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1. INTRODUCTION

This article reviews the paper “The average analytic rank of elliptic curves with prescribed
torsion” [CJ23] by the author and Jeong. In [CJ23], we study the distribution of analytic ranks
of elliptic curves with prescribed torsion. Let us start with our model for elliptic curves. Our
elliptic curves defined over Q are represented by for a pair (A, B) of integers with 44342782 # 0

EA,B:yQ:a:Z—i-Aa:—FB

such that there is no prime p with p* | 4 and p® | B. Let &€ be the set of all such pairs. A
bijection exists between £ and the set of Q-isomorphism classes of elliptic curves over Q. Then,

we can order elliptic curves by the naive height:
E(X) = {EA,B € &:|A| < X3, |B| < X%}‘

We can define the average rank of elliptic curves as the limit of the average rank over £(X) as
X goes to infinity if it exists. It was Brumer [Bru92] who first showed that the average analytic
rank of elliptic curves is bounded. His bound was 2.3 under GRH for elliptic curve L-functions,
which was lowered to 2 and 22 by Heath-Brown [Hea04] and Young [You06] respectively, under
GRH for elliptic curve L-functions.

On the other hand, Harron and Snowden [HS14] counted elliptic curves with prescribed torsion
G. We say that an elliptic curve E over Q has torsion G if F(Q) contains a subgroup isomorphic
to G.

By a work of Mazur, G is one of the groups
Z/nZ, Z)27 X L]2mZ
forn € {1,2,---10,12} and m € {1,2,3,4}. Let
Gen ={Z/2Z,Z)3Z,Z]AL,Z]27 x L]2Z}
and G>5 be the set of torsion groups of order > 5. We remark that elliptic curves with torsion
G in G>5 can be parametrized by Tate’s normal form. We often use n and 2 x 2m in place of

G =17Z/nZ and Z/27 x Z/2mZ to ease the notation.
Let

Ec(X) = {Eap € £(X) : E(Q) > G} .

Harron and Snowden showed that

log|éa(X)| _ 1

Xoeo  log X d(G)’
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TABLE 1.
G d(G) G d(G) G d(G)
0 6/5 7/67 6 7/127 24
7)27 2 Z]77 12 7.)27 x 1|27 3
YARY/ 3 7|87 12 7.)27 x 7.]AZ 6
Z7]AZ 4 Z)9Z 18 Z)27 x 1]6Z 12
YAGY/ 6 Z/10Z 18 7.)27 x 7./]8Z 24

where d(G) is given in Table 1.
We define the average analytic rank over Eg to be

1
lim ———— TE
X—o0 |5G(X)| EGSZG:(X)

where rg is the analytic rank of . We show that the average analytic rank over any &g is
bounded.

Theorem 1. Let G be a torsion group. For G = Z/nZ, n = 7,8,9,10,12 and G = Z/27 x
Z/2mZ, m = 3,4, we assume the moment conditions (5), (6). Under GRH for elliptic curve

L-functions, the average analytic rank over g is bounded. In particular when |G| > 5, we have

a bound 3 + 5d(G).

For elliptic curves with torsion group G = Z/27Z or Z/27 x Z/2Z, we can show that there
are fewer elliptic curves with large analytic rank. To ease the notation let Gy = Z/27Z and
Go = Z/27 x ZJ2Z. Let Pg(rg > a) denote the proportion of elliptic curves analytic rank
rg > a among the elliptic curves with torsion G. We show a few elliptic curves with torsion Gj,
1 = 1,2 with large ranks.

Theorem 2. Assume GRH for elliptic curve L-functions. Let C be a positive constant and n

be a positive integer. We have

n_ 2n\ (1 2n—2k 25! 1 k
Po, (5 2 a1 + Cm) < =0 (ab) ((;)Cn)%< HGN

where ¢; = 18 and 20 when ¢ = 1,2 respectively. In particular, the proportions Pg, (rg > 23)
and Pg,(rg > 25) are both at most 0.0234.

