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Abstract

Our aim in this note is to establish vanishing Morrey-Sobolev integrability
for Riesz potentials of functions in Morrey-Orlicz spaces. We discuss the size of
the exceptional sets by using a capacity and Hausdorff measure.

We also give Trudinger-type exponential Morrey integrability for Riesz po-
tentials of functions in Morrey-Orlicz spaces.

1 Introduction: Historical background

For 0 < a < n let us define the Riesz potential

Lf(r) = [ |z —y|* " fly)dy

RTL

for functions f € L (R™).
Sobolev inequality for Riesz potentials says that for p > 1

([ rser )" <o ([ swra) ",

where p* is the Sobolev exponent defined by
1/p*=1/p—a/n>0.
In view of Meyers [5, 6], if f € LP(R"), then

p* _

holds except for a set of capacity zero.
For this, it is shown that

| I pd =
T%|Bzrl/zr)| f | r=0

when z € R" and f € LP(R") satisfies
ap

.
lim ———— f)fF dy=0.
P IBEN Ja W)
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In what follows we extend this to the Morrey-Orlicz case.
If 1/p — a/n = 0, then Trudinger’s inequality says that

/ exp(|Lf (@) )z < o0
B(0,r)

for r > 0, where 1/p+1/p' = 1.
Our final goal is to discuss vanishing exponential integrability.

Throughout this note, let C' denote various constants independent of the variables
in question and C(a,b,---) be a constant that depends on a,b,---. Moreover, f ~ g
means that C~'g(r) < f(r) < Cy(r) for a constant C' > 0.

2 Preliminaries

2.1 Orlicz spaces

Consider a positive convex function ® on (0, co) satisfying
(®0) @(0) = }nl_I)I(l) O(r) = 0;

(®1) there exists a constant A; > 1 such that

O(2t) < A;®(t) whenever t > 0.

Note here that
(®2) t+— P(t)/t is increasing in (0, 00);
(®3) there exists a constant C' > 0 such that
P HA™) < CAD(t) for0< A< 1landt>0, (2.1)
where m is given by A; = 2™;
(®4) there exists a constant C' > 0 such that

O 1(2t) < CP(t) fort>0.

The typical example is :
®(r) = r’(log(c+1))%,
where p > 1, ¢ is a real number and ¢ > e is chosen so that
(1+loge)(p—1)+¢>0.

If &;(r) =rP(log(e+r))? with p > 1 and a real number ¢, then it may be replaced
by

Da(r) = [ {sup s(log(c + )7} dr,

Jo 0<s<t
which is convex; note further that ®; ~ &5 ~ P.
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2.2 Hardy-Littlewood maximal functions

Given ®(t) as above, the Orlicz space

1w = {1 € L) s [ (0l dy < oo

is a Banach space with respect to the norm

s =it {305 [ @l ay<1}.

In case ®(t) = tP,p > 1, L*(R") is denoted by LP(R™).
Consider the Hardy-Littlewood maximal function defined by
1
Mf(x) =sup = fly)|dy
= B Sy

for f € L] _(R™).

loc
Our fundamental tool is the boundedness of maximal operator. For this purpose,

we need the following condition: there exists a constant Ay > 0 such that
t
(®5) / B(s)/stds < As®(t) /1 for t > 0.
0
Under this condition, by using weak L' estimate in Stein [14, Chapter 1] and [7,
Theorem 1.10.2], we have the boundedness of maximal operator as in [9, Lemma 2.5].
LEMMA 2.1. There exists a constant C' > 1 such that
| M flpe@ny < C|lflle@ny
for f € Li _(R™).

loc

2.3 Almost increasing functions
A positive function F(r) on (0,00) is called if
(F0) there exists a constant C; > 0 such that
F(s) < CiF(t) for0<s<t.

A typical example is
F(t) = t*(log(e + 1))°
for a > 0 and a real number b.
We say that a function F' is almost decreasing if 1/F(+) is almost increasing, and
F' is almost monotone if F' is almost increasing or almost decreasing.
For inverse functions, it is convenient to see the following result.

LEMMA 2.2 (cf. [3, Lemma 5.1]). For a positive continuous function F on (0, 00)
satisfying (F0), set
F~Y(s) = sup{t > 0; F(t) < s}

for s > 0. Then:
(F1) F~'(-) is nondecreasing;

(F2) F(F~\(t)) =t fort > 0.



