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1 Introduction

The Chillingworth subgroup C'hg; of the mapping class group of a compact oriented con-
nected surface of genus g with one boundary component is defined as the subgroup of the
mapping class group of the surface, whose elements preserve nonsingular vector fields on
the surface up to homotopy. We determined the rational abelianization (which is natu-
rally isomorphic to the first rational homology group Hy(Chy1;Q)) of the Chillingworth
subgroup as a full mapping class group module. The rational abelianization is given by
the first Johnson homomorphism and the Casson—Morita homomorphism for the Chilling-
worth subgroup. In this paper, we present some obtained results and provide an outline
of the proof. For more details, refer to [10].

2 Preliminaries

Let Xg1 (resp. Y44, X4) be a compact oriented connected surface of genus ¢ with one
boundary component (resp. once punctured, no boundary and no puncture), and M,
(resp. M., M) be the mapping class group of the surface, which is defined by isotopy
classes of orientation preserving self-diffeomorphisms of the surface that are pointwise
identities on the boundary and the puncture of the surface. i.e., the mapping class group
is the quotient of the self-diffeomorphism group of the surface by the identity component.

M1 = Diftf (2, 1,05, 1) /Diffs” (2,1, 954,1)
Mg,* — Djff+(29,1, *)/Dlﬂ,a_(zg,l, *)
M, = Diff*(zgyl)/Diffg(ngl)

There exists natural homomorphisms My, — M,, — M, among these induced by
the natural quotient maps ¥,; — ¥, — 3, of the surfaces. For ¥, the mapping class
group naturally acts on the fundamental group m = m1(X,,) of the surface and the first
integral homology group H = H(X,1;Z) of the surface. The action r: My — Aut(r) of
the mapping class group of the surface on the fundamental group of the surface is called
the Dehn—Nielsen representation, which is known to be faithful by the Dehn—Nielsen
theorem. the action p: My; — Aut(H) of the mapping class group of the surface on



the first homology group of the surface is called the symplectic representation because
the action preserves the intersection form -: H @ H — Z. Therefore, we have p: M, —
Aut(H,-) = Sp(2g,Z). It is known that the representation p is surjective classically. The
kernel Z,; = Ker(p: My — Sp(2¢g.Z)) of the symplectic representation is called the
Torelli group. We summarize this in the following short exact sequence:

1 —=Ty1 — Mg1— Sp(29,Z) — 1.

Similarly, we can define Torelli groups for M, , and M,, and these are denoted by Z, .
and Z,, respectively.

The (first) Johnson homomorphism was initially defined by Johnson which is an
abelian quotient of the Torelli group and is equivariant under the action of the mapping
class group (see [6], [7]), it has been developed by Morita and formalized as a graded
Lie algebra homomorphism using the free Lie algebra generated by H (see [12], [13],
[15]). In this paper, we introduce the first Johnson homomorphism by following John-
son’s original procedure. The mapping class group naturally acts on the nilpotent quo-
tient of the fundamental group of the surface, denoted by N; := 7w /T';m, where {I';7}i>1
is the lower central series of 7, i.e., I'y = 7 and I';y; = [[';,7]. These actions define
a filtration of the mapping class group, denoted by Mg [i] = Ker(My; — Aut(N;)),
called the Johnson filtration. We have Mg, [1] = My, My1[2] = Z,1, and M,,[3] =
ICgJ = <Dehn twists along separating simple closed curves> where ICg,l is called the Johnson ker-
nel; shown by Johnson in [8]. For ¢ € Z,; = M,1[2] and v € 7, we have ¢(7)y ™ € Tomr
by definition. Therefore, this defines a homomorphism Z,; — Hom(H,'ym/I3m) =
H*2 N°H = H® \®H, where \* H is the exterior power of H. This homomorphism is
equivariant under the action of the mapping class group. He showed in [6] that this map is
surjective to the submodule A\® H = {zAyAz = 2@ (yA2)+y®(zAz)+20(zAy) | 2,1y, 2 €
H}y ¢ H® N\*H. We have 7,,(1): Z,; — A\® H and called the first Johnson homomor-
phism. For Z,,, we can define the first Johnson homomorphism 7,.(1): Z,, — A* H by a
similar argument. For Z,, with a few adjustments, we can define the first Johnson homo-
morphism 7,(1): Z, — A* H/H. These Johnson homomorphisms commute with natural
homomorphisms. We have the following commutative diagram.

