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Abstract

We propose a new approximation method convergent to a fixed point of a
given mapping defined on a Hadamard space. It is a modified version of the
known CQ projection method.

1 Introduction

Approximation methods of fixed points for nonexpansive mappings have been widely
investigated in nonlinear analysis. For example, we know that various generating
techniques of iterative schemes converge to a fixed point. In this work, we mainly
focus on the projection methods among them. The following result is an example of
such a technique, the CQ projection method proved by Nakajo and Takahashi [5].

Theorem 1 (Nakajo and Takahashi [5]). Let C' be a nonempty closed convexr subset
of a Hilbert space H, and T: C — C' a nonexpansive mapping, that is,

[Tz =Tyl < ||z -yl

for every x,y € C. Suppose that the set FixT of all fized points of T is nonempty.
Let {a,} C [0,a] be a real sequence, where a € [0,1]. Generate a sequence {z,} C X
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as follows: xo =x1 € X, and

Yn = ap + (1 —a)Txy,
Crp1={z € X | |lyn — 2l < llzn — 2},
Qni1 ={2€ X | (vn — 2,20 — Tn)},

Tnt+1 = PCn+1ﬁQn+1x0

for every n € N. Then {x,} is well defined and is convergent to Ppix7xo € FixT,
where Pk 1is the metric projection onto a nonempty closed conver subset K of H.

This method has been generalized in the setting of complete geodesic space; see [2]
for instance.

This paper proposes a new iterative scheme A-convergent to a fixed point of a given
mapping. The method is similar to the abovementioned CQ method; however, our
new method does not converge strongly. The notion of A-convergence was initially
introduced by Lim [4] and was intensively investigated by Kirk and Panyanak [3] in
the setting of geodesic spaces. It corresponds to the weak convergence on Hilbert
spaces. Therefore, our new result becomes a weak convergence theorem in the setting
of Hilbert spaces.

2 Preliminaries

Let X be a metric space. For z,y € X with [ = d(z,y), a geodesic vgy: [0,]] = X
is a mapping such that v;,(0) = x, 7,,(l) = y, and that d(yy(s),Vay(t)) = |s — 1]
for every s,t € [0,1]. If for all z,y € X, a geodesic v, exists, then we say X is a
geodesic space. In particular, if v,, is unique for each pair z,y € X, then we say X
is uniquely geodesic. In what follows, we only consider uniquely geodesic spaces.

If X is a uniquely geodesic space, then we can define a convex combination between
z,y € X with ¢t € [0,1] in a natural way. Namely, we define tz & (1 — t)y = 74, ((1 —
t)d(x,y)). By this definition, w = tx @ (1 — t)y is a unique point on the geodesic
segment [x,y] = V4, ([0, d(x,y)]) satisfying that

d(z, w) = d(Yay(0); Yay (1 = )d(z,y))) = (1 = t)d(z,y),
d(w,y) = d(Yay (1 = )d(z,9)), Yay (d(2,9))) = td(z,y)

for every x,y € X. A subset C of X is said to be convex if tz @ (1 —t)y € C for every
xz,y € C and t € [0,1].
A uniquely geodesic space X is called a CAT(0) space if the inequality

dtz ® (1 —t)y, 2)? < td(z,2)* + (1 — t)d(y, 2)* — t(1 — t)d(z, y)*

holds for every z,y,z € X and ¢ € [0, 1]. Further, a complete CAT(0) space is called
a Hadamard space.



Let {x,,} be a bounded sequence in a metric space X. Define a function g: X — R

by
g(z) = limsup d(z,, x)
n—oo

for z € X. An asymptotic center of {x,} is defined by a point zyp € X such that
g(xp) = infyex g(x). That is, it is a minimizer of g on X. We know that if X is
a Hadamard space, then there exists a unique asymptotic center of {z,}. We say a
bounded sequence {z,,} is A-convergent to xy € X if z is a unique asymptotic center
of any subsequence of {x,}. It is known that any bounded sequence in a Hadamard
space has a A-convergent subsequence. For more detail, see [3].

Let X be a metric space and T': X — X. The set of all fixed points of T" is denoted
by Fix T, that is,

FixT ={z€ X | z=T=z}.

A mapping T: X — X is said to be quasinonexpansive if FixT # () and
d(Tx,z) < d(z, z)

for every x € X and z € FixT. We say T is A-demiclosed if xy € FixT whenever a
sequence {z,} is A-convergent to xo € X and lim, o d(zy,,Tx,) = 0.

Let C be a nonempty closed convex subset of a Hadamard space X. Then, we know
that, for each z € X, there exists a unique y, € C such that

d(w,y:) = inf d(z,y).

Using this fact, we can define a metric projection Po: X — C by Po(x) = y, for
x € C. In a Hadamard space, a metric projection is quasinonexpansive and A-
demiclosed with Fix P = C.

3  Main result

In this section, we prove a A-convergence theorem of an iterative scheme generated
by a new type of projection methods similar to the CQ projection method.

