NOTE ON LAYEREDNESS OF IDEALS OVER SUCCESSORS OF
SINGULAR CARDINALS

KENTA TSUKUURA

ABSTRACT. We show that there is no layered ideal over P\ for all regular
cardinals k < X if kK = uT for some singular p. We also give a model in which
[A]Ne+1 carries a S-layered ideal for some stationary subset S C .

1. INTRODUCTION
In [10], Kunen established

Theorem 1.1 (Kunen [10] for p = Rg, Laver). Suppose that j is a huge embedding
with critical point £ and p < k is regular. Then there is a poset P such that
P« S(k,j(k)) forces that u* carries a saturated ideal.

Here, S(k,A) denotes a Silver collapse. In [4], Foreman—Magidor—Shelah [4]
additionally proved that P * S (k,7(k)) forces u* carries a layered ideal if j is an
almost-huge cardinal with critical point x and j(x) is Mahlo. This P is a poset of
Theorem 1.1.

For the definition of layeredness, see Section 2. Layeredness is one of the strength-
enings of usual saturation. Indeed, layeredness lies between saturation and dense-
ness. The denseness of ideals is the strongest saturation property that we can
consider. Eskew pointed out

Theorem 1.2 (Eskew [3]). There is no dense ideal over u™ if u is a singular
cardinal.

If ;1 is a measurable cardinal and I is a saturated ideal over uT then, by using
Prikry-type forcings, we can force an ideal I generated by I is saturated and u
is singular. In [15], we proved that such ideals cannot satisfy the layeredness by
showing

Theorem 1.3 (Tsukuura [15]). Suppose that 2* = pt, p is measurable, and U is
a normal ultrafilter over p. For a normal, fine, exactly and uniformly p™-complete
AT -saturated ideal I over Z C P(X) (for some X with | X| =X > p),
(1) If Z C P.(X) and A\<" = X then Py IF I is not S-layered for all stationary
SCEY ..
(2) If Z gi[X]”, I is A\-dense, and \ is a successor cardinal then Py I T is not
S-layered for all stationary S C E§M+.

The goal of this paper is giving an improvement of Theorems 1.2 and 1.3 by
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Theorem 1.4. Suppose that 1 is a singular cardinal. For a normal, fine, exactly
and uniformly p*-complete A*-saturated ideal I over Z C P(X) (for some X with
X = A> p),
(1) If Z C P(X) then I is not S-layered for all stationary S C \¥.
(2) If Z C [X]"® and X is a successor cardinal then I is not S-layered for all
stationary S C .

This theorem ensures

Theorem 1.5. There is no layered ideal over P\ for all reqgular k < X if k = pu+
for some singular .

The structure of this paper is as follows. In Section 2, we recall the basic facts
of saturated ideals and saturation properties. We also introduce Foreman’s duality
theorem for Section 4. Section 3 is devoted to a proof of Theorem 1.4. The as-
sumption of (2) of Theorem 1.4 for A being a successor cardinal cannot be removed.
In Section 4, we give a model in which there is an inaccessible cardinal A such that
[A]®«+1 carries an ideal that is S-layered for some stationary S C .

2. PRELIMINARIES

In this paper, by x and A, we mean regular cardinals unless otherwise stated.
We use g to denote infinite cardinals. We use [9] as a reference for set theory in
general. First, we introduce the following theorem for Section 4.

Theorem 2.1 (Laver [11]). If u is supercompact then there is a poset P such that
1) PV,
(2) P IF u is supercompact.
(3) For every P-name Q with P I+ Q is p-directed closed, P * Q IF p is super-
compact.

We say that a supercompact cardinal y is indestructible if, for every u-directed
closed poset @, @ |- p is supercompact. If p is supercompact and x > u is huge
then we can force p to be indestructible without destroying the hugeness of .

2.1. Generic ultrapowers. In this section, we recall basic facts of saturated
ideals. For details, we refer to [5]. For an ideal I over P\, we always assume
that I is normal, fine, and s-complete. For a normal ideal I over a non-empty set
Z, by comp(I), we mean the least k such that I is not k*-complete.

Lemma 2.2. For a precipitous ideal I over a set Z and A € IT, the following are
equivalent:
(1) A forces crit(j) = k. Here, j denotes a P(Z)/I-name for the generic
ultrapower mapping.
(2) {B < A|comp(I| B) =k} is dense below A.
Here, I | A is an ideal I NP(A) over A.

We say that I is exactly and uniformly k-complete if comp(I | A) = & for all
A € I't. For an exactly and uniformly x-complete precipitous ideal I, the previous
lemma ensures P(Z)/I IF crit(j) = x. Note that every k-complete ideal over
Z C P, X( or [X]") is k-complete.