Many other interesting results and discussions in [C.J23]| are not mentioned here. For those

who are interested, we recommend looking at it.

2. COUNTING ELLIPTIC CURVES WITH TORSION POINTS AND LOCAL CONDITIONS

When we count the elliptic curves containing a torsion group G, we divide G into the two

classes. Let

Gey == {Z/22,7,/3Z, 7./AZ,7./27 x 7./2Z}
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and G>s5 be the set of torsion groups of order > 5. For simplicity, we focus on the case when G is
in G<4. Let us recall the result of [GT12, Theorem 1.1|, which says that E p : y? =234+ Az+B
for A, B € Z has a GG as a torsion subgroup if and only if

(A: B) = (I)G(av b)

for some a,b € Z, where & = (fg, ga) for

fa(a,b) = a, g2(a,b) = b® + ab,

(1) f3(a,b) = 6ab + 27a*, g3(a,b) = b* — 2745,
fa(a,b) = —3a? + 6ab? — 2b*, g4(a,b) = (2a — b2)(a + 2ab? — b?),
fgxg(a,b) = —(CL2 + 3b2)/4, ggxg( b) = <b3 — 2[))/4.

The set

1 1
E(X) = {(A Byezz. AISX7IBl< X2, 443 +27B% #0, }

if p* divides A, then pb does not divide B.
parametrizes all elliptic curves E4 p whose height is less than X, and each isomorphism class
appears only once by the minimality condition. (i.e. there is no prime p such that p* | A and
5| B
p’ | B.)
We define a height h(A, B) of an integer pair (A, B) by max(|A|?,|B]?). Let

Mg(X) = {(a,b) € Z* : (a,b) = 1, (g (a,b)) < X},

Ra(X) = {(a,0) € R?: |fo(a,h)] < X3, [ge(a,b)| < XB

D(X) = {(A,B) € Z° : (A, B) = ®¢(a,b) for some (a,b) € Rs(X)NZ*},
Me(X) = {(A,B) € Dg(X) : if p* | A, then p° t B},

and
Eq(X)={(A,B) € Mg(X) : 44° +271B* £ 0},
Sc(X) ={(A,B) € Mg(X) :44* +27B* =0},
where Eg(X) represents elliptic curves with G torsion and Sg(X) takes up singular curves.
For the reader’s convenience, it is good to remember that (a,b) denotes an element in the
domain of ®; or Rg and (A, B) does in the range of ®¢. Also, Dg, Mg, Eg, and S¢ are sets on
the range side. For pairs I, J € (Z/pZ)?, the subscripts —¢ 1(X) or —¢ s(X) means that this is

the subset of the original set consisting of elements (a,b) =1 (mod p) or (A,B)=J (mod p)
respectively. We often drop the subscript G to ease the notation.

Lemma 2.1. For a torsion subgroup G, the number of integer points in Rg(X) is

Area(Rg(1)) X T + O(X @),

Proof. We note that [HS14, Lemma 5.2] proves this lemma for G = Z/2Z and Z/3Z. Since
fa(a,b) = X%,g4(a, b) = X2 are equivalent to f4(a/X%,b/Xﬁ) = 1,g4(a/X%,b/XTl2) =1, by
change of variables we have

Area(Ry(X)) = X 1Area(Ry(1)).
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Then, the claim follows from the Principle of Lipschitz, [HS14, (5.3)] since X B is the longer
length of the projection of Rz (X) to the axes. The same idea works for G = Z/2Z x Z/2Z. O

By the Principle of Lipschitz, we have
Corollary 2.2. For a prime p > 5, I an element in (Z/pZ)?, and a torsion subgroup G, we have
1 1
|Re,r(X)| = Area(Rg (1))p > X 7@ + O(1 +p~ X ).

