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1 Introduction

This is a survey of four papers [13,14,17,18], with the last one being an upcoming paper.

The universal invariant [11, 12, 15] associated with a ribbon Hopf algebra is an in-
variant of framed links. It possesses a universal property over the Reshetikhin-Turaev
invariant [16], which means that we can recover the Reshetikhin-Turaev invariant when
a finite-dimensional representation of the ribbon Hopf algebra is specified. Note that the
Jones polynomial and the colored Jones polynomial are Reshetikhin-Turaev invariants as-
sociated with the quantum group of sl,. The universal invariant also provides important
quantum invariants of closed 3-manifolds such as the Witten-Reshetikhin-Turaev invariant
[16] and the Hennings-Kauffman-Radford invariant [5,9]. These invariants are obtained
from the universal invariant of framed links, where closed 3-manifolds are obtained by
performing surgery on framed links in S°.

The relationship between the universal invariant and 3-dimensional, global, topological
properties of links is not well understood, mainly because of the 2-dimensional definition
using link diagrams. In this article, we give three types of reconstructions of the universal
invariant using ideal triangulation of link complements, and give an extension of the
universal invariant to an invariant of integral normal o-graphs, which represent framed
3-manifolds. We expect that our framework will become a new method to study quantum
invariants in a 3-dimensional way.

Sections 2, 3 are based on [17]. In these sections, we explain the definition of the
universal invariant and the initial reconstruction of it. Sections 4, 5 are primarily based
on [13,14]. In Section 4 we describe how integral normal o-graphs can be used to represent
framed 3-manifolds, with a specific focus on their application to knot complements. In
Section 5 we define the invariant Z of closed framed 3-manifolds with the vanishing
first Betti number. We also discuss some connections between Z and the SO(3) WRT
invariant. Section 6 will be part of the upcoming paper [18], where we revisit the universal
invariant and present two alternative reconstructions using integral normal o-graphs. The
final section provides a summary of the main points covered in the survey.

2 Drinfeld double and Heisenberg double

In this section we follow the notation in [17].



2.1 Quasi-triangular Hopf algebra

Let (A,na,ma,e4,A4,74) be a finite dimensional Hopf algebra over a field k, with k-
linear maps

na: k— A,
ea: A=k,
ma: AR A — A,
Ap: A= AR A,
Ya: A— A,

which are called unit, counit, multiplication, comultiplication, and antipode, respectively.
For simplicity we will omit the subscript A of each map above when there is no confusion.
Set A°® = 70 A and m® = mor, where 7 is the symmetry map such that 7(a®b) = b®a
for a,b € A.

For distinct integers 1 < j1,...,0m <land 2 =) 21 ® - @ x,, € A®™, we use the
notation

:E.gll)]m = Z('rl)]l e ('xm)jm € A®l7 (1)

where (x;);, represents the element in A®" obtained by placing z; on the j;th tensorand,

ie., 1
(%)ji:l@"'@l’i@“‘@la

where z; is at the j;th position. For example, for z = > 21 ® 22 ® x3, we have xé% =

> xo ® x3 ® x1. Abusing the notation, we will omit the superscript of xgll)n_jm as Tj,. .-
A quasi-triangular Hopf algebra (A,n,m,e,A,~, R) is a Hopf algebra (A,n,m,e, A, )
with an invertible element R = > a ® 3 € A%®? called the universal R-matriz, such that

AP (z) = RA(z)R™" for z € A,
(A ® 1)<R) = R13R237 (1 & A) (R) = R13R12.

A quasi-triangular Hopf algebra has a special element

u=) (Ba €A
which gives the square of the antipode by conjugation
7#(2) = uru™ (2)

for z € A.

2.2 Drinfeld double and Yang-Baxter equation

For any finite dimensional Hopf algebra with invertible antipode, the Drinfeld quantum
double construction gives a quasi-triangular Hopf algebra [4]. In this section, we follow
the notation in [7].



Let (A,n,m,e,A,~,) be a finite dimensional Hopf algebra with invertible antipode,
AP = (A, n,m°, e, A,y 1) the opposite Hopf algebra and (A%)* = (A*, e*, A%, n*, (m°)*, (v~1)*)
the dual of the opposite Hopf algebra. For simplicity, we set
y=q"

In what follows, for x € A or x € A*, we use the notation
A(z) = Z @’
(A 1DA(z) = Z:c’ ®2" ®x".
For f € A*, we have
(M) (f) = A®P(f) =D f'® [
There is a unique left action
AR (AP) = (AP)", a® fra-f,
such that
o foa) =) (f.3(a")wd),

for a,z € A and f € (A°)*, which induces the left A-module coalgebra structure on
(A°P)*. Also, there is a unique right action

