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1. INTRODUCTION

For n € N, M,, = M,,(C) denotes the space of all n x n complex matrices. Let
A = (a;j) € M,,. The trace of A is the sum of the diagonal entries:

TI'(A) = zn: (077
i=1

A norm ||-|| on M, is said to be unitarily invariant if

Al = lvAV]

for all A € M,, and all unitaries U,V € M,,. Let A and B be Hermitian matrices in M,,.
The partial ordering A > B holds if A — B is positive semi-definite, or equivalently

¥ Ax > 2*Bx

for all vectors z € C".

In the commutative case, if A and B are Hermitian matrices, then e4*? = e4eB.
However, in the noncommutative case, it is entirely no relation between e4*? and e4e?
under the usual order. The celebrated Golden-Thompson trace inequality, independently
proved by Golden[5] and Thompson[13], says as follows:

Theorem 1. If A and B are Hermitian matrices in M,,, then
(1) Tr (e8) < Tr (e?e?).

Moreover, Hiai-Petz in [6] showed the following unitarily invariant norm version of
Theorem 1:

Theorem 2. If A and B are Hermitian matrices in M,,, then

® et < @ 2eme || for atp> 0
for every unitarily invariant norm ||-||, and the right hand side of (2) converges to H’eA’LB ‘”
as p 0. In particular,

(3) le** 2] < fleZePet 2| < flee”]| -

Let A and B be positive definite matrices in M, and « € [0, 1]. The weight geometric
matrix mean A f, B is deinied as

A lja B = A1/2<A71/ZBA71/2)0¢A1/2.

Ando-Hiai [2] showed the following complemented Golden-Thompson inequalities:
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Theorem 3. If A and B are Hermitian matrices in M, and o € [0,1], then
(4) H|(epA o 6pB)l/pm < H|6(1_Q)A+QBH|

for all p > 0 and the left hand side of (4) increases to ‘”e(l_”)A’LQB‘” as p 1 0 for any
unitarily invariant norm ||-||. In particular,

Tr (eP? 4, ?P)V/P) < T (044 9B)  for all p > 0.

Remark 4. If we put p = 1 and o = % in Theorem 3 and replecing A, B by 2A,2B
respectively, then we have the lower bound of the Golden-Thompson inequality (3):

lle* & 2l < fle** [l < fle*e”]|
for any unitarily invariant norm ||-||. In particular,
Tr (24 4 e*P) < Tr (e*5) < Tr (e?e).

To show the reverse of Theorem 3, we need some preliminaries. We present an important
constant due to Specht [12], who estimated the upper bound of the arithmetic mean by

the geometric one for positive numbers: For x4, ...z, € [m, M]
rTy+ T+t
(5) T ay < 2 = < S(h) /Ty T,
n

where h = % and the Specht ratio is defined by

1
(h —1)hn—T1
6 Sh) = ——"—"F—
(6) (h) gl
We note that the Specht theorem (5) means a ratio type reverse inequality of the arithmetic-
geometric mean inequality.

Now, in [4], we showed a noncommutative version of the Specht theorem (5):

(h#1) and S(1)=1.

Theorem 5. Let A be a positive definite matriz in M, such that 0 <m < A < M for
some scalars 0 <m < M and put h = % Then

(7) e(logAx,z) < <AI,.’13> < S(h)eﬂogAx,z)
holds for every unit vector x € C™.

We mention some basic properties of the Specht ratio S(h) in [3, Theorem 2.16, Theorem
2.17):

Lemma 6. Let h > 0 and o € R.
(i) S(1) =limy,_; S(h) = 1.
(i) S(h) = S(h™1).
(iii) A function S(h) is strictly decreasing for 0 < h < 1 and strictly increasing for
h>1.
(iv) limg_yo S(h®)V/® =1,
(v) limg oo S(R)YY = h for h > 1 and lim,_,o S(h)V* = h~! for 0 < h < 1.
(vi) lim,o K (h7, 2) = S(h®).