NOTE ON LAYEREDNESS OF IDEALS OVER SUCCESSORS OF SINGULAR CARDINALS 3

Lemma 2.3. Suppose that I is a normal, fine, exactly and uniformly x-complete
| X | T -saturated ideal over Z C P(X). Let j be a P(Z)/I-name for the generic
ultrapower mapping j : V. — M. Then the following holds:

(1) If Z C P.X and k = pt then P(Z)/I forces that j(k) = | X|*.

(2) If Z C [X]* then P(Z)/I forces that j(k) = | X| and j(kT) = | X|*.

Proof. Let G be a (V,P(Z)/I)-generic and j : V.— M be the generic ultrapower
induced by G. Let us show (1). We note XI"M NV[G] € M by Z C P, X.
Therefore there are no cardinals between |X|" and |X|* in M. By the |X|*-
saturation of I, | X|* is a cardinal in M. By {z € Z | |z| < k} € I*, we have

p < (X = XM = [id) M < i(k) < XTF

By the elementarity of j, j(x) is a cardinal in M. Therefore j(x) = | X|*.
For 2, we consider in the case of Z C [X]*. By {z € Z | |2| =k} € I*,

(X VI = [ XM = XM = [[id]] = j(k) < (IXM = (1X]F)VIEL
Again, in M, j(xt) = (| X|T)VIEL. 0

2.2. Saturation properties and duality theorem. For a poset P and stationary
subset S C ),
e Pis S-layered if {M € [Hy]<* | MNX €S — MNP < P} contains a club
for all sufficiently large regular 6.
e P is A-dense if P has a dense subset of size A

Lemma 2.4. For a stationary subset S C \ and a \-dense poset P, the following
are equivalent:
(1) P is S-layered.
(2) There is an C-increasing sequence (P, | oo < \) with the following proper-
ties:
(@) Ugen Pa is a dense subset of P.
(b) Py <P and |Pa| < X for all o < .
(c) There is a club C C X such that P, = Uﬂ<a P, for allVae SNC.
(3) There is an C-increasing continuous sequence (P, | o < \) with the follow-
ing properties:
(a) Uper Pa is a dense subset of P.
(b) Py, C P and |P,| < X for all a < \.
(c) There is a club C C X such that P, < P for alla € SNC.

Our definition of S-layeredness is due to Cox [1] but S-layeredness is induced by
Shelah. Shelah defined S-layeredness by (2) of Lemma 2.4.

For an ideal I over Z and a saturation property ¥, we say that I is W-ideal
whenever P(Z)/I satisfies V.

A Layered ideal is an ideal over P, A such that I is S-layered for some stationary
subset S C Eéf\ For an ideal I over P\, we say that I is strongly layered, dense,

and saturated when it is Eé;—layered7 A-dense, and A T-saturated, respectively. The
following implications are known.

Proposition 2.5. (1) Ewvery dense ideal is layered.
(2) (Shelah [4]) Every layered ideal is saturated.
(3) (Shelah [14]) Every strongly layered ideal is centered.
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Lastly, we introduce Foreman’s duality theorem for section 4.

Theorem 2.6 (Foreman [6]). For a normal, fine, exactly and uniformly p*-complete
AT -saturated ideal over Z C P(X) (for some X with |X| =X > p) and p*-c.c. P,
there is a dense embedding d such that:

d: PxP(Z)/T — B(P(Z)/Ix*jP))

w w
(p, 4  — 7(p)-|llid] € j(A)|

Here, 7(p) = (1,7(p)) is a complete embedding from P to P(Z)/I * j(P) and j :
V — M denotes the generic ultrapower mapping by P(Z)/I. In particular, P I+
P(Z))T ~B(P(Z)/I%j(P)/T“Hy). Here, Hy is the canonical P-name for a generic
filter.

3. PROOF OF THEOREMS 1.4

Lemma 3.1 (Sakai [13]). For a poset P and a regular cardinal k, if P is k-dense
then P I cf(k) = |K|.

Proof. Let {p¢ | £ < Kk} be a dense subset. For each P-name & for a cofinal subset
of k of size cf(k). Let us define f : k — & such that I~ fa = x.
By induction, we can define (e, pen | §,1 € K) such that
® pey < pe forces agy, € a.
o agy > sup{agy [ & <EAY <l
Since & is regular and a is forced to be cofinal, this induction is well-done.
Define f by f(ag,) = n. For each n < k and p, there is a ¢ < p that forces
n € f“a. Indeed, we can choose pe < p and pe, < pe. Dey forces flag,) =n € f“a,
as desired. g

From this, we have

Lemma 3.2. Suppose that P is A-dense, P preserves the cardinality of X\ and P
forces |\| = . Then y is regular.

Lemma 3.3. Suppose that P is S-layered for some stationary S C A*, P preserves
the cardinality of p and P forces |\| = u. Then p is regular.

