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Abstract

We give the cohomological version as well as a summary of the K-theory version
of some of the results of our recent works on applications of the Yang-Baxter algebra to
identities of partition functions, symmetric functions and formulas for algebraic geometry.
We also illustrate the case of complete flag bundles in some detail.

1 Introduction

It has been revealed that same symmetric functions appear in the field of Schubert calculus
and integrable models and related algebra. One typical example is the relation between the
Grothendieck polynomials [1, 2, 3, 4, 5, 6, 7] and mathematical physics and related algebraic
methods, partition functions of integrable lattice models and gauge theory, vertex operators
and so on. See [8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] for examples for various topics. This
fact suggests us to explore further and deepen connections. In our recent works [20, 21, 22],
we investigated an integrability approach of deriving identities between partition functions
and applications to formulas in algebraic geometry: the so-called K-theoretic Gysin map.
In this paper, we discuss the cohomological version, which computations/proofs go pararell
with the K-theory version. The difference is the R-matrix which we use. We also illustrate
the case of complete flag bundles in some detail, and briefly summarize some of the results
of the K-theory version. The details can be found in the papers mentioned above.

2 Cohomological version

2.1 R-matrix, Yang-Baxter algebra, Partition functions

First we introduce the R-matrix, the Yang-Baxter algebra associated with it and the partition
functions which we use for the cohomological version.
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Let W be an (m + 1)-dimensional complex vector space and denote its standard basis as
{]0),[1),...,|m)}. We denote the dual of |k) as (k| (k =0,1,...,m). The dual vector space
is denoted as W*, which is spanned by {(0|, (1],. .., (m|}. Using the bra-ket notation without
taking complex conjugation, the orthogonality of standard basis is expressed as (k|f) = 0y,
k,0=0,1,...,m.

The tensor product of two m-dimensional vector spaces W; & W; has {|k); ® |[(); | k. =
0,1,...,m} as the standard basis. The R-matrix R;;(u,w) acting on W; ® W is defined by
acting on this basis as

Rij(u,w)lk); ® |k); = |k); ® |k);, k=0,1,...,m, (2.1)
Rij(u,w)|k)i @ |[0); = [0)i @ |k);, 0<k<l<m,
Riy(u, )k @ 16 = 100 © k) + (w— w)|k)s ©10);, m > k> 030,
Here, v and w are complex numbers.
More generally, for an integer p > 2, we define R;;(u,w) (1 <i < j < p) as an operator

acting on Wi ® Wy ® - - ® W), acting on the tensor product of W; and Wj as (2.1), (2.2),
(2.3), and acts as identity on all the other vector spaces Wy, k # i, j.

w w w
k ¢ k
u k k lu k kL lu k ¢
k k<t ? k>0 ¢
1 0 1
w w
2 / Rij(u, w)

k<t ¢ k>10 ¢
U—’UJ Wj

Figure 1: The R-matrix R;;(u,w) (2.1), (2.2), (2.3).

The R-matrix R;;(u,w) satisifies the Yang-Baxter relation
Rij (u’ U)Rzk (u’ w)Rjk (Ua w) = Rjk (Ua w)Rzk(u’ w)RZ] (u’ U)' (24)

We view (2.4) as a relation in Wi ® - - - ®@ W), for an integer p > 3 by regarding that R;;(u,v)
acts nontrivially on W; and Wj, R;(u, w) nontrivially on W; and W, Ry (v, w) nontrivially
on W; and Wy, and each of them acts as identity on all the other spaces.
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The monodromy matrix T, (u)
To(u) : = Rgp(u,0) - - Rai(u, 0), (2.5)

is an operator acting on W, @ Wi ® --- ® W,,. The vector space W, is called as the auxiliary
space, and the other spaces Wy,..., W), are called as quantum spaces.

We denote the matrix elements of the monodromy matrix with respect to the auxiliary
space W, as Tj;(u):

Tyi(u) = o GITa(W)]i)a, 1,5 =0,...,m. (2.6)

Each of the elements T;;(u) act on Wi @ ---®@ W), and can be regarded as (m +1)P x (m+1)?
matrices. Among the elements, we use the following ones (Figure 2)

Bi(u) : = Tyg(u), k=0,1,....,m—1, (2.7)
Dy (u) : = Ty (u).