Ig,l TgYI(ls) /\3H

L g, (1) L

Ty 5N H



3 The action on the set of homotopy classes of nonsingular vec-
tor fields and the definition of the Chillingworth subgroup

Let X be a nonsingular vector field on the surface g1 and Z(X, 1) be the set of homotopy
classes of nonsingular vector fields on the surface. The mapping class group acts on =(3, 1)
naturally. Let v be an oriented regular closed curve on the surface. The winding number of
v with respect to X denoted by wx () is defined by the number of times its tangent trans-
versely intersects with the section of the unit tangent bundle UT'Y, 1 — ¥, induced by X.
The winding number function wx is regarded as an element of the first integral cohomol-
ogy group H*(UTX, 1;Z) of the unit tangent bundle of the surface and these elements are
characterized by the preimage of 1 € H'(S';Z) under H*(UTX, 1;Z) — H'(S*;Z). Espe-
cially, the mapping ex: My — H (S, 1;Z) = H*, [ — ([7] = wx(foy) —wx(7y)) is well-
defined, and the map ex: My; — H* is called the Chillingworth homomorphism.
The Chillingworth homomorphism is not a homomorphism but a crossed homomorphism,
ie, ex(fg) = ex(g) + (g7")*ex(f). The kernel of the Chillingworth homomorphism
Ker(ey) == ex1(0) is the subgroup of the mapping class group whose elements preserve
X up to homotopy. In particular, the Chillingworth homomorphism ex depends on the
choice of a vector field X. Let us consider the restriction of the Chillingworth homo-
morphism to the Torelli group. The restricted Chillingworth homomorphism ex|z, , is a
homomorphism in the usual sense. Moreover, the restricted Chillingworth homomorphism
does not depend on the choice of a nonsingular vector field on the surface. The Chilling-
worth subgroup Chy  is defined by the kernel Ker(ex|z, ,) of the restricted Chillingworth
homomorphism, the Chillingworth subgroup of the once punctured surface Chg , is defined
similarly, and we define the Chillingworth subgroup of the closed surface as the image of
the Chillingworth subgroup under the natural homomorphism Mg; — M ., — M,.
Morita proved in [14] that H'(M,1; H*) = H'(M,1; H) is isomorphic to the infinite
cyclic group Z and the twisted 1-cocycle ey is a generator of H'(M,; H). Hence, the
Chillingworth subgroup is characterized by the kernel Ker(M,; ~ Z(X,1)) of the action
on the set of homotopy classes of nonsingular vector fields on the surface.

Although the proof is omitted, we have considered a generating system and obtained
the following proposition.

Proposition 1 For g > 3, Chillingworth subgroup Chg: is normally generated by one
element By = TA,éTvé_l as shown in the Figure 1 and the Johnson kernel Ky in the full
mapping class group, where T, is the Dehn twist along y. We have Chy1 = ({(Bo))Ky1.

<O oo

Figure 1: Simple closed curves 73, 3 defining By := T, Tvé_l




4 Representation theory of the symplectic group

If we take the tensor product with Q (we use the notation subscripted with Q), then we can
handle Sp(2¢, Z)-modules as representations of the rational symplectic group Sp(2g, Q).
By general representation theory, every finite dimensional polynomial representation of
the rational Symplectic group Sp(2¢,Q) is in one-to-one correspondence with that of
Sp(2¢; C) and sp(2¢g; C), and these are parametrized by Young diagrams.

As examples, we summarize the results of the irreducible decompositions of several
representations of the rational symplectic group that appear in the subsequent discussions.

Proposition 2 For g > 3, we have the following irreducible decompositions as Sp(2g, Q)-
modules

1. Ho = H = [1s,

2. N’ Ho = [1%]s, @ [1]sp

3. Ug = Im(7,1(1): Chyy — N\* H)g = [1%]sp
4 (N H/H)g = [1%]s,

5. XN\’ H/H;Q) = Hy(\* H/H; Q) = HX(U;Q) = Hy(U; Q) =2 A?[1%]s,
[0]sp ® [2%]sp ® [1]sp @[22 sp & [11]sp @ [1%5p (g9 > 6)
) [Olsp @ [2%]sp @ [1%]sp © [221%]sp @ [1Y]s (9=5) .
=) sy © [22sp @ [17]s & (22175, (g HanBD
[0sp @ [2%]sp (9 =23)

5 Casson Morita homomorphism

Morita introduced a certain map d: M, — Z related to the Casson invariant in [13].
Here, we only present the construction of d without delving into its relationship with the
Casson invariant. To define the Casson—Morita homomorphism d, we introduce some
2-cocycles of the full mapping class group M, ;. Let 7: M, x Mgy — Z be the Meyer
cocycle characterized by the signature of the 4-manifold defined by the surface ¥, bundle
over a pair of pants ¥ 3 with corresponding monodromies (see [11]). Next, let k: My —
H®™ be a crossed homomorphism representing a generator of H " My1; H () = 7, for
example the Chillingworth homomorphism £ = ex. We define the 2-cocycle c: M, x
Mgy1 — Z by c(p, ) = k(p) - k(1p~1) called the intersection cocycle. These 2-cocycle are
related by [—37] = [¢] € H*(M,1;Z), and for g > 3, H'(M,1;Z) = 0 holds. Therefore,
there exist a unique map d: M, — Z such that the coboundary dd coincides with ¢4 37
as 2-cocycles. We have the following by definition.