We showed reverses of the complemented Golden-Thompson inequality (4) due to Ando-

Hiai in terms of the Specht ratio in [11]:
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Theorem 7. Let A and B be Hermitian matrices such that m < A, B < M for some
scalars m < M, and let o € [0,1]. Then

® (et e < (e o ey

me1 aA+aBm < S(e p(M— m))

for all p > 0 and every unitarily invariant norm ||-||, and the right-hand side of (8)
converges to the middle hand side as p | 0. In particular,

(le** g 2l <) fle** 2] < S ) [|le* 4 2]

and
(TI‘ (€2A lj 623) S) Tr (6A+B> < S( 2(M— m))TI‘( 2A ﬂ 623).

The obvious generalization of the Golden-Thompson trace inequality (1), namely,
Tr(eA+B+C> S Tr(€A€B€C>

is not true in general. We would like to consider a k(> 3)-variable version of the Golden-
Thompson trace inequality and its complements.

One is to consider the Hadamard product instead of the usual product. For A =
(a;;), B = (b;j) € M, the Hadamard product is defined to be the entrywise product

AoB= (aijbij).
The following resilt due to Ando is already shown in [1]:

Theorem 8. Let Ay, ..., A, be Hermitian matrices, and o the Hadamard product. Then
et < [l oo V0

for some unitary U and every unitarily invariant norm |-||.

In the commutative case, we have

)

1/3
pATBHC _ LA B C _ (€3A€3Be30) /

that is, the right hand side is regarded as the geometric mean of €34, e3?, e3¢, Thus, the
other is to consider a k-variable geometric mean version instead of the matrix geometric
mean in Theorem 7.

In the next section, we will proceed with a discussion in this direction.

2. k-VARIABLE VERSION

First of all, we recall the k-variable version of the matrix geometric mean: We start
with the Karcher mean of positive definite matrices in M,,: In 2012, Lim and Pélfia [10]
established the formulation of the geometric mean for k£ (> 3) positive definite matrices
which is a nice extension of the matrix geometric mean in the Kubo-Ando theory [8]. They
showed that there exists the unique positive definite solution of the Karcher equation

k
(9) D wilog XTEAXTE =0

i=1
for given k positive definite matrices Ay, ..., Ay, where w = (w1, ..., wy) is a weight vector,
ie., wy,...,wp > 0 and Zlewi = 1. We say the solution X of (9) the Karcher mean

for n positive definite matrices A;,..., Ay and denote it by Gk (w; Ay, ..., Ax). In the
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case of k = 2, the Karcher mean Gk ((1 — a, a); A, B) coincides with the weighted matrix
geometric mean

Aty B=AY2(ATY2BAY2 AV for a € [0,1].

We list some properties of the Karcher mean which we need later, also see [9]:

(P1) Consistency with scalars: Gk (w; Ay, ..., Ag) = AT - - AZF if the A;’s commute;

(P2) Joint homogeneity: Gk (w;a1Ay, ... ,apAr) =ai* - a*Gx(w; Ay, ..., Ag);

(P3) Permutation invariance: G (Wo; A1), -- -, Aor)) = Gx(w;Aq, ..., Ar) where
W = (Wo(1), - - - ,Wo(k)) and o is any permutation;

(P4) Transformer inequality: T*Gk(w; Ay, ..., Ap)T < Gx(w; T*ALT, ..., T*AT) for
every operator 77

(P5) Self-duality: Gg(w; A7l ..., A7) = Gr(w; Ay, ..., A);

(P6) Information monotonicity: ®(Gk(w; A, ..., Ar)) < Gk(w; P(Ay), ..., P(Ag)) for
any unital positive linear map ;

(P7) AGH weighted mean inequality:

. 1
(Z%‘Ai_l) < Gi(w; Ar, .. Ag) < Z%‘Az‘-
i—1 '

(P8) Determinant identity:
k
det(Gr(w: Ay,..., Ap)) = [ ] det(4;)~.
i=1

Moreover, Yamazaki in [14] showed the following Ando-Hiai inequality for the Karcher
mean:

Theorem 9. Let Ay, ..., Ay be positive definite matrices and w = (w1, ..., wg) a weight
vector. Then

Gr(w:As,...,Ay) <I implies Gg(w:A},...,A%) <1 forallp>1.