A® (AP)" — A, a®fr—>af,
such that

f_zf ///

for a € A and f € (A°)*, which induces the right (A°?)*-module coalgebra structure on
A.
The Drinfeld double

D(A) = ((A°P)" @ A, npcay, mp(ay, €p(a), Ap(ay, Yp(a), R)

is the quasi-triangular Hopf algebra defined as the bicrossed product of A and (A°P)*. Its
unit, counit, and comultiplication are given by these of (A°)* ® A, i.e., we have

N4y (1) = Nawyea(l) =1®1,
epa)(f ® a) = e(am)-pa(f ® a) = f(1)e(a),
AD(A)(f@ ) A(AOP *QA f® Zf”@a ®f ®CL”

for a € A and f € (A°P)*. The multiplication is given by
mpw (f ©a) @ (g2 b)) =>_ f(d g" a""'b (3)
_ Z fg /// ® CL”b (4)

n [7], he uses the notation A°P(f) =3 f' ® f".



for a,b € A and f,g € (A°)*, where the question mark ? denotes a place of the variable.
Its antipode is given by

N AT E

forae Aand f € (AOp)*.
Fix a basis {e,}acz of A and its dual basis {€*},cz of A*. The universal R-matrix is
defined as the canonical element

R= Z 1®e,) @ (e?®1) € D(A) ® D(A).

2.3 Heisenberg double and pentagon relation

Let A be a finite dimensional Hopf algebra with an invertible antipode as in the previous
section. The Heisenberg double

H(A) = (A" ® A, 1), M)
is the algebra with the unit ny4)(1) = 77A*®A(1) = 1® 1 and the multiplication
mu ((f @) @ =2 _foCd)@d", (5)
for a,b € A and f,g € (A°P)*.
Proposition 2.1 ( [6, Theorem 1]). The canonical element

S=> (18e) @ (" ®1) € H(A) @ H(A)

satisfies the pentagon relation

512513523 = S93512 € H(A)®3~ (6)

2.4 Drinfeld double and Heisenberg double

The Drinfeld double D(A) can be realized as a subalgebra in the tensor product H(A) ®
H(A)P of the Heisenberg double H(A) and its opposite algebra H(A)° as follows. 2

Proposition 2.2 ([6, Theorem 2] [17, Theorem 3.3]). There is an algebra homomorphism

¢: D(A) = H(A) @ H(A) (7)
defined by

¢ = My o (1N Mo 1)*) o (107 ®@1®7) o (AP ® A),
i.e., we have
s(fex) =Y (7 () A"V @ @7 () ®y(a")
= (L e @7 (1) @),

for f e A* and x € A.

2In [6] he uses H(A*) instead of H(A)°P.




Proposition 2.3 ([6, Proposition 5]). We have
¢P*(R) = 57,51395%; € (H(A) @ H(A)™)™. (8)
Here we set
§=>(10e)® (" ®1) €HAPRH(A),
S"=) (1®e) @ (" @1) € H(A)@H(A),
S=) (10é&) @@ ®l) €HA)®HA)™,

where €, = Y(eq), € = 7*(e).

3 Universal invariant

We continue to follow the notation in [17]. A tangle means a proper embedding of a
compact, oriented I-manifold in a cube [0,1]3, whose boundary points are on the two
parallel lines [0, 1] x {0,1} x {1/2}. A tangle diagram is a diagram of a tangle obtained
from the projection p: (z,y,2) — (z,y,0) to the (x,y)-plane. A framed tangle is a
tangle equipped with a trivialization of its normal tangent bundle, which is presented in
a diagram by the blackboard framing.

3.1 Regular isotopy

In what follows we will consider regular isotopy refinement of the universal invariant.
Regular isotopy [8] is the equivalence relation of tangle diagrams generated by only Rei-
demeister II and III (and planar isotopy). The winding number and framing are invariants
under regular isotopy, and conversely, the regular isotopy class of a diagram is determined
by its winding number and framing [19]. In particular, for braid diagrams, regular isotopy
classes correspond to isotopy classes.

3.2 Universal invariant

The universal invariant [11,12,15] is originally defined as an invariant of framed tangles
using a ribbon Hopf algebra. In this article, we consider a regular isotopy version of
the universal invariant, which enables us to use a quasi-triangular Hopf algebra instead
of strictly requiring a ribbon Hopf algebra. To obtain the original definition from the
modified one, we can adjust the differences by multiplying the appropriate powers of the
ribbon element, provided that the quasi-triangular Hopf algebra satisfies the additional
condition of being a ribbon Hopf algebra.

For the sake of simplicity, we define the invariant for (1,1)-tangle diagrams and the
Drinfeld double D(A). We can extend the definition to more general cases in a similar
way to the original definition of the universal invariant.