The map ®¢ is not one-to-one. We prove some elementary but not simple properties of @¢.
We put

G [{0}[Z/22]2/32 ] 2/42 ] 2/22 x 2./2Z.| G in G=5

@) e@)] 2| 3 4 6 6 2d(G)

Lemma 2.3. For a group G in G<u, there is a positive integer r(G) such that the number of the
1
preimages of O is r(G) except for O(X «(D) points.

Proof. We show the case of G = Z/27 x Z/2Z. For a given (A, B) = (—%, %), we find
all the pairs (a/, ") such that

_a2+3b2 b3—ba2 _ _a12+3b12 b/3_bla/2
4 7 4 B 4 7 4 ’

a+b b—a Wl a+bv v—d Ly
2 7 2 N 2 727 '

Since A and B are integers, a and b should have the same parity. The set equality determines

and

six pairs (a/,b’) and all the pairs satisfy the first relation. Hence, (@, V") has the same image as
(a,b) if and only if one of the following six linear systems holds

for Ay = I, and

-1 0 3 _1 3 _
Al: 0 1 7A2: % 7A3: % 21 7A4: 1 7A5:
- —2 2 T2 2

Consequently, for (a,b) satisfying a = b (mod 2), the (not necessarily distinct) six points

a—3b —a—2> —a+3b —a—0> a+3b a—2»> —a—3b a—0»
— d
o o, (58, T0) (B e o0) (048 ab) g (e 0ty

corresponds to the same (A, B). We find a domain for the representatives for the above (not

NI N[
N |— DO

Nleo
N N[

necessarily distinct) six points. O

For G = 7/27 x 7./27, we consider only the pairs (a,b) with a = b (mod 2). By Lemma
2.1, Lemma 2.3, and Mdbius inversion argument, we have the following corollary, which is a
complement of [HS14, Theorem 5.6].

O N

N———
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Corollary 2.4. For a group G in G<4 and r(G) defined in Lemma 2.3, let

e Area(Rg(1))
(G) : 25c=2x27“(G)<(%)‘

Then,
E6(X)| = (G)X T + O(X 7).

Similarly, we can count elliptic curves E4 p in £(X) satisfying the local restriction (A, B) = J
(mod p). Let Wg. s be the set of pairs I € (Z/pZ)* with (fg,g¢)(I) = J modulo p.

Proposition 2.5. For a prime p > 5, a non-zero pair J € (Z/pZ)* and a group G in G<4, we

have
1

Weg| p™@ 1 IR 1
12

P paer — 1

€a,7(X)| = ¢(GQ)

For J = (0,0), we have

1€a,0(X)| = c(G) (l -

2 12
b P

12
d(G) 1
119 X7 + O(pX =@ + p?X12).
pd@& — 1

3. MOMENTS OF TRACES OF THE FROBENIUS

We define a class number weighted by |[Wg ;.
Definition. We define

(3) Hg(a,p) := > Wa,al,
J=(A,B)€(Z/pZ)?
ap(Ej)=a
4A34+27B%2#£0 (mod p)

where a,(E) is the trace of the Frobenius of an elliptic curve E at p.

We claim that the following relations are true.

(4) Z HG(avp) = p2 + OG(p)
la|<2y/P
(5) S aHg(a.p) = Oc(p?),
la|<2\/p
(6) N a’Hela,p) = p* + Oc(p?).
la|<2y/p

We remark that (4) holds for all torsion groups. In [CJ23|, we were able to show that the
equations (5) and (6) holds when torsion group G is small, for example, when |G| < 6. (See
Proposition 3.2.) The primary tool was the Eichler-Selberg trace formula [KP17]. We introduce
some notations first. The Chebyshev polynomials of the second kind are defined as

Up(t) =1, Ui(t) =2t, Uji(t) = 2tU;(t) — U;_1(t).
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We define normalized Chebyshev polynomials to be