Figure 2: The operators By (u) = Tk (u) = o(k|To(u)im)e (k= 0,1,...,m —1) (2.7) (top)
and Dy, (u) = T (u) = o(m|Te(u)|m), (2.8) (bottom).

There are fundamental nontrivial relations between the elements 7;;(u) of the monodromy
matrix, which are obtained as matrix elements of the following RTT intertwining relation

Rap(u1, u2)To(u1)Ty(uz) = Ty(ua)To(u1) Rap(u1, ug). (2.9)

The intertwining relation (2.9) follows from the Yang-Baxter relation (2.4), and writing down
the matrix elements of (2.9) explicitly, we get commutation relations between the elements



Tij(u), 1,7 =0,1,...,m. Some of them which we use are (Figure 3)

1 .
Dm(ul)Bj(UQ) = B]('LLQ)Dm(Ul) + Bj(ul)Dm(UQ), 7j=0,1,....m—1,
U1 — U2 U2 — Uy
(2.10)
1 .
Bj (’LLl)Bk(’LLQ) = Bk(UQ)Bj(Ul) + Bk(Ul)Bj(UQ), 0<k< 71<m-—1,
U1 — U2 Uz — Uy
2.11
Dm Ul Bj(UQ) :Dm('LLQ)Bj(Ul), j:O,l,...,m— 1, 2.12

Bj Uul Bk(UQ) = Bj('LLQ)Bk(Ul), 0 S k < ] <m— 1, 2.13
Dm ul)Dm(uQ) = Dm(uQ)Dm(ul) 2.14
u e
m % J u2 ur m J
> )
w1 m ey g m
up
us
uy M . j
J
+
uz ™M
m m
uy

Figure 3: A graphical description of an element of the intertwining relation. The left hand side
represents Bj(ugz)D,, (u1), and the top and bottom panel of the right hand side and represents
(u1 — u2) Dy (u1)Bj(uz) and Bj(ui)Dp(u2) respectively. This means Bj(ug) Dy, (u1) = (ug —
u2) Dy (u1)Bj(uz2) + Bj(u1)Dp(u2), which is essentially (2.10).

We introduce a set of integers ¢1,q2,...,qn satisfying g =0 < 1 < g2 < -+ < g <
gm+1 := n. Using the argument given in [23], we can derive the following multiple com-
mutation relations from the basic commutation relations (2.10), (2.11), (2.12), (2.13) and
(2.14).

Proposition 2.1. The following multiple commutation relations hold:

[IPm(uw) [I Bm-i(uy)-- H B (u;) H Bo(u;)
j=1

j=q+1 J=qm-1+1 Jj=qm+1

1
-y
— | A qu_1<iqu qu<j§n(ui — uj)

WESn/Sqy XSqy—qy X+ XSn—gqm

II Bolw) H By (uj) - H B—1(u; HD (u;) |- (2.15)

Jj=qm+1 J=qm-1+1 Jj=q+1 =1



Here, w in the right hand side of (2.15) acts as permutation on the the spectral parameters
(uy,ug,...,uy), and the sum is over all representatives of elements of the fized subgroup
Sn/Sq X Sqy—qy X +++ X Sp_q,, of the symmetric group Sy,.

We next introduce partition functions. We first introduce notations for the basis of the
space W1 @ Wo @ --- ® W), and its dual Wi @ W3 ® --- @ W. For an ordered set of integers
I ={iy,ig,...,1p} satisfying 0 < iy,49,...,i, < m, we define |I) and (/] as

1) =[i1)1 @ lig)2 @+~ R lip)py EW1 R Wa® -+ @ W), (2.16)
(I = 1(i1] @ 2(ia| @ - - @ plip| € Wy @ WS @--- @ W, (2.17)

{II) | 0 < dy,ig,...,45 < m} and {(I| | 0 < iy,i2,...,4, < m} forms a standard basis of
Wi@Wy®- - @ W, and Wy @ Wi ® --- ® W, respectively.

i|i»_yooooooo-o.--il,

Un m I | ' 0
Ugm+1 M 0
Yam M { 1
m :
7an yee @m* U M m—1
Ugy+1 n—t 1 +— 1 +——m—1
gy m ! m
coom m
uy m m

_/]_i‘_}ooooo-o.lo--'j

i] G2 » o o o o o o o s o oo

uy m 1 ‘ I m
oom — 1 + -m
ug, M m
Ug+1 N m—1
— Ug, M m—1
Com
Ug,, M [ 1
Ugp+1 TN ! 0
Up M % 0

_[‘1]’_)....-...-.-._[’,

Figure 4: The figure inside 7y, 4.«() of the top panel represents the partition functions
Frj(uq,...,uy,) (2.18), and the bottom panel represents G j(uq, ..., u,) (2.19).