3 Integability for Riesz potentials in Morrey-Orlicz
spaces

In this section, we discuss integrability for Riesz potentials of functions in Morrey-
Orlicz spaces. For 0 < a < n, we define the Riesz potential I, f of order a by

Iof(z)= [ |z —y|* " f(y)dy

R"
for f € L] (R™) with

loc

[ @b wld < e, (31)

which is equivalent to I,|f| € Li..(R™) (see [7, Theorem 1.1, Chapter 2]).
Let k be a continuous function on [0, o) satisfying

(k0) k(0) = lim k(r) = 0;

(k1) k is almost increasing.
Let us consider a positive convex function ¥ on (0, 00) satisfying
(P0) W(0) = lim,_,o ¥(r) = 0;
(V1) ¥(2r) < LyY(r) for r > 0;
(UDk) U(t(k~1(D(t)™1))*) < Ly®(t) for t > 0,

where L; and L, are positive constants.
It is seen that U plays like the Sobolev conjugate of ®.
Note here that (V®k) is equivalent to

(DKL) U(r*d(k(r)™t)) < Lak(r)~! for r > 0,

where L3 is a positive constant.
Let us consider the norm

) k(r
1l meny = inf{A > 0 sup ﬁ / N COIE

r>0,zeR"
Note here that || f|| e.x®n) < 1 if and only if
k(r) /
SUD Bz (| f(y)])dy < 1. 3.9
r>0,z€R" |B(x77~)| JBen (| ( )|) ( )

THEOREM 3.1. In addition to the conditions on k, ® and ¥ mentioned above, further
suppose

(Pka+) roted=1(k(r)~1) is almost decreasing in (0, 00) for some 0 < & < 1.

Then there exists a constant C' > 0 such that

HIafHLq’*’c(R") < CHfHL‘I’#k(Rn)
for f € Li (R™) satisfying (3.1).

loc

EXAMPLE 3.2. Let ®(r) ~ rP(log(e +1))? for 1 < p < v/a , v < n and a real number
q, and k(r) =r". Set U(r) ~ (r(log(e + r))‘J/p)p", where 1/p, = 1/p — a/v > 0.
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4 Vanishing integrability for modified Riesz poten-
tials in Morrey-Orlicz spaces

Suppose there exist positive functions H, hy and hs on (0, 00) satisfying

(H1) lim H(r) = 0;

r—0

(H2) limy h(r)ha(r) = 0

=
—

=
=

(H3) ®(hy(r)t) < C—={D(t) + hao(r)} for t >0 and 0 < r < 1;

(H4) hi(r)@~" (h(r)™") < CO" (k(r)™") for 0 <r < 1;

H(r)
k(r)

(Pha) t*®~1 (h(t)~!) is almost decreasing in (0, 00).

(H5) U(t) < CU(hy(r)t) fort >0and 0 <7 < 1;

THEOREM 4.1. Let H, hy and hy be as above, and suppose further (Pka+) and (Pha)
hold. Let f be a function in L**(R™) satisfying (3.1). For zy € R", if

h(r) k(t) _
l%m (0 sup 2 1 CI)(|f(y)|)dy> =0,

<t<r,z€B(zo,r) |B( ) )| B(z,t)

then
lim / (|1,
lim |B 20 Jpon, V(| laf(2))dz

4.1 Example

EXAMPLE 4.2. Let ®(r) ~ rP(log(e+7))? forp > 1 andq > 0, k(r) =" withap < v <
n and h(r) = (log(e+1/r))~9 with ap < v; < v < n. Set U(r) ~ rP(log(e+r))®P/P,
hi(r) = r1=2/P(log(e + 1)) ~4? and H(r) = r¥1/P=2P (log(e + 1)) ~w»/P,

5 Trudinger exponential inequality for modified Riesz

potentials
We give Trudinger type exponential inequality for I, f when f is a function in L (R"™)
satisfying (3.1) and
/ (| (y))dy < 1. (5.1)
7”>0 I (z,r)
For simplicity set
(Iu]) 1 1L f(2)d
a x — T v o z Z.
B@R) | B(x, R)| Jp(.n



5.1 Log type functions
A function k on (0, 00) is called log type if there exists a constant C' > 1 such that
C7'k(r) < k(r*) < Ck(r) for r > 0.
It follows from the log type condition that k satisfies the doubling condition, that is,
C7'k(r) < k(2r) < CKk(r) for r > 0,

where C' is a positive constant. If § > 0, then, in view of [7], we can find a positive
constant C' = C'(J) for which

s'k(s) < Ctk(t) whenever ¢t > s > 0.

For the properties of the functions of log type, see e.g. [7, Section 5.3] and [11, Section
2].
In what follows, suppose

(K) r*®~1(k(r)~!) is almost monotone and of log type in (0, 00).
Consider positive functions ki, ko and k3 on (0, 00) of log type such that
(K0) ky is continuous in (0,00), and ks is increasing in (0, 00) and

k2(0) = lim ko (1) = 0;

r—0

(K1) either ki (£)®(t7%ky(t))™" < Ck(t)ki(t) for 0 <t < 1 or t "k (£)P(t k1 (¢))F <
Cky(1/t) for 0 <t < 1;

2
(K2) / k()¢ 1dt < Clo(1/7) for 0 < 1 < 1:

(K3) ks(r)™' < Cko(1/r) for 0 <r < 1 and k3(r) < C for r > 1;
(K4) O(r%ks(r)t) < Ck(r)®(t) for r,t > 0.