Let T be a (1, 1)-tangle diagram. We define the regular isotopy version of the universal
invariant Jr(T, D(A)) € D(A) in three steps as follows.



Step 1. Choose a slice diagram. We assume that the tangle diagram 7" is obtained
by pasting, horizontally and then vertically, copies of the fundamental tangles depicted

in Figure 1.
\\ /\/ = N\

Figure 1: Fundamental tangles, where the orientation of each strand is arbitrary.

Step 2. Attach labels. We attach labels on the copies of the fundamental tangles in
T, following the rule described in Figure 2, where each ' should be replaced with ~ if the
string is oriented upwards, and with the identity otherwise. We do not attach any labels
to the other copies of fundamental tangles, such as a straight strand or a local maximum
or minimum oriented from right to left.
(v ®)(R)

XK U A

U
(Y @) (R
Figure 2: How to place labels on the fundamental tangles.

Step 3. Read the labels. We define Jg(T, D(A)) as the product of the labels on T,
where the labels are read off along T" reversing the orientation, and written from left to
right. The labels on the crossings are read as in Figure 3.

(v @ 7))
y s 7@ \//ws)
N N

X - = v’(a)X’(ﬁ)

(v @9 )R

Figure 3: How to read the labels on crossings, where R™' =3 a~ ® 8.

Then Jg(T,D(A)) is an invariant under Reidemeister II and III, and thus defines a
regular isotopy invariant of tangle diagrams.

For example, for the (1, 1)-tangle diagram 7y, shown in Figure 4 whose closure is the
figure eight knot, we have

r(T41) Z’Y rBz v(a; Blakﬁj iy (Br)v(au), 9)



(1ey)R™!

(v®1)R™!
(1@v)R

(Yo R

h

Figure 4: Ty;.

where we use notations R =Y «; ® 8 and R™! = a; ® 5;.

3.3 Reconstruction of universal invariant version 1

We reconstruct the image of Kashaev’s embedding ¢ of the universal invariant Jx using
the Heisenberg double.
In what follows, for simplicity, we use the notation

fr=fRre A"® A,

for f € A* and x € A. In particular we have
S:Ze“@)ea, S':Zé“@)ea, S”:Ze“@)éa, S = €' ® é,.
We denote their inverses by

Zua Qut=S5"= Z’y(ea) ® e, Zﬂa Rut = (9= Zv(éa) ® e,
Zuam = (8") Zm LDt @t = (8 =) (@) ®e

a

Let T be a (1, 1)-tangle diagram. We define an element J5 (T, H(A)) € H(A) @ H(A)°P
by modifying the definition of Jz(T', D(A)) as follows.

We duplicate T" and thicken the left strands following the orientation, and denote the
result by d(T'). See (a), (b) in Figure 5 for an example. Then we attach labels on crossings
as in Figure 6, where each 4" and each (3*)" should be replaced with v and 5*, respectively,
if the string is oriented upwards, and with the identities otherwise. Then we define the
first and the second tensorands of Jy (7, H(A)) as the product of the labels on the thin
and the thick strands, respectively.



q

(a) (b) (c)

Figure 5: (a) Tu1, (b) d(T41), (c) Parameters for d(Ty1).

OEFE)NS), (e F)NS"), (e F))S)

X 7 X
o0 X X

(@ F))ST (Y @GS (@ (TS, (Y @ )T

Figure 6: Labels on crossings.

For the example with Ty;, with the parameters as in Figure 5 (¢), we have
J;%(T‘llﬂfH(A)) = Z ’7*(ulc)’7* (uid)’)/(ujd)’y(u] )elbelcekaekb
TastbyicyidyJasgbsdesddKasks ke kdlaslp,le,ld
a5 (7 e )
® 7 (@ )y (@' )y (. )y (g, )" e ey, e,
X W, 0, v (€5) 7 (€ )y (@, ) ().

Observe that in the definition of Jg, we attach u and u~! on \_ and /M, respectively,
while in the definition of J}, we attach no elements on the corresponding image in d(7').
Because we would like to make correspondence between Jg and Jj, at each fundamental
tangle, we adjust the difference by creating corresponding elements to u® as follows; Let

T« be the diagram obtained from 7" by replacing each of /" and \_/ with Q and 6,
respectively. The following result is equivalent to the restriction of [17, Theorem 4.1] to

8



(1, 1)-tangles, which was stated with the universal invariant of framed tangles.

Theorem 3.1 ([17]). We have
60 Jn(T. D(A)) = Jp(T(c) H(A)) € H(A) & H(A)™.

Proof. 1t is enough to show

(1) U= JR(éu D(A)), ut = JR(Qv D(A)>7
(2) ¢®2 o Jr(c, D(A)) = Jg(c, H(A)) for each crossing c.