The first type of partition functions Fyj(uq, ..., u,) which we introduce is (Figure 4, top
panel)

FIJ(ul,...,un)

] [ Botw) [[ Bitw) T BrsCw) [] D)), (2.18)
J=qm+1 J=qm-1+1 Jj=q+1 j=1

The second type of partition functions Gyj(uq,...,u,) is (Figure 4, bottom panel) the



following one

Grr(uy, ..., up)
q1 q2 dm n
=TI Pm(uy) T[] Bmoa(wy)-- I Biw) [ Bolwy)ld), (2.19)
J=1 J=q+l J=gm-1+1 J=qm+1
which the order of operators to define Grj(u,...,u,) in (2.19) is reversed from the one for

F]J(ul, e ,un) (2.18).
We omit here, but we can also introduce the third type of partition functions which uses
only Byp-operators and acts on a larger quantum space and is equivalent to the second type

Grj(uy,...,uy,) in the sense that the partition functions are represented by the same poly-
nomials. The third type of partition functions imply that Gys(uq,...,u,) is fully symmetric
in ug,...,u,. See [22] for details.

2.2 Partition functions and cohomological Gysin map for partial flag bun-
dles

The multiple commutation relations of the Yang-Baxter algebra (2.15) have similarities with
the description of the cohomological pushforward (Gysin map) for partial flag bundles using
symmetrizing operators. See [24, 25, 26, 27, 28, 29, 30, 31, 32] and [33] in the same volume
of the RIMS Kokyuroku for examples for literature on the Gysin maps from various point
of views besides the symmetrizing operator description and applications such as geometric
derivation of identities and formulas. Let us first recall the symmetrizing operator description.

Let E — X be a complex vector bundle of rank n. We denote the bundles of flags
of subspaces of dimensions qi,...,qm (@0 == 0 < ¢1 < @2 < +*+ < Gm < @m41 = N) as
Tgirgm * Flgr....qm(E) — X. There exists a universal flag of subbundles of the pullback

: (E) of Eon Flyg, . 4. (E),

7Tl]1 yeesqm

qu =0C Uq1 - qu ¢ G qu - qu+1 = 7T:1F1,...,qm(E)= (2’20)
where the rank of subbundle Uy, is ¢; for i =0,1,...,m + 1.

The special case m =n —1, ¢; = j (j = 1,2,...,n — 1) of the flag bundle w12, :
Flio, . n-1(F) — X is called the complete flag bundle, on which there exists the universal
flag of subbundles

0=UCU1 S CUp1 Sl

1Ly

n—1(E)- (2.21)

We denote the first Chern class of the dual line bundle (U;/U;—1)" as u;, i.e., we set u; :=
c1((Ui/Ui-1)").

One of the latest results of the Gysin map is the extension to the generalized cohomology
theory by Nakagawa-Naruse ([30] Thm 4.10, [32] Remark 3.9). The cohomology case is the
following.

Theorem 2.2. Let 7y, . g, be the partial flag bundle mq, . q.. @ Flq, . .qn(E) — X. The
pushforward wg, . g« H*(Fly,... qn(E)) — H*(X) of a symmetric polynomial f(t1,...,t,) €



H*(X)[tlu s 7tn]sq1 ><Sq2—q1><-~><5'n_qm 18 given bZ/
7Tq17~-v,Qm*(f(ul7 s 7un))

_ 3 w flun, . tn) . (2.22)

Hzlzl HQk—1<iSQk HQk<an(ui - uj)

WESn /Sqy X Sqg—qy X=X Sn—qm

Here, w in the right hand side of (2.22) acts as permutation on the Chern roots (uy, ug, . .., uy),
and the sum is over all representatives of elements of the fized subgroup Sy/Sq X Sgp—q X
o X Sp_qn of the symmetric group Sy,.