+ ak—1 _ gk—1
Up—a(t, q) := ¢*/*7 U, = Zlg,t
k 2(»q) q k—2 2\/6 a—a € [Q» ]7
where a, @ are the two roots in C of X? —tX +¢ =0. Let
QR ; if R is even 2R 2R
Crj = 2] for ag ;== < , ) - < )
QR-1 ;+QR-1 ; 4 if Ris odd J Jg—1
3 ) 5 ]
be the Chebyshev coefficients. We have
[R/2] ‘
th = Z Cr,j¢’Ur—2i(t, q)
§=0
which is [KP17, (1.3)]. In particular, we have
(7) to = UO(t7 Q)> t=0U (t7 Q)> t2 = UQ(t> Q) + qUO(t7 Q)

Let E be an elliptic curve defined over a finite field F, with ¢ elements, € be the set of all the
isomorphism classes of elliptic curves over F,. Let A denote a finite abelian group and let ® 4 be

1 if there exists an injective homomorphism A — E(F),)

PA(E) = _
0 otherwise.
We define
1 a,(E)E
E (aRCDA) == S A A—
! q EZE:Q |Aut, (E)]
A E(F,)

From now on, we assume that ¢ = p. For a finite abelian group A, let n; = n;(A) and ny =
na(A) be its first and second invariant factors, respectively. We denote 1(n) = n][,,, (1 +1/p),

p(n) =nll,, (1 —1/p) and ¢(n) = n [, (=¢(p))-
For A | (p—1,mn1), let

Y(n3/A)p(n1/A)
T, p,1) = —Ttrace — 11 + Taual),
1,>\( ) w(n%) ( t hyp d 1)
with
1
Tirace := Tr(T,|Sk(T(n1, A
t (nl) ( p‘ k( ( 1 )))
1
1 pg)p(ni(ni(A g)/g -
Th}’p = _Z Z ( ) ( 1( 1( )/ ) <5n1()\,g)/g(yi7 1) + (_1)k0n1()\,g)/g(yia _1)> )
gl St ()
glp—1
p+1
Taual = 26k, 2),
ol = oy )
where g = (7,n1\/7), v; is the unique element of (Z/(n1\/g)Z)* such that y; = p* (mod 7) and

— 1

y; = p-~" (mod n1A\/7), d(a,b) is the indicator function of a = b, and d.(a, b) is the indicator

function of the congruence a = b (mod ¢).
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Theorem 3.1. [KP17, Theorem 3, when q = p| Let A be a finite abelian group of rank at most
2. Suppose (p,|A]) =1 and k > 2. If p=1 (mod n2(A)) we have

1
(8) Ep(Uk—Q(tvp)(I)A) = m |(§n1) ¢(V)Tn1,n2V(p7 1)

n2

and if p# 1 (mod na(A)), then E,(Ux—a(t,p)®a) = 0.
Using Theorem 3.1, we show

Proposition 3.2. Let G be one of the groups Z/nZ for2 < n < 6, Z/27x 7|27 or /27X 1] AZ.
Then, the moment conditions (5) and (6) hold.

Proof. For each group G, we denote np be its first invariant factor. We define Ag; be abelian
groups satisfying G < Ag,; < Z/nZ x Z/n1Z, and j < i if and only if Ag; < Ag,;. We define
(JJGZ to be |WGI| 1fE1[n1]( ) AGz Let

wg,, — Z wG,j.