Proof. Let f be a P-name for a bijection from A to . For each & < A, let Ag¢ be
maximal anti-chain such that every condition in 4, decides the value of f(€). Since
P is S-layered, we can choose an elementary substructure M < Hy such that

o {Pu, A\ fYUU; A € M.

o |M|=A\

e MNP<P.
Here, 6 is sufficiently large regular. By the choice of M, we can regard f asa
P N M-name for a bijection from A to p. Therefore M N P forces |A| = u. By
Lemma 3.2, u is regular, as desired. O

Proof of Theorem 1.4. (1) Suppose that Z C P,+(X) and I is S-layered for some
stationary S C AT. It is enough to prove that u is regular.
By Lemma 2.3, we can make a list of properties of P(Z)/I as

e P(Z)/I preserves all cardinal below .
o P(2)/I forces |\ = p.
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e P(Z)/I is S-layered.
Then p needs to be regular by Lemma 3.3, as desired.

(2) In the case of Z C [X]* and A is a successor cardinal, the same argument
works as well. O

4. LAYERED IDEALS OVER [A]Re+1

By Theorem 1.4, [A\|N~+! cannot carry an S-layered ideal if A is a successor
cardinal. This assumption is essentially needed. Indeed,

Theorem 4.1. If there is a supercompact cardinal below a huge cardinal then there
s a poset that forces that there is a \ with the following conditions:

(1) X is a Mahlo cardinal. In particular, A N Reg is stationary in A.
(2) [N]Re+1 carries a normal, fine, Ry, 1-complete A N Reg-layered ideal.

For simplicity, first, we will introduce a proof of Theorem 4.5 and give a proof.
After showing this theorem, we give an outline of a proof of Theorem 4.1.

Toward showing Theorem 4.5, we introduce some properties of Prikry forcing,
that was introduced by Prikry [12]. For a normal ultrafilter U over p, Prikry
forcing Py is []<“ x U ordered by (a, X) < (b,Y) iff a O b, an (maxb+1)=b
and (a\b)UX CY. It is easy to see the following.

e Py is p-centered, and thus, has the u*-c.c.

e Py forces cf(p) = w.
Since Py preserves all regularity (and cardinality) below p, in the extension by Py,
1 is a singular cardinal with countable cofinality. Preservation of regularity below
1 follows by

Lemma 4.2 (Prikry [12]). Suppose that U is a normal ultrafilter over p. For every
a € [u]<¥ and statement o of the forcing language of Py, there is a Z € U such
that (a,Z) decides 0. That is, (a,Z) I+ o or {(a,Z) I —0o.

For a detail, we refer to [8]. Here, we use Lemma 4.3 rather than Lemma 4.2.

Lemma 4.3. Suppose that U is a normal ultrafilter over u and A C Py is a
mazimal anti-chain below {a, X). Then there are n and X O Z € U such that
{(b,Y) € A||b| =n} is a mazimal anti-chain below {(a, Z).

Proof. Suppose that A is a maximal anti-chain below (a, X). For each n < w, by
Lemma 4.2, there is a Z,, € U such that (a, Z,) decides 3(b,Y) € G N A(|b] = n).
Z =XnN(, Zn works. O

Lemma 4.4. For posets P < Q, let U and W be a P-name and a QQ-name for a
filter over p, respectively. Suppose that Q|- U C W and W is a normal ultrafilter
over . If PI-U is an ultrafilter then P x Py < Q * Py,

Proof. We may assume that P and ) are Boolean algebras. For a maximal anti-
chain A C P * Py, consider P-name B such that P - B = {(a,X) | Ip €
G((p,{a, X)) € A)}. B is forced to be a maximal anti-chain. Tt is enough to
prove that @ IF B is maximal anti-chain below Py, For every p I+ (a, e ) € Py, be-
cause of P I B is maximal anti-chain below (a, #), there are p’ < p, n, and, P-name
Z such that p’ IF {(b,Y) € B| |b| = n} is maximal anti-chain below (a, Z) € Py If
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n < |a|, there is a Y such that p’ I (b, Y) e B’Aa\b CY). Here, b is the first n-th
elements in a. Thus, it is forced that (@, XNY) <(,Y),(a, X).

If n > |a|, we can choose p” < p’ and ag, ..., 0, _|q—1 With p” IF {a; | i <
n—lal} € [(XQZ) \ (maxa+1)]" “lal, Let c = aU{ay | i < n—la|}. p” forces that
(¢, Z) < (a, Z) meets with B. Because of |c| = n, there is a YV with p” I+ (¢, Y) € B.

In particular, it is forced that (c, Y NX) is a common extension of (c, Y) and (a, X),
as desired. [l

Note that the inverse direction of Lemma 4.4 holds. That is, if P* Py < Q * Py,
then U is forced to be an ultrafilter. Let us show

Theorem 4.5. Suppose that k is a huge cardinal and p < Kk is a supercompact
cardinal. Then there is a poset that forces that A is Mahlo, p is singular, and
7 = [)\]“'+ carries a normal, fine, u*-complete \-saturated ideal I such that

(1) I is AN Reg-layered.

