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ABSTRACT. Let S(a) = {|an?]: n = 1,2,...} \ {0}. Kanado and the author showed
that for all rational numbers v € (0,1) we can find infinitely many tuples (k, £,m) of
positive integers such that all of k, £, m, k+£, {+m, m+k, k+£+m are in S(«). In this
short article, we construct a transcendental number a € (0, 1) satisfying this relation.

1. INTRODUCTION

Let N be the set of all positive integers. A rectangular cuboid is called an Fuler brick
if the edges and face diagonals have integral lengths. Further, an FEuler brick is called a
perfect FEuler brick if the space diagonal also has integral length. It is known that there
are infinitely many Euler bricks (see OEIS A031173, A031174, and A031175). However,
the existence (or non-existence) of a perfect Euler brick is unknown. By the Pythagorean
theorem, a perfect Euler brick exists if and only if there exists (k,¢,m) € N® such that
all of

(1.1) k, £, m, k+¢ {+m, m+k, k+L+m

are perfect squares. Instead of squares, Glasscock investigated Piatetski-Shapiro sequences
[Glal7]. Let |z] denote the integer part of = for all x € R. A sequence of positive integers
of the form |[n®] is called a Piatetski-Shapiro sequence. Let PS(a) = {|n®|: n € N}. For
a given set X C N, we define T'(X) as the set of all tuples (k,¢,m) € N> with k < £ <m
such that all of (1.1) belong to X. Further, we say that X satisfies the infinite PEB
conditions if #T(X) = oc.

Interestingly, Glasscock found that PS(«) satisfies the infinite PEB conditions for al-
most all a € (1,2) [Glal7, Corollary 1]. Note that PS(2) is equal to the set of all perfect
squares. The author improved on this finding, showing that Glasscock’s result remains
true even if we replace “for almost all” with “for all”; that is, PS(«) satisfies the infinite
PEB conditions for all a € (1,2) [Sai22, Corollary 1.2]. However, the gaps between |[n®|
and n? are very large. Indeed, it is observed that for every fixed o € (1,2)

n?/n* — oo (asn — 00).

For solving this problem, Kanado and the author studied a set closer to squares satisfying
the infinite PEB conditions. They proposed the following set: for every a € (0,1)

S(a) :={lan’|:n=1,2,...}\ {0}.
They showed
(1) for all « € (0,1) NQ, S(«) satisfies the infinite PEB conditions;

(2) for almost all o € (0,1), S(«) satisfies the infinite PEB conditions;

(3) if T'(S(«)) is finite for some a € (0, 1), then there is no perfect Euler brick.
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These results can be seen in [KS, Theorem 1.2, Theorem 1.4, Theorem 1.6], respectively.
In the previous research, we did not get any concrete examples of irrational o € (0, 1)
such that S(«) satisfies the infinite PEB conditions. In this short article, we concrete
such a.

Let C' € N be a large integer which determined later. We define h = hg: N — N as

h(1)=C, hn+1)=C"™ (n=1,2,..)).
Then we obtain the following result:

Theorem 1.1. Let C' > 21410 be an integer, and let v = Y oo C7"™ . Then v is a
Liouville number and S(v) satisfies the infinite PEB conditions.

Note that for every integer C' > 2 the series ) -, C~M") converges in (0,1). Indeed,
v > 0 is trivial. By Lemma 2.1, h(n) > 2h(n — 1) > --- > 2"71h(1) > 2". Therefore,
h(n) > n. We observe that

ic—’“”) < ir’“”) < ir” =1
n=1 n=1 n=1

Hence, v exists and belongs to (0, 1).
Remark 1.2. A real number « is called a Liouville number if for all n € N there exist
p € Z and g € N such that
1
< —.
qn
It is well-known that every Liouville number is transcendental.

(1.2) 0<la—2

Notation 1.3. For x € R, let {z} denote the fractional part of . For all intervals I C R,
let I = INZ. For all x € R, let [x| = —|—z], which means the least integer greater
than or equal to x.
2. LEMMAS

Lemma 2.1. Let C > 2. Then h(n+ 1) > 2h(n) for all n € N.
Proof. If n =1, then 2h(1) =2C < C - C = C* < CY = h(2). Assume that

h(n+1) > 2h(n)
for some n € N. Then since 2z < 2?2 for all z > 2, we have

2h(n + 1) = 20" < 20MnHD/2 < ChnHl) — (4 2).

