} , where $\mathcal{K}_{1,1}$ is the unit object.

Similar to the arguments in [10, 11, 12], we can show the following theorem.

Theorem 1.9. The indecomposable modules $\mathcal{K}_{1,2}$ and $\mathcal{K}_{2,1}$ are rigid and selfdual.

Using the self-duality of $\mathcal{K}_{1,2}$ and $\mathcal{K}_{2,1}$, we obtain the following theorems. **Theorem 1.10** ([5]). All indecomposable modules of types $\mathcal{K}_{r,s}$, $\mathcal{Q}(\mathcal{X}_{r,s}^{\pm})_{\bullet,\bullet}$ and $\mathcal{P}_{r,s}^{\pm}$ are rigid and self-dual in $(\mathcal{C}_{p_+,p_-},\boxtimes,\mathcal{K}_{1,1})$.

Theorem 1.11 ([5]). *1.* For $1 \le r \le p_+$, $1 \le s \le p_-$,

$$\mathcal{K}_{1,1}^* \boxtimes \mathcal{K}_{r,s} = \mathcal{K}_{r,s}^*,$$

where $\mathcal{K}_{r,s}^*$ is the contragredient of $\mathcal{K}_{r,s}$.

2. For any simple modules $\mathcal{X}_{r,s}^{\pm}$ and $\mathcal{X}_{r',s'}^{\pm}$, we have

$$\mathcal{X}_{r,s}^{\pm} \boxtimes \mathcal{X}_{r',s'}^{\pm} = (\mathcal{K}_{r,s} \boxtimes \mathcal{K}_{r',s'}) \boxtimes \mathcal{K}_{1,1}^{*}.$$

Let us introduce the free abelian group $P^0(\mathcal{C}_{p_+,p_-})$ of rank $8p_+p_- - 4p_+ - 4p_- + 2$

$$P^{0}(\mathcal{C}_{p_{+},p_{-}}) = \bigoplus_{r=1}^{p_{+}} \bigoplus_{s=1}^{p_{-}} \bigoplus_{\epsilon=\pm}^{p_{-}} \mathbb{Z}[\mathcal{X}_{r,s}^{\epsilon}]_{P} \oplus \bigoplus_{r=1}^{p_{+}-1} \bigoplus_{s=1}^{p_{-}-1} \bigoplus_{\epsilon=\pm}^{p_{+}-1} \mathbb{Z}[\mathcal{P}_{r,s}^{\epsilon}]_{P}$$
$$\oplus \bigoplus_{r=1}^{p_{+}-1} \bigoplus_{s=1}^{p_{-}-1} \bigoplus_{\epsilon=\pm}^{p_{+}-1} \mathbb{Z}[\mathcal{Q}(\mathcal{X}_{r,s}^{\epsilon})_{r^{\vee},s}]_{P} \oplus \bigoplus_{r=1}^{p_{+}-1} \bigoplus_{s=1}^{p_{-}-1} \bigoplus_{\epsilon=\pm}^{p_{+}-1} \mathbb{Z}[\mathcal{Q}(\mathcal{X}_{r,s}^{\epsilon})_{r,s^{\vee}}]_{P}$$
$$\oplus \bigoplus_{r=1}^{p_{+}-1} \bigoplus_{\epsilon=\pm}^{p_{+}-1} \mathbb{Z}[\mathcal{Q}(\mathcal{X}_{r,p_{-}}^{\epsilon})_{r^{\vee},p_{-}}]_{P} \oplus \bigoplus_{s=1}^{p_{-}-1} \bigoplus_{\epsilon=\pm}^{p_{-}-1} \mathbb{Z}[\mathcal{Q}(\mathcal{X}_{p_{+},s}^{\epsilon})_{p_{+},s^{\vee}}]_{P}.$$

For any $M \in \mathcal{C}_{p_+,p_-}$ which have minimal simple modules in the Socle, let $\pi_0(M)$ be the quotient module of M quotiented by all the minimal simple modules in the Socle. We define a $\pi \in \text{Hom}(\mathcal{C}_{p_+,p_-})$ such that for any M in \mathcal{C}_{p_+,p_-}

$$\pi(M) = \begin{cases} \pi_0(M) & M \text{ contains minimal simple modules in Soc}(M) \\ M & \text{otherwise} \end{cases}$$