Combining and (2.22), we have the following formula for the cohomological pushforward
(Figure 4).
Theorem 2.3. Let my,, g, be the partial flag bundle mq, . g, @ Flg. . qn(E) — X. The
pushforward ©g, . g« H (Fly, .. qn(E)) — H*(X) of Frj(ui,...,uy,) is given by
Tgrrgme(Frr(u, .. upn)) = Grp(ug,. .., uy,). (2.23)

Theorem 2.3 follows from or is essentially equivalent to the following identities between
partition functions

Grj(uy,...,up)

_ Z w - _ IJ(ula ,un) , (224)
| qu_1<i§qk qu<j§n(u’i —uy)

WESn/Sqy X Sqg—q1 XX Sn—qm

which follows from taking matrix elements of (2.15).

n—1 A=Az A2—A3 An—2=An-1  Ap_1
I I | | |
n—1...n-1n-2«+.n—2np-3n-3 ... 1 1 1 0 0
Un n—1 0
Up—1n—1 1
o on—l :
Jon—1 :
e z
Don—1 :
;-1 :
uz n—1 n—2
U1 n—1 n—1
n—2 +++ n2n-3+-+n-3-+-+-1 1 1 1 0 0 O
| | L | | | |
A1—A2+1 A2—Az+1 An—2—An-1+1 An—1+1
Figure 5: The partition functions Frj(uq,...,u,) corresponding to the case m = n — 1,
b = )‘1 +n— 17 I = ((TL - 1)n—1’ (TL - 2)/\1_)\27 (TL - 3)/\2_)\37 ceey 1)\n_2_/\n_1a0/\n_1)7 J =
(n —2)M=retl (n — Z)re—As bl pAn-2=Adn14] gAn-141) of complete flag bundles.



| I | | |
n—1 en—1In—2. .« .n—2n-3 n—3 -1 1 100
Ul n—1 n—1
U2 n—1 n—2
on—1 :
;on—1 ;
e z
Don—1 :
: -1 :
u”_ln—l 1
n—-2 <+« n-2n-3++n-3-+-+1 1 1 1 0 0 O
| | [ | | | |
A1—A2+1 A2—Az+1 An—2—Apn—1+1 An—1+1
Figure 6: The partition functions Gyj(us,...,u,) corresponding to the case m = n — 1,
b = )‘1 +n - 17 I = ((TL - 1)71—1’ (TL - 2)/\1_)\27 (TL - 3)/\2_)\37 ey 1)\n_2_/\n_1a0/\n_1)7 J =
(n —2)M A2t (n — Z)re=Astl  pAn-2=An1HL gAn-141) of complete flag bundles. (2.27)
means this partition function is expressed as s, .., ) (U1, .., Un).

2.3 Complete flag bundles

As for the case of complete flag bundles, which corresponds to the case m = n — 1 of partial
flag bundles, the following is known (see [27, 30] for example).

Theorem 2.4. Let 712, n—1 be the complete flag bundle w12, n—1: Flio, n-1(E) — X.

The pushforward w12, n—1x : H*(Fl12, n-1(E)) — H*(X) of [[j_, u?ﬁn_ﬂ is given by

- Aj+n—j
T1,2,...,n—1% < H ujj+ J) = SA(E)v (225)
j=1

where X = (A1, A2, ..., A\p) is a set of nonnegative integers satisfying A\y > Ag > -+ > A\, > 0,
and sy(E) is 1 o, 15x(E) := sx(u1, ..., up) € HY M (Fty 5. n1(E)).

We can derive a realization of Schur polynomials using higher rank vertex models by
combining Theorem 2.3 and Theorem 2.4. We consider the case m=n—1,p=XA1+n—1,
I=((n—-1)""1 (n—2)722 (n—3)2s  1Ane2mdnot QA1) ] = ((n — 2)M A2+l (y —
3Yre—Astl A2 m At gAa—1F 1) of Theorem 2.3. In this case, the partition function
Fry(u,...,up) = (I|Bo(un)Bi(un—1) -+ Bp—2(u2)Dp—1(uy)|J) (2.18) is graphically repre-
sented as Figure 5. By graphical consideration, we can see that actually only one config-
uration is allowed. Fach of the other configurations has at least one local configuration
whose corresponding weight (matrix element of the R-matrix) is 0 and therefore does not
contribute to the partition function. The process of freezing corresponding to the case n = 3,
I=(2,2,1,0), J=(1,1,0,0) is illustrated in Figure 7, and Figure 8 is the final result from

which we conclude Frj(uq,...,u,) = u‘llu% in that case. In general, we find the product of all
the R-matrix elements appearing in the unique configuration is given by H?;ll uj»j g , le.,