7<i
Then, one can obtain that
Z a*He(a,p) p—1) chl a CI)AGJ)'
la]<2/P
By (4),

(9) ng, (ag,) _1+0<p>

Since t? = Us(t,p) + pUo(t, p), we have the identity
Ep(t*®4) = Ep(Ua(t, p)®a) + pEp(Uo(t, p) @),
and this together with (9) implies
Y @®Hgla,p) = plp— D(p+O(1)) + 0(p*°) = p* + O(p*°)
la|<2/F

because E,(Usa(t,p)P4) < ]% < p*° by Theorem 3.1 and the Deligne bound.
Using the identity t = Uy (t, p) and E,(Uy(t,p)®4) < p~ 09, it is easy to see that

> aHg(a,p) = Oc(p"?)
la|<2\/p
by Theorem 3.1 and the Deligne bound. O

When G = Z/27Z or Z/27 x 7./27, we can obtain the 2R + 1-th moments.
Proposition 3.3. For G =Z/2Z or Z/27Z x Z]/2Z, we have

Z a1 He(a,p) =0
la|<2/p
for R > 0.

Proposition 3.3 will be used for the Frobenius trace formula for elliptic curves in Section 4.
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4. PROOFS OF THE MAIN THEOREMS

4.1. Proof of Theorem 1. Let ¢ be an even non-negative Schwartz class function with its
Fourier transform ¢ compactly supported. Let vg denote the imaginary part of a non-trivial zero
PE = % + i7yg of an elliptic curve L-function L(s, F). By the explicit formula [RS, Proposition

2.1] and Ogg’s formula [CJ, §4| we have

log X (0) logNg 2 [ log X - r I, .
|5G( )| Z Z¢< 2#) |Eq(X)] ZX log X +;/_OO¢< o >R FE(§+zr)dr

EeEq(X) 1r Bete(X)
2 o~ A(n) > (logn ;
B ¢< ) ag(n
10gX|c€'G(X)|ng1 Vn log X Eegzc;;x) =)
- 2 G A(n)A(long) 5 < ! )
< 3(0) — agp(n)+ O
(0) log X |Ec(X)] ; Vvn ¢ log X Eegzc:(x) =) log X

where

Ecéq(X)
2 logp~(2logp . 9
5, = > ( S o),
log X [€q(X)[ <~ p log X / o o=
and ag(n)’s come from the logarithmic derivative of L(s, F)
r > ap(n)A(n)
o) -3 SN

From now on, for a positive constant o, we specify the test function ¢ and QAS:
sin?(2riow)

= (37 =3hl) ort S0 o) = S

Note that ¢(0) = 0742 and ¢, (0) = T

If we show
1
(10) =51 =82 = 56(0) +o(1),
by the positivity of ¢, we have
1 1 $(0) 11
11 —_ re <-4+ —=40(1) <=4+ —+0(1).
) Fo)], 2 R T St el

Hence, it is left to show that (10) holds for each torsion group G with some explicit o. For

this purpose, we need the following lemmas.

Lemma 4.1. For G = Z/3Z or Z/4Z,

_1 1
Y aplp) <p X 4 pX G + PEX 2.
Eecéq(X)
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Lemma 4.2. For G =Z/37 or Z/AZ,

Ecéq(X)

By Lemma 4.1, for G = Z /37 or Z/4Z,

1 logp~ ( logp 1 L1 9t 1_
12 S C ORI X127 A6
(12) Sl<<logXZp \/ﬁ¢<logX TP Tt

p

<X T 3 (phlogpX 79 4 pllogpX T ) < X~ (XATHE 4 X ).
p<X°

By Lemma 4.2, for G = Z/3Z or Z/4Z,

2 logp~ (2logp 1 1 1 9 oL 1_
Sy = (_1 O( X (&) dG) X 12 dG)))
2 longp: D qb<logX TOW et +tp

‘ =

Q)

N———
+
@)
5}

o
=
S
2
9#—‘
|
A
By
+
i~}
5}
o
3
S
Sl

_ 2 logp~ (2logp
N logX; p ¢(logX

- _%qs(o) +0 (Xe<1c>‘ﬁ+% +X%‘dlc>+"> ,

From our computation, if we take o = %, 1—18, and m for G = Z/3Z, Z/AZ and G in G>5
respectively then (10) and (11) hold. Therefore, the average analytic ranks for G = Z/3Z, 7. /AZ
are bounded by 18.5. For the case for G = Z/27Z and Z/2Z x Z/2Z, we omit the proof.