(1) is straightforward.
We prove (2). Let ¢, (resp. ¢_) denote a positive (resp. negative) crossing with strands
oriented downwards. We have

¢®% o Jp(cy, D(A)) = ¢®2(R)1231 = 514513545,

= Z Cath @ Eqbe @ €’ef @ 8% = Jp(cy, H(A)),
a,b,c,d

¢%* o Jp(c—, D(A)) = ¢** (R ") 1231 = (Shs) " (Saa) " (S13) (1))~

= Z Uty ® Uallg @ uu’ @ 1 = Jh(c_, H(A)),
a,b,c,d

see Figure 7. For other crossings, the assertion follows similarly from

¢*? o (yp(a) ® 1)(R) = Z Y(ee)v(ea) @ 1(E)7(Ea) @ e'e” @ e,
a,b,c,d

¢%% 0 (1@ 1) (R) = Y _ eae, ® éaée @ 7 (V)7 (e*) @ 7 (€°)7°(e"),

a,b,c,d
6% 0 (Yp(ay @ (R = D y(ua)y(tta) © (@e)y (i) ® ue® @ @',
a,b,c,d
$% 0 (1@ 1pw)(R7) = Y uptiq ® diafiqg ® 7 (u)7" (u?) @ 3" (@) 7" (@),
a,b,c,d
which completes the proof. (]

4 Integral normal o-graphs and framed 3-manifolds

In this section we follow the notation in [14]. The content of Section 4.4 will be included
in the upcoming paper [18].
4.1 Integral normal o-graphs

A normal o-graph is an oriented virtual link diagram. When we refer to a crossing, we
mean a real crossing.



Figure 7: Labels on the colored diagrams d(c4) associated to positive and negative crossings c+.

An integral normal o-graph is a normal o-graph with an integer weight attached on each
edge. Here, an egde means a path between real crossings. We consider integral normal
o-graphs modulo Reidemeister type moves in Figure 8, and denote the set of equivalent

o | [-Q 3%

Figure 8: Reidemeister type moves.

4.2 Integral 0-2 move, integral MP-move and H-move

We define the following three types of moves on ZG and denote by ~ the generated
equivalence relation.

e integral 0-2 move (Figure 9)
e integral MP-move (Figure 10)
e H-move (Figure 11)

Q] o e
(

Figure 9: Integral 0-2 move.

10
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Figure 10: Integral MP-move.

b 1\/1 b 1\\/1
AN AN / /
g -1 -1 -1
Figure 11: H-move.

Here, in Figure 10, the orientations of the non-oriented edges are arbitrary if they match
before and after the move. If there are multiple weights on an edge after the move, the
weights should be added in the additive group Z.

4.3 Integral normal o-graphs and framed 3-manifolds

Roughly speaking there is a good subset FZG C ZG consisting of framed integral normal
o-graphs, which represents equivalent classes of closed framed 3-manifolds, i.e., we can
construct a surjective map

(I)fram: fzg — Mframa

11



where M .41, is the set of equivalent classes of closed framed 3-manifolds.

We give a rough explanation of the construction of ®.,,. Please refer to [2,14] for the
details. Each crossing of a normal o-graph corresponds to a ideal tetrahedron with ordered
vertices, which we call a branched ideal tetrahedron. The order of the vertices gives a non-
vanishing vector field inside the ideal tetrahedron, and these ideal tetrahedra are attached
along edges of a normal o-graph so that the vector fields are attached continuously. If the
boundary of the resulting 3-manifold is a single S? and the vector field at the S? is trivial
(this condition is included in “good” property of FZG), we can cap this S? by a 3-ball
with a trivial vector field. This results in a closed 3-manifold with a non-vanishing vector
field, which is referred to as a closed combed 3-manifold.

A framing of 3-manifold is a trivialization of the tangent bundle, which is a triple
(v1, v2,v3) of independent vector fields. The first vector field is given naturally by the
combing structure induced by normal o-graphs, and the second vector field is constructed
by the integer weights on edges; we construct the second vector fields as a section of the
plane bundle which is orthogonal to v;. From now, we use the terminology of dual spines
of ideal triangulations. On each 0-cell, which in dual corresponds to a ideal tetrahedron,
we can take a kind of “standard” section, and on each 1-cell we take the section specified
by the rotation number between two 0-cells which bound the 1-cell. To extend it to 2-cells
we meet an obstruction since 71(S1) # 0, and the “good” property of FZG ensures that
the obstruction vanishes. Thus we can extend the section to 2-cells and the resuld is
unique since m(S?) = 0. By my(S?) = m3(S') = 0, we can extend it uniquely to 3-cells,
which is the 3-ball we cap on the single S? boundary.