By Theorem 9, we show a k-variable version of Theorem 3. Put |G| = |Gx(w : A1,..., Ar)|..,
where ||, is matrix norm. Since

GK((U . Al, e ,Ak) S ”GK((U . Al,. .. ’Ak)"oo’
it follows from (P2) that

Ay Ay

Crelw UL Iy}
“@E T Ta)

By Theorem 9, we have

i) ()
G w:( R, <I forallp>1
NN o)

and hence
Gr(w: AY, ... ,Ai) <|Gg(w: Ay, ... Ap)P|

oo *

Therefore we have

Grelw : AL, AN < |Gl Ar,..., A
4
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For 0 < ¢ < p, since p/q > 1, the fact above implies

HGK(W LAV Ay

G A A
Replacing A; by A?, we have

||GK(w DAV ,Ai)l/pHoo < HGK(w CAYL L ,Az)l/qu for all 0 < g < p.
Since Hiai-Petz in [7] showed the Lie-Trotter formula for the Karcher mean:

lim Gre(w: A%, ..., A/ = ewrlogAvttwrlog Ax |
q—0

as ¢ — 0 we have
”GK((U . Alf’ o 7AZ)1/pHoo < Hem log A1 44wy log Ag, Hoo '
By antisymmetric tensor technique and (P8), we have
|G rlw : AL, AP < [ on Arttonton du |

for every unitarily invariant norm |[|-|. See [2] for antisymmetric tensor technique. Hence
we have the following Golden-Thompson inequality for the Karcher mean due to Hiai-Petz
in [7]:

Theorem 10 (Hiai-Petz [7]). Let Ay, ..., Ag be positive definite matrices and w = (w1, ..., wy)
a weight vector. Then

(10) Tr[Gre(w : P, ePA)/P) < Ty[erittend]  for all p > 0
and the left hand side of (10) converges to Tr[e«1A1+-+wrd] g5 p | 0. In particular,
Tr[Gr(@: e, b)) < Tr[etrt 4],
where a weight vector w = (1/k,....1/k).
Remark 11. Theorem 10 is just a k-variable version of Theorem 3, that is, if we put
k =2 in Theorem 10, then we have Theorem 3.
Next, we show a k-variable version of Theorem 7. For this, we need the following

Lemma:

Lemma 12. Let Ay, ..., Ay be positive definite matrices such that m < A; < M for some
scalars 0 < m < Mand w = (wy, . ..,wy) a weight vector. Put h = % Then

k
(11) ZWZAZ < S(h)BZle w; log A;
=1

where the Specht ratio S(h) is defined by (6).

Proof. Put A = diag(Ay,...,Ay),y = (Vwiz,. .., Jwrz)? for every unit vector x € C".
By Theorem 5, since m < A < M, we have

(Ay,y) < S(h) elostow,
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Hence it follows from the Jensen inequality that

k
3 widy < S(h) Xt
i=1

O
Theorem 13. Let Ay, ..., Ay be positive definite matrices such that m < A; < M for
some scalars 0 <m < Mand w = (w1, ...,wk) a weight vector. Put h = % Then
(12) [ < syt Grew s e, et
for all p > 0 and every unitarily invariant norm ||-||, and the right-hand side of (12)
converges to the left hand side as p | 0. In particular,
flet =l < S Gk (@ e, et
where a weight vector o = (1/k,....1/k), and
Tr[et 4] < S(eMNTr[Ge (@ : b1, eF ).
Proof. By Lemma 12 and (P7), we have
Grlw: Ay, ... A) < zk:wiAi < S(h)eXiziwiloa Ai,
i=1
Replacing A; by e P4 for i = 1,...,k and p > 0, since e M < e7P4i < ¢7P™ it follows
that
Grlw:e Pl e Ph) < S(ep(M_m))eZéll —wipdi,
Taking the inverse of both sides, we have
Grlw:ePh e P 1> S(ep(M_m))_lezfﬂ“’ipAi
and this and (P5) imply
Xz wipdi < S(ePM=N Gy (w = P L ePAr)
for all p > 0 and there exists a unitary matrix U such that
(er—lwipAi)l/p < S(ePM=NYPU*Gre(w = €M, epa, )PU.
Hence we have
‘Hezi‘;l“’iAi < S(epM=mit/p |HGK(w cePA ,epA’“)l/pm
for all p > 0 and every unitarily invariant norm ||-||. O
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