Proposition 3 For ¢, ¥ € M, we have
d(py) = d(p) + d(v) — k() - k(™) = 37(p,9).



By this equality, d = d|cp,, : Chgy — Z is a homomorphism on the Chillingworth sub-
group because the Meyer cocycle 7 is vanish on the Torelli group Z,: and the crossed
homomorphism £ is trivial on the Chillingworth subgroup Chy ;.

We studied the Casson-Morita homomorphism for the Chillingworth subgroup Chy
and determined the image and the kernel.

Proposition 4 The Casson—Morita homomorphism for the Chillingworth subgroup Chg
is an Mg 1-invariant homomorphism and the image Im(d: Chyy — Z) coincides with 8Z.

For the kernel Ker(d: Chy1 — Z), we omit the proof, a result of Faes in the case of the
Johnson kernel inspires our study (see [3]).

Theorem 1 The kernel Ker(d: Chyq — Z) of the Casson—Morita homomorphism for the
Chillingworth subgroup is given by the subgroup (T,) generated by Dehn twists along the
boundary of a genus one subsurface with one boundary of the surface as shown in Figure
2, the normal subgroup ((Bo)) <A M1 generated by a certain element By := T%Tyé_l as
shown in Figure 3, and the commutator subgroup [KCy1, My1] of the Johnson kernel and

the full mapping class group as follows:

Ker(d: Chgy — Z) = ((Bo))(T;)[Kg1, Mga].

Figure 2: the boundary curve 7] of a genus Figure 3: Simple closed curves 5, 74 defining
one subsurface with one boundary of the sur- By := Tﬁ,éTWé_l
face defining 7',

6 Main theorem

For the Torelli group, the rational abelianization is obtained from the first Johnson
homomorphism as a mapping class group module. More precisely, Johnson showed
in [9] that the abelianization of the Torelli group is isomorphic to the direct sum of
the target space of the Johnson homomorphism and some 2-torsion parts: the target
space of the Birman—Craggs homomorphism which is related to spin structures and the
Rokhlin invariant (see [1]). The first Johnson homomorphism for the Chillingworth
subgroup is one of the abelian quotients of the Chillingworth subgroup. However, the
Casson—Morita homomorphism exists which is a homomorphism on the Chillingworth
subgroup and nontrivial on the kernel of the first Johnson homomorphism. Therefore,
dD71y1(1): Chyy — (BZ®U) 2 Q =2 [0]sp, @ [1%]s, is a better lower bound for the rational
abelianization H(Ch,1;Q) = (Chy1)® ® Q of the Chillingworth subgroup.

To determine the rational abelianization of the Chillingworth subgroup, we consider the
inflation-restriction exact sequence of the rational homology for the short exact sequence



1 = Kg1 — Chgy — U — 0 induced by the first Johnson homomorphism for the
Chillingworth subgroup is as follows:

Hy(Chy1;Q) — Hao(U; Q) — 11(Ky1; Q) — H1(Chy1;Q) — H1(U; Q) = Ug — 0,

and we determine the structure of the image Im((7,1(1))+: H2(Chy1;Q) — Hy(U;Q)) of
the homomorphism between second rational homology group induced by the first Johnson
homomorphism and the U-coinvariant H;(/Cy1; Q)y of the rational abelianization of the
Johnson kernel Ky ; as M ;-modules. This exact sequence is equivariant under the natural
action of the mapping class group M, ;.

Hain studied the homomorphism (7,(1))*: H2(A\® H/H; Q) — H?(Z,; Q) between the
second rational cohomology group induced by the first Johnson homomorphism and de-
termined the kernel of this map as an Sp(2¢, Q)-module using representation theory.

Theorem 2 (Hain [5]) For g > 3, we have

Ker ((ry(1))*: H*(A* H/H;Q) = H*(Z,; Q) = [0]sp © [2]sp
as an Sp(2g, Q)-module.
Moreover, the dual of the preceding implies that the image (7,(1)).: H2(Z;; Q) —

Hy( /\3 H/H;Q) of the homomorphism between the second rational homology induced by
the first Johnson homomorphism is decomposed as Sp(2g, Q)-modules as follows:

Theorem 3 (Hain [5]) For g > 3, we have

[12]81) ® [2212]810 ® [14]51) & [16]81) (g > 6)
(0 T @)= N ) = (T
{0} (9=3)

as an Sp(2¢g, Q)-module.