O
Lemma 2.2. There exist positive integers g1 < qo < --- and p1,pa, ... such that for all
n €N,
Pn 2
(2.1) O<7——<an

Proof. For sufficiently large n € N, we have

=1
(2.2) 0<y— Z o0 Z - C—n+1) (1 + Z O~ +h(N+1))
j=1

Jj=n+1 j=n+2



By Lemma 2.1, we obtain h(j) > h(n+2) > 2h(n+ 1) for every j > n+ 2. Therefore the
most right-hand side of (2.2) is

< C—h(n+l) <1+ Z C—h(j)/2> < 2C—h(n+1)

j=n+2
for sufficiently large n € N; since Z;’il C~™M3)/2 is convergent series. Since C'is a positive
integer, setting g, = h(n + 1)(= C"™), there exists p, € Z such that Y7, 1/C"0) =
Pn/qn. Hence, we conclude 0 < v — p,, /g, < 2C ™. O
Lemma 2.3. Let (P,)y°, be the sequence defined by
P():O, Plzl, Pn+2:2Pn+1+Pn (n:O,l,Q,)

Then for every n € Zsqo, P, = rlf?(qb% — (=¢p)™), where ¢pp = 1 + /2. Further, for all
integers 1 < p < q, there exists r € [2, [v/2q]]z such that

(2.3 (|Ze2]. [2r]. |2 - v2)) eTswran,
q q q
D 5o D 5o 2 p
2.4 Ppl_o 2p2pp_12l=L
(2.4 {Erph-o {Ewpp-yp}-t
Proof. See [KS, (2.3), Lemma 3.1, Lemma 3.3, Proof of Theorem 1.2]. O

3. PROOF OF THEOREM 1.1

Let C' > 21410 be an integer, and + be in Theorem 1.1. By Lemma 2.2, there exist
positive integers ¢1 < ¢a < --- and pq,po, ... satisfying (2.1). It is clear that ~ is a
Liouville number. Indeed, fix any N € N. For sufficiently large n € N, one has C% > 2¢X.

Therefore,
2 1

P
Cr = an

A/ —_— —
dn
which implies that v is a Liouville number.

Let r, = r(q,) be as in Lemma 2.3. Let us show that for every sufficiently large n € N

(3.1) Vﬁ PinJ =],

0< <

n

Pn
(32 (P2, 2= 12 = |y (7, /2 1.
By combining (2.3), (3.1), and (3.2), we conclude that T'(S()) is infinite.

Let us fix any sufficiently large n € N. Let p = p,,, ¢ = q,, and r = r,,. It follows that

p p 1
5P22r<’yp22r< 5P22r+ap22r
By Lemma 2.3, 0 < C79P2 < C~9(1 + v/2)¥ < C79(1 + v/2)"2t4. From numerical
calculation, we see that (1 + \/5)4*@ < 147 < C. Therefore, if n is sufficiently large, then
0 < C™1P; < 1. By (2.4), we obtain (3.1).
The remaining part is to prove (3.2). We see that

D j% 1
p (P32 =12 <~(P5./2-1) < p (P5./2—1)*+ @(Pzi/? —1)%
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The fractional part of the most left-hand side is p/q. Therefore, it suffices to show that
p/q+ C~1(P3./2—1)? < 1. By Lemma 2.3,

plq+C P2 —1)2 < v+ CTU1L + V2)¥ <~y + C7I(1 + V2)PV20rS,

From numerical calculation, we have (1 + v/2)3v2 < 21410 < C. Therefore, if n is
sufficiently large, then p/q + C74(P%. /2 — 1)> < 1. Therefore, we obtain (3.2). We
complete the proof of Theorem 1.1.

The key point of this proof is that ~ is extremely near to rational numbers. If v € (0, 1)
is an algebraic irrational number, then v is not near to rational numbers from Roth’s
theorem. Thus, we lastly propose the following question.

Question 3.1. Can we construct an algebraic irrational v € (0,1) such that S(v) satisfies
the infinite PEB conditions?
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