Especially if a manifold has the vanishing first Betti number, the correspondence is
one to one.

Proposition 4.1 ([14, Proposition 4.1]). Let MY, ., C M ram be the subset consisting

of closed framed 3-manifolds with the vanishing first Betti number, and FIG® C FIG the
inverse image of MY, 0y ®pam. The restriction of ®pem induces a bijection

q)]qmm: ‘FIQO/ ~ = M;‘)mm‘

Example 4.2. Figure 12 shows S® with the framing f which extends the combing induced
by the Hopf fibering, and lens space L(2,1) with the framing [’ which extends the canonical
combing induced by its Seifeld fibered structure.

S3 L(2,1):
0o -1

Figure 12: Framed integral normal o-graphs representing (S*, f) and (L(2,1), f').

Remark 4.3. Benedetti and Petronio (2| showed that “good” Zs-weighted normal o-
graphs, modulo a specific equivalence relation, can represent framed closed 3-manifolds in
a bijective manner, without imposing any conditions on the first Betti number. However,
we still require Proposition 4.1 because we intend to use integer weights in the construction

12



of the invariant. These integer weights are closely related to the powers of the antipode of
the Hopf algebra, as explained in Section 5.

4.4 Knot complements as framed 3-manifolds

A combed 3-manifolds with concave boundary [3] is a 3-manifold M with a non-vanishing
vector field v on M such that if v is tangent to OM it is in a concave fashion. We can
extend the construction of closed framed 3-manifolds in the previous section to any framed
3-manifolds which come from combed 3-manifolds with concave boundary. In particular,
we can consider knot complements within this framework. In this section we construct
an integral normal o-graph from a knot diagram, which presents a framing structure on
the knot complement in R? x I. By using this framework, we can study new aspects of
quantum invariants.

Let K be a slice diagram of a knot. We construct an integral normal o-graph ¢ o §(K)
in two steps as follows.

Step 1. Duplicate and reverse the diagram. Let 6(K) be the diagram obtained by
duplicating K and thickening the left strand following the orientation, and then reversing
the orientation of the thickened strand.

Step 2. Attach integral weights. We define the integral normal o-graph ¢ o §(K)
by attaching integral weights to the edges of §(K) as shown in Figure 13, where the
sign (positive or negative) of each crossings is arbitrary. For other fundamental tangle
diagrams, the weights are uniquely determined in such a way that the result is invariant
under planar isotopy.

XY AY A

Figure 13: Integral weight put on the fundamental tangles.

Theorem 4.4. 10 §(T") modulo ~ is a regular isotopy invariant.

Proof. We can show the invariance under RII by performing a sequence of four pure
sliding moves and their inverses [2, Figure 4.7], while taking the framing into account.
The invariance under RIII can be shown by a sequence of eight integral MP moves and
some pure sliding moves. O

Note that the distinction between thin and thick strands in §(K’) is only used to define
the integral weight of ¢ o §(K). The underlying diagram of 6(K) is a normal o-graph,
which provides a combing structure on the knot complement in S?® minus two points. To
construct the framing, we introduce a second vector field that is tangent to the 2-cells,
following the procedure described in Section 4.3. However, in this case, we do not cap the
boundary as we did for closed 3-manifolds. In fact, the 2-cells in this context correspond
to the crossings, edges, and regions of the knot diagram K. With the exception of the
outermost region, these 2-cells admit a framing. So, we puncture the outermost region

13



and obtain the framing in the knot complement in R? x I. Indeed, this setting is consistent
with the fact that the integral normal o-graph o d(K) is a regular isotopy invariant of K.
In this context, strands of the knot diagram in R? are not allowed to go through infinity,
ensuring that the construction remains well-defined.

Remark 4.5. We can extend § and ¢ to functors

0: DT,

t: D' = 1ID,
where D is the category of tangle diagrams, D' is the category of 2-colored (by thin and
thick) tangle diagrams, and ID is the category of integral normal o-tangles. This means
that we can extend 1 to 2-colored diagrams which does not necessarly come from knot
diagrams. There is the forgetful functor from D’ to the category of normal o-tangles by
forgetting the distinction between thick and non-thick strands. Conversely, the category

D’ contains the category of normal o-tangles as a subcategory in two ways depending on
the choice of thin or thick.

5 Invariant of framed 3-manifolds

We continue to follow the notation in [14].