We determined the problem of the Chillingworth subgroup version regarding the prob-
lems mentioned above. By the above, we can deduce [0]s,®[2%]s, C Ker((151)*: H*(U; Q) —
H?(Chy1;Q)). We showed that, in fact, nontrivial summand [12]s,, that does not comply
with the above further appears in the kernel for g > 3.

Theorem 4 For g > 3, we have

Ker ((1,,1(1)": H2(U:Q) = 1%(Chy Q) = {ﬂ &2 @ 1%y (92 4)

0lsp @ [2%]sp (9=3)
and
[2212]81) © [14]810 @ [1 ]Sp (g >6)
: : oy ) (22 © [1sp (9=15)
Im ((74,1(1))s: Ha(Chg1;Q) — Ha(U;Q)) = 9217, (o= 1)
{0} (9=3)



as Sp(2g, Q)-modules.

These are proven by constructing cycles called abelian cycles for the summands [221?]g,,,
[14]sp, and [19]g, and studying the bracket of the graded Lie algebra defined from the lower
central series of the Chillingworth subgroup for the summand [1?]g,,.

Next, to determine the structure of the U-coinvariant H;(KC,1;Q)y of the rational
abelianization of the Johnson kernel, we use the rational abelianization by Faes and
Massuyeau [4]. Here, we do not carry out the construction, but it is described by the
Casson-Morita homomorphism for the Johnson kernel d = d|x, ,: K41 — 8Z and a cer-
tain homomorphism (r§,r§): K,1 — T2(Ilg) x Ker(Trz) known as the truncations of the
infinitesimal Dehn-Nielsen representation for g > 6.

Theorem 5 (Faes—Massuyeau [4]) For g > 6, the rational abelianization of the John-
son kernel H,(ICy1; Q) as an Mgy1-module is given by the Casson-Morita homomorphism

d and the truncations of the infinitesimal Dehn—Nielsen representation (ry,75) as follows:

d® (ry,15): Kg1 — Q& (Ta(Hg) x Ker(Trs)) C Q& (Ta(Hy) x Ts(Hy)).

Remark 1 The action of the mapping class group My, on QS (T2(Hg) x Ker(Trs)) does
not factor through the integral symplectic group Sp(2g;Z).

From the above and direct computation, we obtain the following.

Proposition 5 The U-coinvariant Hi(Ky1;Q)y of the rational abelianization of the John-
son kernel is isomorphic to Q®Tz(Hg) = [0]sp D ([0]sp D [22]sp D [1%]sp) as an M, 1-module,
and the action of the mapping class group on it factors through the rational symplectic
group Sp(2g,Q).

Now, we handle the inflation-restriction exact sequence of the rational homology for the
short exact sequence 1 — K,1 — Chy1 — U — 0 to determine the rational abelianization
H(Chgy1;Q) of the Chillingworth subgroup. For g > 6, we have determined the image
Im(Hy(Chy1;Q) — A*U) = [221%g, @ [14gp @ [1%sp of the homomorphism between
the second rational homology group induced by the first Johnson homomorphism for the
Chillingworth subgroup, the U-coinvariant H;(KCy1; Q) = [0]sp @ ([0]sp @ [12]sp @ [1%]sp)

of the rational abelianization of the Johnson kernel and Uy = [1%]s,. By adding the
information obtained from the above to the long exact sequence, we obtain

y (19,1(1))x
Hy(Chy1;Q) ———= Hy(U;Q) — H(Ky1;Q)y — Hi(Chy1;Q) = Ug — 0.
(2°1%sp ® [1*]sp @ [1%sp) ([0)sp ® [2%)sp @ [1°]5p) “[0lsp [1%]sp
@ ([0]sp @ [2°]sp @ [1°]sp) ® [0]sp ® [1%]sp”

We note that the preceding argument alone does not determine whether Hy(Chy1; Q)
decompose into a direct sum of two summands [0]s, and [1%]s, as an M ;-module. How-
ever, we do have dimg H(Chy1; Q) = dimg([0]sp ®[1%]sp). Combining this with the lower
bound of the rational abelianization of the Chillingworth subgroup already obtained,
d®1y1(1): Chyr — Q ® Ug = [0]sp ® [17] gives the rational abelianization of the Chill-
ingworth subgroup. Therefore, this long exact sequence splits at the I{1(Chy1; Q) as an
M 1-module.



Thus, we conclude.

Theorem 6 For g > 6, the first rational homology (rational abelianization) and the first
rational cohomology of the Chillingworth subgroup Chy, for the genus g surface with
one boundary are induced by the Casson-Morita homomorphism and the first Johnson
homomorphism for the Chillingworth subgroup d ® 7,1(1): Chyy — 8Z ® U, and are as
follows:

(Chy)™ ©Q 2 Hy(Chyi Q) 2 [, 5 [0)sp

(Chgp)™ @ Q)" = H'(Chy1; Q) = [1P]s, & [0]s,

as M 1-modules.
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