uz 9 0 u3 2 0 0
0
ug 92 1 uz 2 1
uy 2 2 uy 2 2
1 1 0 0 1 1 0 0
2 2 1 0 2 2 1 0
us 2 0 0 w3 2 1 0 0
0 0 0
u2 2 1 1 u2 2 1 1
0 0
uy 2 5 2 uy 2 5 2
1 1 ] 1
2 2 1 0 2 2 1 0
ug 2 i 0 0 u3 2 5 1 0 0
0 0 1 0 0
ug 92 1 uz 2 1
1 1 1 1
0 0 0 0
1 1 ] 1
2 2 1
ug 2 5 1 0 0
1 0 0
uz 2 1
1 1 1
1 0 0
2 o 2 [ 2 2
1 1
Figure 7: The freezing process of Frj(uq,...,uy) for complete flag bundles corresponding to

the case n =3, I =(2,2,1,0), J =(1,1,0,0).
we have

n—1
Aj+n—j
Fry(uy,...,uy) = H ujj+ 7 (2.26)
i=1

Theorem 2.3, Theorem 2.4 and (2.26) implies that the partition function G (uy,...,u,) =
(I|Dp—1(u1)Bp—2(u2) - - - B1(un—1)Bo(upn)|J) (2.19), which is graphically represented as Fig-
ure 6, is nothing but a higher rank vertex model representation of Schur polynomials.

Theorem 2.5. Form = n—1,p = M +n—1, T = ((n— 1)1, (n —2)M72 (n —
3))\2—>\37 el 1)\n—2_)\n—170)\n—1)’ J = ((n_2)>\1—>\2+17 (71_3))\2—)\3-‘-17 el 1)\n—2_)\n—1+17 O)\n—1+1)’

we have the following partition function representation of the Schur polynomials

SOy dno ) (W1 - un) = (I Dy1(u1) By —2(u2) - - - B (tn—1)Bo(un)|J). (2.27)



1 1 0 0

Figure 8: The final result of the freezing process of Fyj(uq,...,u,) for complete flag bundles
corresponding to the case n =3, I = (2,2,1,0), J = (1,1,0,0). Multiplying all the R-matrix
elements which appear in this configuration, one finds Fyj(ug, ..., u,) = ujus.

Figure 9 is the illustration for the case n = 3, (A1, \2) = (2,1). The bottom panel
is ((2,2,1,0)|D2(u1)Bi(u2)Bo(us)|(1,1,0,0)), the right hand side of (2.27), and the eight
panels above are the eight configurations which give nontrivial contributions to the partition
function. This means that ((2,2,1,0)|Da(u1)B1(u2)Bo(us)|(1,1,0,0)) is expressed as the
sum of products of the matrix elements of the R-matrices appearing in each configuration,
which is u%uz, u%u;),, UL U U3, ulu?,), ulu%, U ULUS, u%u;;, uw% respectively. Summing all the
monomials, we get u%uz + u%u;; + 2uiuous + uw% + uy u% + u%us + uzu?,) which is nothing but
5(2,1)(u1, ug,u3), the left hand side of (2.27).

3 K-theory version

The details for the case of K-theory can be seen in detail in [20, 21, 22]. The point is that
instead of the R-matrix used in the previous section for the cohomological case, we use the
following R-matrix

(u,w)|k); @ |k); = k)i ®1|k);, k=0,1,...,m, (3.1)
(ww)lk); @ 16); = w/ult); k), 0<k<f<m, (3.2)
Rij(,w) ); 2 10); = |0 @ ) + (1= w/u)|k); @ 6, m > k> (>0,

Let us denote the operators and partition functions in the previous section with the R-
matrix constructing them replaced by the one defined by (3.1), (3.2), (3.3) as Dy, (u), Bj(u),
7=0,1,...,m—1 and