5.1 Pivotal like element
Set
G= Zeiej ® S~ (e;)S%(ei) € H(A),
i.j
which is an analog of a pivotal element in a Hopf algebra, i.e., we have
0%(z) = GaG™', x € H(A) (10)

for © =y ®@~71: H(A) — H(A) being an analog of the antipode.
Lemma 5.1 ([18]). We have

S © 1) 6 B = (677 ©19) 5 6(R),

S (1o ") R) = (19 @ (G)) b 62(R™).
where > is the action by conjugation.
Proof. We have the assertion by (2), (10), and

¢®2(7]2372A) ® 1)(R*) 182" 1®4) $°2(R*)

(@72)82 g 19%)482(REL),

190 ® (v ® 1)) #22 (R
192 @ (©727)92) 3% (RY),

¢%* (1@ Y5 (R

N/~ T/
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5.2 Invariant of integral normal o-graphs and framed 3-manifolds

For simplicity we define the invariant Z(I', H(A)) € H(A) for a (1,1)-integral normal
o-tangle I' as follows. We attach labels on crossings and edges of the diagram as depicted
in Figure 14. It is important to note that we can rotate the diagram while attaching the
labels. Once the labels are attached, we read them in the same manner as described in
Section 3.2, and obtain an element Z(I', H(A)) € H(A). This element is invariant under
the equivalence relation ~. This construction is easily extended to general integral normal

o-graphs.
S
XX e
N\

571

Figure 14: How to place labels on the diagram.

Remark 5.2. Note that the definition of Z(—,H(A)) automatically guarantees its in-
variance under planar isotopy. This is a notable difference from the construction of the
universal tnvariant, where slice diagrams are used, and the invariance under planar iso-
topy is not trivial and requires careful considerations.

For the closure T' of T' we define Z(T',H(A)) := Z(T,H(A)) € H(A)/[H(A), H(A)],
where [H(A), H(A)] is the vector space spanned by ab— ba, a,b € H(A). It is known that
the H(A)/[H(A), H(A)] is one dimensional vector space, i.e., isomotphic to the base field

k. Note that the value Z(I', H(A)) does not depend on the choice of (1, 1)-tangle I' whose
closure is I'.

Theorem 5.3 ([14]). The map Z(—,H(A)): ZG — k is invariant under ~.

As a result, the restriction of the invariant Z(—,H(A)) to FZG" gives an invariant

Z(— H(A): MY — k.

fram

When A is an involutory Hopf algebra, the restriction of the Betti number is no longer nec-
essary, and the invariant Z(—, H(A)) becomes an invariant of closed combed 3-manifolds.
Furthermore, if A is additionally unimodular and counimodular, the invariant becomes a
topological invariant of closed 3-manifolds [13].

5.3 Invariant for small quantum Borel subalgebra of sl, and SO(3) WRT
invariant

Let us take H = u,(sl]) the small quantum Borel subalgebra with ¢ the n-th primitive
root of unity. In this case, for (S3, f) and (L(2,1), f/) in Example 4.2, we have

Z(S% frug(sly)) =7,
_11 - qiLnTHJ

Z(L(2,1), f';uq(s13)) = 2g T
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When ¢ is a primitive root of unity of odd order N, the above values match, up to
multiplication by ¢, the SO(3) Witten-Reshetikhin-Turaev (WRT) invariant 720(3)(M )
[10,16,20] times the cardinality |H;(M)| of the first homology group.

Conjecture 5.4 ([14, Conjecture 5.6]). Let q be a primitive root of unity of odd order
N. Then for every closed oriented framed 3-manifold M with by(M) = 0 there ezists an
integer k such that

Z(M, fug(s)) = ¢* - |[H(M)] - 73" (M).

Recall that WRT invariant is an invariant of 2-framed 3-manifold, where one usually
chooses canonical 2-framing to compute it [1]. Since framing f induces a 2-framing vy,
we expect that the following holds:

Z(M, fiug(sl3)) = [Hi(M)| - 73> (M, vy).

6 Alternative reconstructions and extension of universal invari-
ant based on ideal triangulations

The results in this section will be included in the upcoming paper [18]. We give two
alternative reconstructions of the universal invariant for (1,1)-tangles. Theorems 6.2 and
6.3 imply that the restrictions of Z provide the universal invariant for regular isotopy
classes of (1,1)-tangle diagrams. In other words, Z is an extension of the universal
invariant. The results in this section are easily generalized to these for string links.

6.1 Reconstruction on crossings

Lemma 6.1 ([18]). Let ¢ be a crossing (as a fundamental tangle). We have
0% 0 Jp(c, D(A)) = Z(10d(c), H(A)) € H(A)™

Proof. Let ¢ be a positive crossing where both strands are oriented downwards. Since
Jr(c, D(A)) = R, it is enough to prove Z(10d(c), H(A)) = ¢®*(R). Recall that ¢®*(R) =
S 51352454, where the multiplication in the RHS is in (H(H) ® H(H)*)®2. Thus we
should prove

Z(106(c),H(A)) = Z eie; @ 616, @ elel @ &'dF € (H(A) @ H(A)P)¥?
= eie; ® 66, @ el @ e € H(A)T

The integral normal o-graph ¢ o §(c) has four crossings and one of them has a non-trivial
integer on its edges as in Figure 15 (a). We attach copies of S* and G* as in Figure 15 (b).