5.2 Trudinger exponential inequality for Riesz potentials

THEOREM b5.1. Let ky, ky and ks be as above. Then there exist constants ¢; > 0 and
¢ > 0 such that

1
|B(z, R)| B(z,R)
for 0 < R <1 and
1
|B(z, R)| B(z,R)

for R > 1, when z € R™ and f is a function in Li. (R™) satisfying (5.1) and (3.1).

kyt (1o f(2) = o f) Bapl/c1) dz < ¢

kyt (/fs(R)Uaf(Z) - (Iaf)B(:mR)l/cl) dz < ¢y



5.3 Examples and Corollaries

EXAMPLE 5.2. Let ®(r) ~ rP(log(e +7))? and k(r) =r" forp=v/a>1,0<v <n
and a real number q. Let

(log(e 4 1/r))~4/" when v < n and q < p,
ki (r) = ~1/p—q/p
log(e + 1/7)) when v =n and g <p—1;

log(e +1))™""  when q > 0,

(
oo (r) = { Elog e+r)) TP when v < n and ¢ < p,
(
(log(e + 1/r))?  when ¢ < 0.

(
(
(
log(e 4+ 1)) 779" whenv =n and g <p—1;
(
(

COROLLARY 5.3 (cf. [10, Theorem A], [12, Theorem A]). Let ®(r) ~ r?(log(e + r))?
forp=v/a>1,0<v<mnandqeR. If
| p/lp—9q) when v < n and q < p,
b= { p/(p—1—¢q) whenv=mnandq<p-—1,
then there exist constants ¢; > 0 and ¢y > 0 such that

0<R<1

B /B@,R) o (|Laf(2) = Uaf)peml/e)) dz < ey

for all z € R" and f € Li (R") satisfying (5.1) and (3.1).

EXAMPLE 5.4. Let
O(r) ~ rP(log(e 4 7))” (log(e +log(e +r)))*  when v < n and g <p q
" rP(log(e 4+ r))P~! (log(e + log(e +1)))? when v =n and q <p — 1, an

k(r)y=r"forp=v/a>1,0<v <nandq€R. Then
/2 (log(e + 1))~ (log(e + log(e + 1)) ~* when v < n and q < p,

-1
) ~ /7 (log(e 4 7))~ ®=D/? (log(e 4 log(e + 7)) " whenv =n, ¢ <p— 1.
Further let
k() = (log(e 4+ r71)) " (log(e + log(e + r~1)))~o/» when v < n and q < p;
(log(e +r~1))"*(log(e + log(e +r~1)))"V/P=9/P whenv =n and ¢ <p — 1,
(loglog(e + r))'~9/P when v < n and q < p;
(

~— —

fa(r) = {

and ks(r) = (log(e +r))"/P™ {

loglog(e + 7))\~ Y/P=4/P when v =mnand ¢ <p—1,
(log(e + log(e +1)))~9?  when q > 0,;

(log(e + log(e + 1/7)))¥?  when q < 0.
The double exponential integrability is derived in the following manner.

COROLLARY 5.5 (cf. [10, Theorem BJ, [12, Theorem B] ). Let
B(r) ~ { rP(log(e 4+ 7))? (log(e +log(e +7)))?  when v < n and q < p;
rP(log(e + r))P~! (log(e + log(e + 7)))? whenv =n and g < p—1
forp=v/a>1,0<v <nandq€ R. Then there exist constants ¢; > 0 and ¢y > 0
such that

sup ! expexp (|1af(2) — (Inf)arl/a)’) dz < ¢

0<R<1 |B(I, R) | B(z,R)

for all € R" and f € Li _(R") satisfying (5.1) and (3.1), where (3 is given as in
Corollary 5.3.



5.4 Vanishing Trudinger exponential inequality for modified
Riesz potentials

Let k1, ko and k3 be as above. Suppose further

(1) there exist Ky,a > 0 such that
kyt(r) < Kir* for 0 <r < 1;
(2) k(r) < Koh(r) for 0 <r < 1;
(3) H is an almost decreasing function on (0, c0) of log type such that

H(r) < Ks{r®ks(r)® '(h(r) ™)} for0<r<1.

Under those conditions we establish vanishing exponential integrability.

THEOREM 5.6. Let kq, ko, k3, h and H be as above. Let x € R" and f be a function

in L (R") satistying (5.1) and (3.1). If
h(r)
lim ————— f(y))dy =0, 5.2
WS B, B)] Jon, O(|f ()l (5-2)
then

R—0

it |B x, R |/ R) |I f(z) = (Iaf)B(x,R)D dz =0.

For an example, let A(r) = r”(log(e+1/r))® and H be an almost increasing function
on (0,00) of log type such that when ¢ > ¢ > 0,

H(r) < C{rks(n)@~ (h(r) ™)}
< C(log(e + 1/r))s/rta/r

when € > 0 > g,

C{rks(r)®*(h(r) )}
Clog(e +1/r)) =</

IA N

for 0 <r < 1.
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