FIJ(u:h’ . 7un)
n B qm B q2 B q1 B
=1 T[] Bo(wy) [ Bulw)--- [] Bm-aluy) [[Pmluj)l]), (3.4)
Jj=qm+1 J=qm-1+1 j=q+1 Jj=1
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uy 9 15 5 2 uy 9 13 5 2
9 P 1 "o 9 9 1 "0

uz 2 5 1 1 1 uz 2 5 1 0 1
9 1 1 0 9 1 0 1

usz 2 1 1 0 0 u3 2 1 1 1 0
1 1 0 0 1 1 0 0
2 2 10 2 2 10

12 5 1 | 2 2 12 5 1 | 2 2
9 1 2 “o 9 1 "2 "o

us 2 T 1 1 22 T 2 [0 1
1 9 1 0 1 ol 70 1

usz 2 9 1 0 0 u3 2 9 1 1 0
1 1 0 1 1
2 2 10 2 2 1 0

12 5 1 | 2 2 12 5 1 | 2 2
9 1 2 “o 9 1 "2 “o
2 1 1 "o 2 1l "o 1

2 r 1o Y 12 I T I B
1 1 0 1 1
2 2 1 2 2 1

ur 2 5 1 0 2 ur 2 5 1 0 2
2 1 o 2 2 1 0 2
2 1 0 1 1 2 0 1

us 2 T | 1 1 0 us 2 2 1 1 0
1 1 1 1

2 2 1 0

uy 2 2

u 2 1

us 2 0

1 1 0 0

Figure 9: The bottom panel is G j(uq, ..., u,) for complete flag bundles corresponding to the
casen =3, [ =(2,2,1,0), J = (1,1,0,0). The other eight panels are configurations which
give nonzero contributions to the partition functions. Multiplying all the matrix elements of
the R-matrix for each configuration, we get u%uz, u%u:;, U U3, ulug, ulug, U U3, u%u:;,
uzu?)) respectively. Summing all the monomials give u%uz + u%u;g + 2uqugusg + u1u§ + ulu% +
u3us + uzu3 which is nothing but 5(2,1)(u1, uz, u3).
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éu(ul,...,un)

=(I| ] Dm(uj) [] Bm-alu)-- H By (uj) H Bo(uj)|J). (3.5)
Jj=1

Jj=q+1 J=qm-1+1 J=qm+1

The multiple commutation relations become the following form

q1 q2 qm
H Dm(u]) H Bm_l(uj) ce H Bl u] H B() ’U,J
Jj=1 J=q1+1 J=qm-1+1 Jj=qm+1

1
= w -

WESn/Sqy X Sqy—qy X" XSn—qm

n qm q2 1
II Botw) TI Bi(w)-- [[ Bu-r(w) ][] Dmluy|. (3.6)
J=qm+1 J=qm-1+1 Jj=qi+1 j=1

For a smooth scheme X, KY(X) denotes the Grothendieck group of locally free coherent
sheaves on X. For £ a locally free sheaf on X, we denote its class in K°(X) by [£]. We
introduce the flag bundles as before, and denote the class of the dual line bundle (U;/U;_1)"
as u;. The following is the symmetrizing operator description for the case of K-theory (see
[30] Thm 4.10, [32] Remark 3.9 for example).

Theorem 3.1. Let 7, . g, be the partial flag bundle mg, . 4.+ Flqy. . .qn(E) — X. The
pushforward g, gnx @ KO (Flyy  an(E)) — K%X) of a symmetric polynomial f(1 —
trh . 1=t e KOX)[th ...t )0 Sa—a XX Sn—am s given by

Ty (f (1 = Ul_l, ol —u 1))

_ _ f(l—ul_l,.. 1—u,t) .
Z v H?:l qu,1<z’qu qu<j§n(1 u;/u;) ' (3.7)

WESn /Sqq XSqg—q1 XX Sn—qm

Here, w in the right hand side of (3.7) acts as permutation on the Grothendieck roots (ui,us, . ..

and the sum is over all representatives of elements of the fized subgroup Sy/Sq, X Sgo—q X
* X Sp—gn of the symmetric group S,.

From (3.6) and (3.7), we have the following.

Theorem 3.2. Let 7y, 4, be the partial flag bundle mq, 4., * Flqy, g (E) — X. The
pushforward 7y, grw  KO(Flyy . an(E)) — K°(X) of Frj(ui,...,uy) is given by

Taroame (F17(u1, - yun)) = Gry(ug, ... uy). (3.8)

See [20, 21, 22] for details where the case of the Grassmann bundles is written down
explicitly using skew Grothendieck polynomials, and have overlap with Buch’s pushforward
formulas [34]. The simplest case of (3.6) gives the skew generalization of the identity by
Guo-Sun [35] which is the generalization of the one for Schur polynomials by Fehér-Némethi-
Riményi [36].
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