By using S7' =Y (e,)®@e* =Y, e,@7*(e?) and S = > e, e = > y(e,)@7*(e?) =
Y u €a ® €%, we have

Z(1od(c),H(A)) = Z eie; @ y(e)er ® el @ FGTH (Y (1) G
— Z eie; @ y(e)er ® elel @ eF(7*) 2 (v*(e"))
= Z eiej @ €€ ® elel ® ereél
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as desired.

(@) (b)

Figure 15: (a) integral normal o-graoh ¢ o §(¢c), (b) labels

For other positive crossings ¢/, we arrange ¢’ by planar isotopy to be a composition of
¢ and a maximum and a minimum. If ¢ is a crossings where both strands are oriented
upward, or the upper left strand is oriented upward and the upper right strand is oriented
downward, then we have Jg(c', D(A)) = Jr(c, D(A)) and Z(v 0 (), H(A)) = Z(v o
d(c), H(A)), thus we have the assertion. If ¢’ is a crossings where the upper left strand is
oriented downward and the upper right strand is oriented upward, then by Lemma 5.1,
we have

¢ (Jr(c, D(A))) = ¢**((u ® 1) Jr(c, D(A)) (v @ 1))
= (G H®2 1% Z(10d(c), H(A))(G** @ 19?)
= Z(tod(c), H(A)).

We can similarly prove the assertion for negative crossings. Thus we have the assertion.
O

6.2 Reconstruction of universal invariant version 2

For a (1,1)-tangle diagram T', we define a reduced version of the universal invariant as
Jr(T, D(A)) = u=" Jp(T, D(A)), where w(T) is the number of \_/ minus the number of
/Nin T. For an integral normal o-tangle I', we define a reduced version of the invariant as
Z(v,H(A)) = G Z(y,H(A)), where we define I(T") to be the sum of all integer weight
on I'. Observe that J is itself an invariant under regular isotopy of tangle diagrams, and
Z is itself an invariant under ~.

Theorem 6.2 ([18]). We have
¢ o Jr(T,D(A)) = Z((c0 0)(T), H(A)) € H(A)**

Proof. Note that the maxima and minima to which we attach u*! on T correspond to the
maxima and minima on the thin (resp. thick) strands of ¢ o §(T) to which we attach GF!
(resp. G*!). Taking into account that the thick strand goes in reverse compared to T,
by Lemma 5.1, the assertion is reduced to the case when T is a crossing, which is already
shown in Lemma 6.1. O

17



6.3 Reconstruction of universal invariant version 3

Let T be a tangle diagram consisting of copies of the fundamental tangles. Recall that

N
T(«) is obtained from T' by replacing each of /M and \_/ with Q and 6, respectively.
Theorem 6.3 ([18]). We have

¢ o Jr(T,D(A)) = Z((100)(T(w)), H(A)) € H(A)™.

Proof. By (2) in the proof of Theorem 3.1 we have ¢ o Jr(T, D(A)) = ¢ o Jr(T(y, D(A)).
Since T{) has no more /" and \_/, the labels for Jg are attached only on crossings of 7T'.
Thus we have Jr(T(—), D(A)) = Z((t 0 0)(T()), H(A)) by Lemma 6.1, which completes
the proof. O

6.4 Comparison of reconstructions

In the reconstruction version 1, Jj, we attach the canonical element S*! of the Heisenberg
double after applying the antipode, depending on the direction of a crossing ¢ which are
treated as fundamental tangles of slice diagrams. In this construction, the image of the
universal invariant Jg(c, D(A)) under the Kashaev embedding can be exactly realized as
Jp(c,H(A)) without any additional structure like framing. However, we cannot extend
Jy, to be an invariant of integral normal o-graphs or framed 3-manifolds because it is not
invariant under planar isotopy of integral normal o-graphs. It is worth noting that J}, is
planar isotopy invariant for tangles, but we cannot move the strands of the duplicated
diagram independently.

In versions 2 and 3 of the reconstruction using Z, we adopt a canonical approach to
attach S*! to the crossings of d(c). Specifically, we attach S to each positive crossing
and S~! to each negative crossing, regardless of the orientation of the crossing. However,
attaching S*! alone is not sufficient because the value of §(c) does not directly correspond
to ¢®(R) and it is not an invariant of 3-manifolds; its value depends on the choice of
branched ideal triangulation. To overcome this limitation, we incorporate framing through
the map ¢ to obtain an invariant of 3-manifolds.