(2) I is A-dense.

Proof. We may assume that p is indestructible supercompact by Theorem 2.1.
Let j : V. — M be a huge embedding induced by normal ultrafilter over [A]*.
Then Coll(p, < k) IF [A]" carries a normal, fine, and x-complete ideal I such that
P([§(k)]")/T ~ Coll(u, < j(x)) (See [5, Example 7.25]). Note that such A is Mahlo
(Moreover, it is weakly compact). Since Coll(u, < k) is p-directed closed, there is
a Coll(, < k)-name U for a normal ultrafilter over u. By Theorem 2.6, Coll(u, <

k) * Py IF P([(k)]")/T ~ Coll(p, < j(k)) *Pj(U)/G* H. Tt is easy to see that T is
forced to be j(k)-dense and j(x)-saturated. It remains to show that 7 is forced to
be XA N Reg-layered. We claim that it is forced that Coll(y, < &) * Py IF Coll(p, <
J(K)) * j(U)/G « H is (Reg N j(x))Y-layered.

For Coll(u1, < j(x))-name X for a subset of j, there is a maximal anti-chain A
such that every ¢ € Ay decides X € j(U). Let p(X) be the least a < j(x) such
that Ay C Coll(u, < @). For 8 < j(k), define p(3) < j(x) by sup{p(X) | X is
Coll(, < B)-name for a subset of u} U {2°}. Let C be a club generated by p. For
every a € CﬂReg, Coll(,u, < @) has the a-c.c. since « is inaccessible. In particular,
Coll(i, < ) I Uy, := j(U)NV[G4] is an ultrafilter. Here, Gy, is the canonical name
for a generic filter of Coll(i, < «). By Lemma 4.4, we have

Coll(u, < k) * Pyy < Coll(p, < a) x Py < Coll(, < j(K)) * P7y-

It is easy to see that Coll(u, < ) * Py, /G * H < Coll(u, < j()) * Pj(U)/G « H is
forced by Coll(u, < x)*Py; for each o € CNReg. Let P, be a Coll(y, < k)*Pp-name
for Coll(p, < ) * P, Then (P, | @ < j(k)) is forced to satisfy the condition of
(3) of Lemma 2.4. O

Lastly, we give an outline of a proof of Theorem 4.1.

Sketch of Proof of Theorem 4.1. We may assume that yu is indestructible supercom-
pact and 2¢ = p*. If u is measurable and 2# = u™ then, for every normal ultrafilter
U over p, there is a (M, Coll(u, < ju (1)) )-generic filter G. Here, ji : V — My
is an ultrapower mapping induced by U. Indeed, since Coll(ut, < jy(1))Mv has
the ju(p)-c.c. in My and |jp(p)<v®W| = |jy(u)| = pt, we can enumerate ev-
ery anti-chain of Coll(u*, < ju(u))™v belongs to My as (A, | a < pt). Since
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Coll(u™, < ju(u))Mv is pF-closed, the standard argument takes a filter G that
meets with any A,.

By using G, let us introduce a modification Py g of Py that was used in [7]. We
call this poset “Woodin’s modification”. Py ¢ is the set of all quadruplet (a, f, X, F")
such that

o a—= {Oél, ---7an—l} S [‘I/]<w.

o [ ={(fo, fn-1) € [Licn Coll(a, < a;t1). But ag and a,, denote w and
14, respectively.

e XecUand X C V.

o Fe[],ex Coll(a™, < p) and [F] € G.

Here, ¥ = {a < p | a is an inaccessible and 2* = at}. Pyg is ordered by
(a, f, X, F) < (b,g,Y,H) if and only if {(a, X) < (b,Y) in Py, Vi € [|b],|a|)(h(i) 2
F(B;)), and Vo € X (F(a) 2 H()).

Pu.g has properties that are similar with Lemmas 4.3 and 4.4. Importance is
being N, in the extension by Py g. Let U and G be Coll(u, < k)-names for a nor-
mal ultrafilter over p and a (M, Coll(u™, < ju(u))Mv)-generic filter, respectively.
Then we can show that Coll(y, < k) * Pyr.¢ is a required poset. O

Note that A is weakly compact in the models of Theorems 4.5 and 4.1. We note

Theorem 4.6 (Cox-Liicke [2]). For an uncountable cardinal X, the following are
equivalent:

(1) X is weakly compact.
(2) If P has the A\-c.c. then P is S-layered for some stationary S C \.

It was known that having the A-c.c. is equivalent to A-Knasterness if A is weakly
compact. In [1], Cox also showed that if P is S-layered for some stationary S C A
then P is A-Knaster.
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