Theorem 1.12 ([5]). $P^0(\mathcal{C}_{p_+,p_-})$ has the structure of a commutative ring where the product as a ring is given by

$$[\bullet]_P \cdot [\bullet]_P = [\pi(\bullet \boxtimes \bullet)]_P.$$

The three operators

$$X = \pi(\mathcal{X}_{1,2}^+ \boxtimes -), \qquad Y = \pi(\mathcal{X}_{2,1}^+ \boxtimes -), \qquad Z = \pi(\mathcal{X}_{1,1}^- \boxtimes -)$$

define \mathbb{Z} -linear endomorphism of $P^0(\mathcal{C}_{p_+,p_-})$. Thus $P^0(\mathcal{C}_{p_+,p_-})$ is a module over $\mathbb{Z}[X, Y, Z]$. We define the following $\mathbb{Z}[X, Y, Z]$ -module map

$$\psi : \mathbb{Z}[X, Y, Z] \to P^0(\mathcal{C}_{p_+, p_-}),$$

$$f(X, Y, Z) \mapsto f(X, Y, Z) \cdot [\mathcal{X}_{1,1}^+]_P$$

Theorem 1.13 ([5]). The $\mathbb{Z}[X, Y, Z]$ -module map ψ is surjective, and, through ψ , we have the isomorphism of rings

$$P^{0}(\mathcal{C}_{p_{+},p_{-}}) \simeq \frac{\mathbb{Z}[X,Y] \oplus \mathbb{Z}[X,Y]Z}{\langle Z^{2} - 1, U_{2p_{-}-1}(X) - 2ZU_{p_{-}-1}(X), U_{2p_{+}-1}(Y) - 2ZU_{p_{+}-1}(Y) \rangle},$$

where $U_n(A)$ is the Chebyshev polynomials defined recursively

$$U_0(A) = 1,$$
 $U_1(A) = A,$
 $U_{n+1}(A) = AU_n(A) - U_{n-1}(A)$

Remark 1.14. By using this theorem, we can obtain the non-semisimple fusion rules conjectured by [3] and [4].

References

- B. L. Feigin, A.M. Gainutdinov, A.M. Semikhatov, and I. Yu Tipunin, "Logarithmic extensions of minimal models: characters and modular transformation", *Nuclear Phys. B* 757(2006),303-343.
- [2] Y. Z. Huang, J. Lepowsky and L. Zhang, "Logarithmic tensor product theory for generalized modules for a conformal vertex algebra", arXiv:0710.2687v3 [math.QA].
- [3] J. Rasmussen, "W-extended logarithmic minimal models", Nucl. Phys. B 807 (2009) 495 [0805.2991 [hep-th]].

- [4] M. Gaberdiel, I. Runkel and S. Wood, "Fusion rules and boundary conditions in the c = 0 triplet model", *J.Phys.* A42 (2009) 325403, arXiv:0905.0916 [hep-th].
- [5] H. Nakano, "The category of modules of the triplet W-algebras associated to the Virasoro minimal models", the Doctor Thesis, Mathematical Institute, Tohoku University.
- [6] D. Adamović and A. Milas, "On W-algebras associated to (2, p) minimal models for certain vertex algebras", *International Mathematics Research Notices* 2010 (2010) 20 : 3896-3934, arXiv:0908.4053.
- [7] D. Adamović and A. Milas, "On W-algebra extensions of (2, p) minimal models: p >3", Journal of Algebra 344 (2011) 313-332. arXiv:1101.0803.
- [8] A. Tsuchiya and S. Wood, "On the extended W-algebra of type sl₂ at positive rational level", *International Mathematics Research Notices*, Volume 2015, Issue 14, 1 January 2015, Pages 5357-5435.
- [9] A. Tsuchiya and Y. Kanie. "Fock space representations of the Virasoro algebra - Intertwining operators", Publ. RIMS, Kyoto Univ. 22(1986) 259-327.
- [10] A. Tsuchiya, S. Wood. "The tensor structure on the representation category of the \mathcal{W}_p triplet algebra", J. Phys. A **46** (2013), no. 44, 445203, 40 pp.
- [11] T. Creutzig, R. McRae. and J. Yang, "On ribbon categories for singlet vertex algebras", *Communications in Mathematical Physics*, 387(2), 865-925, arXiv:2007.12735.
- [12] R. McRae and J. Yang, "Structure of Virasoro tensor categories at central charge $13 6p 6p^{-1}$ for integers p > 1", arXiv:2011.02170 (2020).