Theorem 2. Let X be a Hadamard space and suppose that subsets {z € X | d(z,z) <
d(y,z)} and {z € X | d(z,y)?+d(y, 2)* < d(z,2)?} are convex for every x,y € X. Let
T: X — X be a quasinonexpansive and A-demiclosed mapping such that FixT # ().
Generate a sequence {x,} C X as follows: ©o = x1 € X and

Crny1 ={2z€ X [d(Txy,z) < d(zn,2)},
Qur = {z € X | dl@n—1,20)" + d(20,2)* < d(@n-1,2)°},

Tn4l = PC’n+1ﬂQn+1xn

for every n € N. Then {x,} is well defined and is A-convergent to z € FixT.
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Proof. We begin with showing that {z,} is well defined. To prove it, we define
C7 = @1 = X, and we show that z,, is well defined and FixT C C,, N Q,, for every
n € N by induction. Since z; is given and FixT C X = C'; N @, it holds for the case
where n = 1. Next, suppose that zj is well defined and FixT C Cy N Qy, for fixed
k € N. Let z € FixT. Then, since T is quasinonexpansive, we have

d(Tzy, z) < d(zk, 2).

It implies that z € Ck41 and hence FixT C Cy41 To show FixT C Qry1, let 2z €
FixT. Then we have z € Ci N Q by the assumption of induction. Since Ci N Qg
is convex and z = Po,ng,Tk—1, we have tz & (1 —t)z, € Cp, N Qg for t € 10,1[. It
follows that

d(xk_l,xk)Q <d(zp_1,tz® (1 — t):z:k)2 —d(zg,tzo (1 — t)ack)2
= d(zp_1,t2 @ (1 —t)zp)? — t2d(z, 1)?
<td(xp_1,2)? + (1 = t)d(xp_1,21)* — t(1 — t)d(z, 2)* — t3d(z, 21)*
=td(zp_1,2)° + (1 = t)d(xp_1,28)° — td(2, z1)?,

which implies that
d(zg—1,2) + d(zK, 2)* < d(T)-1, 2)°.

Thus we have z € Q41 and thus Fix T C Q1. Therefore, the sequence {x,,} is well
defined and FixT C C), N Q,, for every n € N.

Let p € FixT. Then, since the metric projection Pc
and p is its fixed point, we have

it 1NQny1 1S quasinonexpansive
d(Tn+1,p) = d(Pc, 1nQpir TnsD) < d(Tn,p)

for every n € N. It implies that a sequence {d(x,,p)} is nonincreasing and bounded
below, and thus it has a limit ¢, € [0, 00[. We also get that {z,,} is a bounded sequence
in X.

Since Tnr1 = Po,,1nQuiiTn € Cng1 N Qpyr and, Chyr N Qpyq is convex, for
t €10, 1] we have

d(xn; $n+1)2 = d(l‘n, Pcn+lan+1$n)2

< d(xp,trpe1 @ (1 — t)p)2
< td(Tn, ny1)” 4 (1= t)d(zn, p)* — (1 — t)d(2pg1,p)°.
It follows that d(zn,zn11)? < d(xy,p)? — td(zpe1,p)?. Letting t — 1, we have

d(xn;mn—l—l)Q S d(xnap)Q - d(xn-i-lap)Q

for every n € N. Letting n — oo, we get

0 < lim d(z,,Tne1)? < cﬁ — cf, =0

n—oo
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and hence d(z,,,z,+1) — 0 as n — oco. Since x,11 € Cpy1, we have d(Txy, Tpi1) <
d(zy, ,11), and therefore

0 S d(TIIJn,an) S d(Txnaxn—i—l) + d(xn—‘,—l;mn) S 2d(xnaxn+1) — 07

which implies d(T'z,, x,) — 0 as n — oco.

Let zp be a unique asymptotic center of {z,}. Let {z,,} be an arbitrary subse-
quence of {x,} and we show that its asymptotic center yq is identical to xg. Since
{zn,} is bounded, it has a A-convergent subsequence {w;} to wy € X. Since
lim; o0 d(Twj, w;) = 0 and T is A-demiclosed, we have wy € FixT. Using the
properties of the asymptotic center, we have

24 Ay 100} = o = Ji ey, o)

< limsup d(w;,yo) < limsupd(xn,, o)

Jj—oo k—o0

< limsup d(z,, , o) < limsupd(z,,xo)
k—o00 n— 00

< limsup d(z,,wp) = lim d(x,,w).
n—00 n—00

This implies

lim sup d(x,,, yo) = limsup d(z,,, o),

n—oo n—oo
limsup d(z,, , wo) = limsup d(z,, , yo)-
k—oo k—o0

and hence xg = yo = wg € FixT. Since any subsequences of {z,} have the same
asymptotic center xg, the sequence {z,} is A-convergent to xo € Fix T, which is the
desired result. O

In this result, we need to assume the convexity of two kinds of subsets of X;
{z € X |d(z,2) <d(y,2)} and {2z € X | d(z,y)? + d(y,2)? < d(z,2)?} for each
x,y € X. Notice that this assumption obviously holds for Hilbert spaces, however it
does not in general; see [1, 6].
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