Improved error estimates for the Davenport—Heilbronn theorems

AR - RZGUEZHZER &1
Takashi Taniguchi
Department of Mathematics, Faculty of Sciences,
Kobe University

Abstract

This is a résumé of the preprint [BTT] of Manjul Bhargava, Frank Thorne and the
author, based on the author’s talk at RIMS conference!.

1 Introduction

The purpose of this article is to give an outline of the proof the following theorem, obtained
by Bhargava, Thorne and the author [BTT, Theorem 1.1]:

Theorem 1 Let Ngi(X ) denote the number of isomorphism classes of cubic fields F satisfying
0 < £Disc(F) < X. Then
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where Ct =1, C~ =3, Kt =1, and K~ = /3.

We briefly recall the history of this counting problem: The first main term is due to
Davenport and Heilbronn [DH71], while the second main term was conjectured by Datskovsky
and Wright [DW88, p. 125] and Roberts [Rob01] and proven in [BST13] and [TT13b]. The
latter works in turn built on the successively improved error terms obtained in [DH71], [Bel97],
and [BBP10].

We also obtain a variation of Theorem 1 that counts isomorphism classes of cubic fields
satisfying certain specified sets of local conditions. For details, see [BTT, Theorems 1.4, 1.5].

2 Binary cubic forms and cubic rings

A cubic ring is a unitary commutative ring that is free of rank three as a Z-module. Its
discriminant is the determinant of the trace form (z,y) = Tr(xy). The lattice of integral
binary cubic forms is defined by V(Z) := {au?® + bu®v + cuv? + dv3 | a,b,¢,d € Z}, and the
discriminant of f(u,v) = au® +bu?v + cuv?® 4+ dv® € V(Z) is defined by Disc(f) = b*c? — 4ac® —
4b3d — 27ad? 4+ 18abcd. The group GLa(Z) acts on V(Z) by (v f)(u,v) = f((u,v)-v)/(det ).

The correspondence of Levi [Levl4] and Delone-Faddeev [DF64], as further extended by
Gan, Gross, and Savin [GGS02] to include the degenerate case, is as follows:

Theorem 2 ([Levl4, DF64, GGS02]|) There is a canonical, discriminant-preserving bijec-
tion between the set of GLga(Z)-orbits on V(Z) and the set of isomorphism classes of cubic
rings.
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We want to count cubic fields, which is equivalent to count maximal cubic domains.
Let Nt (X) counts the number of maximal cubic rings R satisfying 0 < +Disc(R) < X.
For a squarefree integer ¢, let N (X;q) denotes the number of cubic rings R satisfying
0 < +Disc(R) < X which are non maximal at all prime divisors of ¢q. Then by inclusion-
exclusion, we have

N ( ZNi X;q) =Y N¥(X;q)+ > N=(X;q). (1)
q<Q 7>Q

The latter sum is O(X/Q'~€), since N*(X;q) = O(X/¢*7°).

We use the correspondence of Theorem 2 to analyze N*(X;q) for small g. Let ¥ : V(Z) —
{0,1} be the indicator functions of cubic rings that are non maximal at all prime divisors of
q. It was proved in [DH71] that ¥, factors through the reduction map V(Z) — V(Z/q*Z).

3 Shintani zeta fucntions and Landau’s method

Our proof will apply the theory of Shintani zeta functions [Shi72] associated with the space of
binary cubic forms. Shintani introduced the following Dirichelt series:
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Then N*(X;q) =, .y ai (n). By applying Perron’s formula,
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The Shintani zeta function 5;'[(3) enjoys an analytic continuation and a functional equation.
It has simple poles at s = 1 and 5/6, and the explicit formulas of the respective residues rli (q)
and rE,_(q) are obtained by Datskovsky and Wright [DW86, Proposition 5.3 and Theorem 6.2].
Let
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If we formally shift the contour to the left, we get these two main terms by the residue theorem
and also get an integral expression of E¥(X;q). There is a convergence problem, so we consider
the Riesz mean. Then we come back the original count by the finite differencing. This was
established in the classical work of Landau [Lan12, Lan15], and we have E*(X;q) = O,(X?/°)
where the implied constant depends on ¢. For our purpose we need an estimate of Ei(X iq)
uniform in ¢, which we now discuss.

E*(X;q) == N*(X;q) — i (0)X — r36(q)

4 Uniform Landau and estimating the error term
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Here V* is the dual space and Disc* is an invariant polynomial on V*. The following estimate
follows from [LDTT22] by Lowry-Duda, Thorne and the author:

Theorem 3 ([LDTT22]) We have
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, so the problem is reduced to establish an estimate of
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We know 71(q) < q 2

ola \iJ;. Thorne and the author [TT13a] gave an

explicit formula of \I/l;, and in particular obtained the following upper bound:

By the Chinese remainder theorem, \I/'\q =11

Propositoin 4 ([TT13a]) We have

P rly,

p~> p*|Disc(y),
\Ilp(y) < 4 3 . %

p~" p”|Disc(y),

p~> p*|Disc"(y).
Moreover, \i’;(y) = 0 if p? { Disc*(y).

This proposition shows that the function \if; takes mostly quite small values, and has a thin
support. Thus by switching the sum in (2), we can estimate the quantity rather effectively.
As a consequence we have << Q707 for (2). Thus the total error in the squarefree sieve (1) is
L X/Q1¢+ X3/5Q1/5+¢ Choosing Q = X1/3~¢, we have the desired bound.
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