4.2. Proof of Theorem 2. This section assumes that G = Z/27Z or Z/2Z x Z/2Z. In Theorem
2, we claim that there are not so many elliptic curves in £z with large ranks. We need two
technical propositions. For their proof, the following trace formula is required.

Theorem 4.3. [Frobenius Trace Formula for Elliptic Curves| Let G = Z /27 or 7/27 x Z]2Z,
k be a fixed positive integer. Assumee; =1 or2, r; is odd or 2 ife; =1, andr; = 1 if e; = 2 for
1=1,..., k. Then,

k
> ap()ap(p)” - ap(p)t = c%){w + 0y ((Z 1 ) X‘“"“)

E€q(X)

where

0 ife; =1 andr; is odd for some j,
c=1< =1 ifr; =2 for all j with e; =1, and the number of j’s with e; = 2 is odd,
1 otherwise.

and the first error term exists only if e, =1 and r; =2 or e; = 2 for all 4.
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Let v denote the imaginary part of a non-trivial zero of L(s, E'). We index them using the

natural order in real numbers:

YB3 S VE,—2 < VE,-1 < VB0 < VE1 S VE2 < VB3

if analytic rank rg is odd,

YE,3<VE,2 <VE,1 <0< 791 <vE2<7VE3"""

otherwise.
We specify the test function for Weil’s explicit formula as follows.
sin? (213 0,2)

) = 3 (o 3lol) for il < n, amd (o) = 202

2\2

2~
n

Note that ¢, (0) = %, ¢, (0) = %+ and
~ 1
(13) [ulgn(u)*du = =6n(0)%.
R
We prove the following two propositions using the Frobenius trace formula (Theorem 4.3).

Proposition 4.4. Let ¢, be as above with o, = and 15 for G = Z/27 and /27 x Z[27

%
respectively. Then, we have

5 5 A(miy) -~ Almiy)ap(ma) - ap(my,) 5 (logmu> 3 <10gmik>

T, My, « - Ty X log X
BeEq(X) miymiy...myy #0 e e 8 &

< € (X))
Proposition 4.5. Let ¢, be as above with o, = & and 1 for G = Z/2Z and Z/2Z x 7|27
respectively. For a subset S = {i1,i2,... ik} of {1,2,...,n},

IEGEX)‘ (ij)SI 2 2 ﬁA(mli/)Z_ﬂmlj)gn (l?fgn;j>

EESG(X) milmiQ.A.mik:D j=1

[S2]

S (%%(0))55\52\!(/1& !u\$n(u)2dU>2+0<1og1X>'

SoCS
1
o <1ogX) ’

|S2|even
1 4 2 ag(mi;)A(m;) ~ (logm, 1
< — e - n O e . <. .
"B = Oon * o3, ( log X ;l NG 92 log X + o3, log X

1+C

Now, let’s prove Theorem 2. By Weil’s explicit formula, we have

~ ag(mi)A(m;)~ (1 i
rEP2n(0) < ¢2,(0) — log.?X Z aE(%(m ) n <lzgg1;z' )

hence

Now assume that rgp > with some positive constant C'. Then, for sufficiently large X,

B ZaE mZ)A(mZ)$ log m; >CO’2n
logX — NG, \logX ] = 4
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Therefore,
2n
1+C .| (Cop\*" 2 ap(m)A(m;) ~ [logm;
E X > < _ .
{ € & ( )‘TE— o }‘< 4 ) - Z logXZ m; 92 log X
Eela(X) m;
9 \ 2n || 152] 1
o5 1 1)\ 2 X d@)
< | = = M= X
() ¥ (5) s(s) ooy
S2C{1,2,3,...,2n}

where the second inequality is justified by Proposition 4.4 and Proposition 4.5, and Theorem 2
follows.
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