We compare Version 2 and Version 3 of the reconstruction. In Version 2, we observe
that it focuses on the essential parts of Jgp and Z. The original versions, Jg and Z,
can be obtained from the reduced versions, Jr and Z, by multiplying invertible elements
that can be easily calculated from the diagrams. However, these reduced versions are not
the original invariants themselves. In contrast, Version 3 does not require modifying the
original invariants. Instead, it involves a transformation where the diagram 7' is alternated
to T(y. This transformation corresponds to altering the corresponding branched ideal
triangulation and framing of the 3-manifold.

7 Summary

We have presented three types of reconstructions of the universal invariant. The original
construction associates the universal R-matrix or its inverse with each crossing of link
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diagrams, while the reconstructions associate the S-tensor or its inverse with each ideal
tetrahedron of 3-manifolds.

The first reconstruction (Theorem 3.1) uses slice diagrams of tangles and provides a
topological realization of Kashaev’s embedding at each crossing of tangles. However, it
cannot be extended to be an invariant of 3-manifolds.

By introducing integral normal o-graphs, we can represent framed 3-manifolds. In
particular, for closed framed 3-manifolds with a vanishing first Betti number, we establish
a one-to-one correspondence (Theorem 4.1). This allows us to construct an invariant of
closed framed 3-manifolds (Theorem 5.3).

Taking the framing structure into account, in the context of the universal invariant,
we provide two alternative reconstructions (Theorems 6.2 and 6.3) using integral normal
o-graphs. This means that the invariant Z extends the universal invariant in a three-
dimensional manner.

We anticipate that our framework will provide a new approach to studying quantum
invariants in a three-dimensional context.

References

[1] M. Atiyah, On framings of 3-manifolds, Topology 29 (1990), no. 1, 1-7.

[2] R. Benedetti and C. Petronio, Branched standard spines of 3-manifolds, Lecture Notes in Mathematics, vol. 1653,
Springer-Verlag, Berlin, 1997.

(3]

, Combed 3-manifolds with concave boundary, framed links, and pseudo-Legendrian links, J. Knot Theory
Ramifications 10 (2001), no. 1, 1-35.

[4] V. G. Drinfel'd, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley,
Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, pp. 798-820.

[5] M. Hennings, Invariants of links and 3-manifolds obtained from Hopf algebras, J. London Math. Soc. (2) 54 (1996),
no. 3, 594-624.

[6] R. M. Kashaev, The Heisenberg double and the pentagon relation, Algebra i Analiz 8 (1996), no. 4, 63—74; English
transl., St. Petersburg Math. J. 8 (1997), no. 4, 585-592.

[7] C. Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995.
[8] L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990), no. 2, 417-471.

[9] L. H. Kauffman and D. E. Radford, Invariants of 3-manifolds derived from finite-dimensional Hopf algebras, J. Knot
Theory Ramifications 4 (1995), no. 1, 131-162.

[10] R. Kirby and P. Melvin, The 3-manifold invariants of Witten and Reshetikhin-Turaev for sl(2, C), Invent. Math. 105
(1991), no. 3, 473-545.

[11] R. J. Lawrence, A universal link invariant using quantum groups, Differential geometric methods in theoretical physics
(Chester, 1988), World Sci. Publ., Teaneck, NJ, 1989, pp. 55-63.

[12] R. J. Lawrence, A universal link invariant, The interface of mathematics and particle physics (Oxford, 1988), 151-156,
Inst. Math. Appl. Conf. Ser. New Ser., 24, Oxford Univ. Press, New York, 1990.

[13] S. M. Mihalache, S. Suzuki, and Y. Terashima, The Heisenberg double of involutory Hopf algebras and invariants of
closed 3-manifolds. to appear in Algebr. Geom. Topol.

(14]

, Quantum invariants of closed framed 3-manifolds based on ideal triangulations. preprint (2022),

arXiv:math.GT/2209.07378.

[15] T. Ohtsuki, Colored ribbon Hopf algebras and universal invariants of framed links, J. Knot Theory Ramifications 2
(1993), no. 2, 211-232.

[16] N. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math.
103 (1991), no. 3, 547-597.

[17] S. Suzuki, The universal quantum invariant and colored ideal triangulations, Algebr. Geom. Topol. 18 (2018), no. 6,
3363-3402.

(18] . in preparation.

19



[19] B. Trace, On the Reidemeister moves of a classical knot, Proc. Amer. Math. Soc. 89 (1983), no. 4, 722-724.
[20] E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), no. 3, 351-399.

Department of Mathematical and Computing Science
School of Computing

Tokyo Institute of Technology

Tokyo 152-8552

JAPAN

E-mail address: sakie@Qc.titech.ac.jp

B TEERY K K

20



